Time Domain Astronomy at Caltech (ZTF) S. R. Kulkarni Director, Caltech Optical Observatories Principal Investigator, Zwicky Transient Facility (ZTF)

Size: px
Start display at page:

Download "Time Domain Astronomy at Caltech (ZTF) S. R. Kulkarni Director, Caltech Optical Observatories Principal Investigator, Zwicky Transient Facility (ZTF)"

Transcription

1 Time Domain Astronomy at Caltech (ZTF) S. R. Kulkarni Director, Caltech Optical Observatories Principal Investigator, Zwicky Transient Facility (ZTF)

2 Time Domain Astronomy (TDA) has emerged! TDA is now widely recognized to be a frontier field for this decade TDA is a major goal of LSST TDA is a major area of research at Caltech Optical: Zwicky Transient Facility (successor to the Palomar Transient Factory or PTF) Gravitational Wave: LIGO (& VIRGO) Radio: Owens Valley Radio Observatory (& JVLA)

3 Owens Valley Radio Observatory

4 OVRO: One of the largest university radio observatories in the world Suite of experiments ranging from 10 MHz 35 GHz

5

6 Palomar Observatory

7

8 Fritz Zwicky ( )

9 A phased program for optical time domain astronomy Phase I: Palomar Transient Factory ( ) Systematic exploration of sky on timescales of week Integrated approach: P48->P60->P200 Phase II: intermediate Palomar Transient Factory ( ) Systematic exploration of sky on timescales of one night Robotic Spectroscopy on demand (SEDM on P60) Phase III: Zwicky Transient Factory ( ) pre-cursor TDA survey to LSST (Z. Ivezic, LSST) stepping stone to LSST in the area of TDA (A. Tyson, LSST)

10 A Thermonuclear SN only hours old! (Double Degenerate Model) Nugent et al Li et at al. 2011

11 LETTER doi: /nature14440 A strong ultraviolet pulse from a newborn type Ia supernova Yi Cao 1, S. R. Kulkarni 1,2, D. Andrew Howell 3,4, Avishay Gal-Yam 5, Mansi M. Kasliwal 6, Stefano Valenti 3,4, J. Johansson 7, R. Amanullah 7, A. Goobar 7, J. Sollerman 8, F. Taddia 8, Assaf Horesh 5, Ilan Sagiv 5, S. Bradley Cenko 9, Peter E. Nugent 10,11, Iair Arcavi 3,12, Jason Surace 13, P. R. Woźniak 14, Daniela I. Moody 14, Umaa D. Rebbapragada 15, Brian D. Bue 15 & Neil Gehrels 9 Type Ia supernovae 1 are destructive explosions of carbon-oxygen white dwarfs 2,3. Although they are used empirically to measure cosmological distances 4 6, the nature of their progenitors remains mysterious 3. One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion 3,7,8. Here we report observations with the Swift Space Telescope of strong but declining ultraviolet emission from a type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star 9, and therefore provides evidence that some type Ia supernovae arise from the single degenerate channel. On UTC (Coordinated Universal Time) 2014 May 3.29 the intersion. As detailed in Methods subsection Spherical models for the early ultraviolet pulse, we explored models in which the ultraviolet emission is spherically symmetric with the supernova explosion (such as shock cooling and circumstellar interaction). These models are unable to explain the observed ultraviolet pulse. Therefore we turn to asymmetric models in which the ultraviolet emission comes from particular directions. A reasonable physical model is ultraviolet emission arising in the ejecta as the ejecta encounters a companion 9,14. When the rapidly moving ejecta slams into the companion, a strong reverse shock is generated in the ejecta that heats up the surrounding material. Thermal radiation from the hot material, which peaks in the ultraviolet part of the spectrum, can then be seen for a few days until the fastmoving ejecta engulfs the companion and hides the reverse shock region. We compare a semi-analytical model 9 to the Swift/UVOT

12 Publications of the Astronomical Society of the Pacific, 128: (7pp), 2016 November The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A. doi: / /128/969/ Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline Yi Cao 1, Peter E. Nugent 2,3, and Mansi M. Kasliwal 1 1 Astronomy Department, California Institute of Technology, Pasadena, CA 91125, USA 2 Department of Astronomy, University of California, Berkeley, CA , USA 3 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4206, Berkeley, CA 94720, USA Received 2016 June 6; accepted 2016 August 2; published 2016 September 30 Abstract A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting followup observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using highperformance computing, efficient databases, and machine-learning algorithms, this pipeline manages to reliably deliver transient candidates within 10 minutes of images being taken. Our experience in using high-performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in the near future. Key words: surveys methods: observational (stars:) supernovae: general Online material: color figures

13 The Astrophysical Journal Letters,767:L23(5pp),2013April20 C The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi: / /767/2/l23 RCORONAEBOREALISSTARSINM31FROMTHEPALOMARTRANSIENTFACTORY Sumin Tang 1,2,YiCao 2,LarsBildsten 1,PeterNugent 3,4,EricBellm 2,ShrinivasR.Kulkarni 2,RussLaher 5, David Levitan 2,FrankMasci 6,EranO.Ofek 7,ThomasA.Prince 2,BranimirSesar 2,andJasonSurace 5 1 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 2 Division of Physics, Mathematics, & Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 3 Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA 4 Department of Astronomy, University of California, Berkeley, California , USA 5 Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125, USA 6 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA 7 Benoziyo Center for Astrophysics and the Helen Kimmel Center for Planetary Science, Weizmann Institute of Science, Rehovot, Israel Received 2013 March 7; accepted 2013 March 15; published 2013 April 1 ABSTRACT We report the discovery of R Coronae Borealis (RCB) stars in the Andromeda galaxy (M31) using the Palomar Transient Factory (PTF). RCB stars are rare hydrogen-deficient, carbon-rich supergiant variables, most likely the merger products of two white dwarfs. These new RCBs, including two confirmed ones and two candidates, are the first to be found beyond the Milky Way and the Magellanic Clouds. All of M31 RCBs showed >1.5magirregular declines over timescales of weeks to months. Due to the limiting magnitude of our data (R mag), these RCB stars have R mag at maximum light, corresponding to M R = 4 to 5, making them some of the most luminous RCBs known. Spectra of two objects show that they are warm RCBs, similar to the Milky Way RCBs RY Sgr and V854 Cen. We consider these results, derived from a pilot study of M31 variables, as an important proof-of-concept for the study of rare bright variables in nearby galaxies with the PTF or other synoptic surveys. Key words: galaxies: individual (M31) stars: AGB and post-agb stars: carbon stars: variables: general supergiants Online-only material: color figure

14 Research in Astronomy and Astrophysics manuscript no. (L A TEX: agn.tex; printed on August 21, 2017; 20:28) Quasars behind M31 from PTF survey Yu-Han Yao 1, Shrinivas R. Kulkarni 2, Thomas Kupfer 2 and Kevin Burdge 2 1 Kavli Institute for Astronomy & Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing , China; yaoyuhan2014@pku.edu.cn 2 Division of Physics, Mathematics, & Astronomy, California Institute of Technology, Pasadena, CA 91125, USA Abstract This paper reports the discovery of quasars in the vicinity of the Andromeda galaxy (M31) with light curves from the Palomar Transient Factory (PTF). Identifying quasars behind M31 is challenging due to the high stellar surface density, yet they are powerful beacons to probe the interstellar medium (ISM) via absorption-line analysis. We use the optical variability data spanning 7 years to identify quasar candidates in the 7.2 deg 2 PTF M31 field. Based on Machine Learning (ML) algorithms, we build our star-quasar separation filter with 59 known quasars and 2000 known stars as a training set, which then select 122 candidates. Follow-up spectroscopy for 56 candidates reveals that at least 45 of them are bona fide quasars, which suggests that over 88% of the remaining candidates are likely real quasars. Among the 45 newly discovered quasars, 5 are in the background sky of the bright disk with a radius of 27 kpc. Key words: galaxies: individual (M31) quasars: general

15 S. Kulkarni Principal Investigator M. J. Graham Project Scientist E. C. Bellm Survey Scientist

16 Wide field Imagers HSC, 1.7 deg 2 DES, 2.5 deg 2 PS1, 7 deg 2 PTF/iPTF, 7.3 deg 2 ZTF, 47 deg 2 LSST, 9.6 deg 2 1 deg

17 ZTF 3-year survey begins January 2018 ZTF is not one but several surveys 3-day wide & shallow survey (10,000 sq degree covered in 3 nights) (PUBLIC) 1-day Galactic Plane patrol (PUBLIC) Partnership survey for high cadence TOO response to LIGO events

18 ZTF Data Release Framework IPAC is the data center for ZTF Real time alerts four months after survey starts (managed by UW) There is more to ZTF than transient object astronomy! Astronomy based on light curves (variable stars, quasars, NEOs) The first major release is 12 months after survey starts Raw and reduced images Photometric extractions Thereafter semester releases Includes light curves Goal: database queries for light curves

19

20 First light from ZTF is expected to be this week!

21 Dream with ZTF: dirty fireballs & orphans (Anna HO s thesis topic) The Astrophysical Journal, 769:130(16pp),2013June1 PTF11agg Cenko et al. P48 R band 2011 Jan Keck/LRIS g band 2011 Sep Keck/LRIS g band 2011 Sep " 5" Figure 1. Optical imaging of the field of PTF11agg. The P48 discovery (R-band) image is shown in the left panel. Follow-up Keck/LRIS g-band observations, obtained on 2011 September 26, are displayed in the center (wider field) and right (zoomed in) panels. The location of PTF11agg, as determined from our P48 imaging, is indicated with a solid circle (1 radius; note that this is significantly larger than the astrometric uncertainty in our alignment between the Keck/LRIS and P48 images, which is 50 mas in each coordinate). A faint, unresolved source consistent with the location of PTF11agg is detected in both our g-band and R-band (not shown) images. All images are oriented with north facing up and east to the left.

22 Next Show in 2022: Ultimate Celestial Cinematography

Bumps, Burps & Booms in the Skies. Source: APOD, NASA

Bumps, Burps & Booms in the Skies. Source: APOD, NASA Bumps, Burps & Booms in the Skies Source: APOD, NASA 48 0 The Palomar Observatory 48 1 Fritz Zwicky (1889-1974) 48 2 A Star Dies: A Supernova is born Astronomy Picture of the Day (NASA) 48 3 Metals =Stellar

More information

The dynamical sky Two frontiers Joel Johansson, Uppsala university

The dynamical sky Two frontiers Joel Johansson, Uppsala university The dynamical sky Two frontiers Joel Johansson, Uppsala university Time Wavelength Optical surveys faster! HSC, 1.7 deg 2 DES, 2.5 deg 2 PS1, 7 deg 2 PTF/iPTF, 7.3 deg 2 ZTF, 47 deg 2 LSST, 9.6 deg 2 Survey

More information

Machine Learning Applications in Astronomy

Machine Learning Applications in Astronomy Machine Learning Applications in Astronomy Umaa Rebbapragada, Ph.D. Machine Learning and Instrument Autonomy Group Big Data Task Force November 1, 2017 Research described in this presentation was carried

More information

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to

More information

arxiv: v1 [astro-ph.im] 2 Aug 2016

arxiv: v1 [astro-ph.im] 2 Aug 2016 Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline Yi Cao 1, Peter E. Nugent 2,3 & Mansi M. Kasliwal 1 ABSTRACT arxiv:1608.01006v1 [astro-ph.im] 2 Aug 2016 A fast-turnaround pipeline

More information

January 2012 NGC 281. S M T W Th F Sa

January 2012 NGC 281. S M T W Th F Sa NGC 281 High-mass stars are responsible for much of the energy pumped into a galaxy over its lifetime. Unfortunately, these stars are not well understood because they are often found relatively far away

More information

Galaxy Collisions & the Origin of Starburst Galaxies & Quasars. February 24, 2003 Hayden Planetarium

Galaxy Collisions & the Origin of Starburst Galaxies & Quasars. February 24, 2003 Hayden Planetarium Galaxy Collisions & the Origin of Starburst Galaxies & Quasars February 24, 2003 Hayden Planetarium Normal massive galaxy types elliptical & spiral galaxies Spiral Bulge of old stars Large black hole Very

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

HUNTING FOR HIDDEN SUPERNOVAE. The Progenitor-Supernova-Remnant Connection

HUNTING FOR HIDDEN SUPERNOVAE. The Progenitor-Supernova-Remnant Connection HUNTING FOR HIDDEN SUPERNOVAE Jacob Jencson The Progenitor-Supernova-Remnant Connection Caltech Astronomy Ringberg Castle Advisor: Mansi Kasliwal July 25, 2017 Optical searches are blind to supernovae

More information

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. The Deaths of Stars The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. Once the giant phase of a mediummass star ends, it exhales its outer

More information

Quasars and Active Galactic Nuclei (AGN)

Quasars and Active Galactic Nuclei (AGN) Quasars and Active Galactic Nuclei (AGN) Astronomy Summer School in Mongolia National University of Mongolia, Ulaanbaatar July 21-26, 2008 Kaz Sekiguchi Hubble Classification M94-Sa M81-Sb M101-Sc M87-E0

More information

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered?

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered? The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered? Sumner Starrfield School of Earth and Space Exploration Arizona State University WHY DO WE CARE? RS Oph may

More information

A search for main-belt comets in the Palomar Transient Factory survey

A search for main-belt comets in the Palomar Transient Factory survey A search for main-belt comets in the Palomar Transient Factory survey ADAM WASZCZAK 1, ERAN O. OFEK 2, ODED AHARONSON 1,3, SHRINIVAS R. KULKARNI 4, DAVID POLISHOOK 5,JAMES M. BAUER 6, DAVID B. LEVITAN

More information

PESSTO The Public ESO Spectroscopic Survey for Transient Objects

PESSTO The Public ESO Spectroscopic Survey for Transient Objects PESSTO The Public ESO Spectroscopic Survey for Transient Objects Morgan Fraser Institute of Astronomy, University of Cambridge, UK Stefano Benetti INAF - Osservatorio Astronomico di Padova, Italy Cosimo

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

DECAM SEARCHES FOR OPTICAL SIGNATURES OF GW Soares-Santos et al arxiv:

DECAM SEARCHES FOR OPTICAL SIGNATURES OF GW Soares-Santos et al arxiv: DECAM SEARCHES FOR OPTICAL SIGNATURES OF GW150914 Soares-Santos et al. 2016 arxiv:1602.04198 Marcelle Soares-Santos The DES Collaboration Fermilab Moriond Cosmology Conference March 20, 2016 INTRODUCTION

More information

Stellar Evolution: from star birth to star death and back again

Stellar Evolution: from star birth to star death and back again Stellar Evolution: from star birth to star death and back again Prof. David Cohen Dept. of Physics and Astronomy This presentation is available at: astro.swarthmore.edu/~cohen/presentations/admitted_students_2006/

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Introduction to the Universe. What makes up the Universe?

Introduction to the Universe. What makes up the Universe? Introduction to the Universe What makes up the Universe? Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy) - understanding

More information

Active Galaxies & Quasars

Active Galaxies & Quasars Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

Galaxies Guiding Questions

Galaxies Guiding Questions Galaxies Guiding Questions How did astronomers first discover other galaxies? How did astronomers first determine the distances to galaxies? Do all galaxies have spiral arms, like the Milky Way? How do

More information

A new method to search for Supernova Progenitors in the PTF Archive. Frank Masci & the PTF Collaboration

A new method to search for Supernova Progenitors in the PTF Archive. Frank Masci & the PTF Collaboration A new method to search for Supernova Progenitors in the PTF Archive Frank Masci & the PTF Collaboration 1 The Palomar Transient Factory (PTF) Fully automated wide-field time-domain survey in optical Carried

More information

Monday, October 14, 2013 Reading: Chapter 8. Astronomy in the news?

Monday, October 14, 2013 Reading: Chapter 8. Astronomy in the news? Monday, October 14, 2013 Reading: Chapter 8 Astronomy in the news? Goal: To understand the nature and importance of SN 1987A for our understanding of massive star evolution and iron core collapse. 1 st

More information

Searching for the Progenitors of Subluminous Type Ia Supernovae with SN 2013bc

Searching for the Progenitors of Subluminous Type Ia Supernovae with SN 2013bc Hubble Space Telescope Cycle 11 General Observer Proposal Searching for the Progenitors of Subluminous Type Ia Supernovae with SN 2013bc Principal Investigator: Institution: Electronic mail: Maximilian

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Stars and Stellar Astrophysics. Kim Venn U. Victoria

Stars and Stellar Astrophysics. Kim Venn U. Victoria Stars and Stellar Astrophysics with ngcfht Kim Venn U. Victoria Stellar SWG: Katia Cunha (NOAO), Rolf-Peter Kudritzki (IfA), Else Starkenburg (U. Victoria) Patrick Dufour (U.Montreal) Zhanwen Han (Yunnan

More information

Explosive transients in the next decade

Explosive transients in the next decade Explosive transients in the next decade S.J. Smartt Queen s University Belfast Public ESO Spectroscopic Survey of Transient Objects 90N per yr on NTT, visitor mode, flexible time domain science All of

More information

The Large Synoptic Survey Telescope

The Large Synoptic Survey Telescope The Large Synoptic Survey Telescope Philip A. Pinto Steward Observatory University of Arizona for the LSST Collaboration 17 May, 2006 NRAO, Socorro Large Synoptic Survey Telescope The need for a facility

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

Introduction to the Universe

Introduction to the Universe What makes up the Universe? Introduction to the Universe Book page 642-644 Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy)

More information

iptf16fnl - a faint and fast TDE in an E+A galaxy

iptf16fnl - a faint and fast TDE in an E+A galaxy iptf16fnl - a faint and fast TDE in an E+A galaxy Nadia (Nadejda) Blagorodnova with Suvi Gezari, Tiara Hung, Shri Kulkarni, Brad Cenko, Lin Yan Unveiling the Physics Behind Extreme AGN Variability 12th

More information

OBSERVATIONS OF TYPE II SUPERNOVAE &

OBSERVATIONS OF TYPE II SUPERNOVAE & OBSERVATIONS OF TYPE II SUPERNOVAE & Ofer Yaron Weizmann Institute for Science In collaboration with: A. Gal-Yam, D. Perley, J. Groh, A. Horesh, E. Ofek, J. Sollerman, C. Fransson, A. Rubin, and others

More information

arxiv:astro-ph/ v1 3 Aug 2004

arxiv:astro-ph/ v1 3 Aug 2004 Exploring the Time Domain with the Palomar-QUEST Sky Survey arxiv:astro-ph/0408035 v1 3 Aug 2004 A. Mahabal a, S. G. Djorgovski a, M. Graham a, R. Williams a, B. Granett a, M. Bogosavljevic a, C. Baltay

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

From Supernovae to Planets

From Supernovae to Planets From Supernovae to Planets Developed by the SOFIA Team Topic: Supernovae Concepts: Supernovae, Planet formation, Infrared observations Missions: Kepler Coordinated by: The NASA Astrophysics Forum An Instructor

More information

COSMOLOGY PHYS 30392 OBSERVING THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - January 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

NASA telescopes help solve ancient supernova mystery

NASA telescopes help solve ancient supernova mystery NASA telescopes help solve ancient supernova mystery RCW 86: A Type Ia Supernova in a Wind-Blown Bubble Williams, Brian J., el. al. ApJ 741, 96 (2011) Jeng-Lun (Alan) Chiu Institute of Astronomy, NTHU

More information

Liverpool Telescope 2

Liverpool Telescope 2 Liverpool Telescope 2 Chris Copperwheat Liverpool Telescope group: Robert Barnsley, Stuart Bates, Neil Clay, Chris Davis, Jon Marchant, Chris Mottram, Robert Smith, Iain Steele Liverpool Telescope 2 The

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

Real Astronomy from Virtual Observatories

Real Astronomy from Virtual Observatories THE US NATIONAL VIRTUAL OBSERVATORY Real Astronomy from Virtual Observatories Robert Hanisch Space Telescope Science Institute US National Virtual Observatory About this presentation What is a Virtual

More information

Diverse Energy Sources for Stellar Explosions. Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara

Diverse Energy Sources for Stellar Explosions. Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Diverse Energy Sources for Stellar Explosions Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Traditional Energy Sources Core collapse to NS or BH depositing

More information

Astronomy 102: Stars and Galaxies Examination 3 Review Problems

Astronomy 102: Stars and Galaxies Examination 3 Review Problems Astronomy 102: Stars and Galaxies Examination 3 Review Problems Multiple Choice Questions: The first eight questions are multiple choice. Except where explicitly noted, only one answer is correct for each

More information

Type II Supernovae as Standardized Candles

Type II Supernovae as Standardized Candles Type II Supernovae as Standardized Candles Mario Hamuy 1 2 Steward Observatory, The University of Arizona, Tucson, AZ 85721 Philip A. Pinto Steward Observatory, The University of Arizona, Tucson, AZ 85721

More information

ANTARES: The Arizona-NOAO Temporal Analysis and Response to Events System

ANTARES: The Arizona-NOAO Temporal Analysis and Response to Events System ANTARES: The Arizona-NOAO Temporal Analysis and Response to Events System Thomas Matheson and Abhijit Saha National Optical Astronomy Observatory 950 North Cherry Avenue Tucson, AZ 85719, USA and Richard

More information

Feeding the Beast. Chris Impey (University of Arizona)

Feeding the Beast. Chris Impey (University of Arizona) Feeding the Beast Chris Impey (University of Arizona) Note: the box is growing due to cosmic expansion but this is factored out. Heirarchical Structure Active Galactic Nuclei (AGN) Nuclear activity in

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

Chapter 21 Galaxy Evolution. Agenda

Chapter 21 Galaxy Evolution. Agenda Chapter 21 Galaxy Evolution Agenda Announce: Test in one week Part 2 in 2.5 weeks Spring Break in 3 weeks Online quizzes & tutorial are now on assignment list Final Exam questions Revisit Are we significant

More information

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 Number of hours: 50 min Time of Examination:

More information

Doing astronomy with SDSS from your armchair

Doing astronomy with SDSS from your armchair Doing astronomy with SDSS from your armchair Željko Ivezić, University of Washington & University of Zagreb Partners in Learning webinar, Zagreb, 15. XII 2010 Supported by: Microsoft Croatia and the Croatian

More information

Universe Now. 9. Interstellar matter and star clusters

Universe Now. 9. Interstellar matter and star clusters Universe Now 9. Interstellar matter and star clusters About interstellar matter Interstellar space is not completely empty: gas (atoms + molecules) and small dust particles. Over 10% of the mass of the

More information

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars Composition & Temperature Scientists use the following tools to study stars Telescope Observation Spectral

More information

A Random Walk Through Astrometry

A Random Walk Through Astrometry A Random Walk Through Astrometry Astrometry: The Second Oldest Profession George H. Kaplan Astronomical Applications Department Astrometry Department U.S. Naval Observatory Random Topics to be Covered

More information

Studies of core collapse SNe with NOT. Seppo Mattila Finnish Centre for Astronomy with ESO

Studies of core collapse SNe with NOT. Seppo Mattila Finnish Centre for Astronomy with ESO Studies of core collapse SNe with NOT Seppo Mattila Finnish Centre for Astronomy with ESO Studies of core collapse SNe with the NOT (in Stockholm, Turku, Århus) Follow up of SNe with identified progenitors

More information

The Ṁass- loss of Red Supergiants

The Ṁass- loss of Red Supergiants The Ṁass- loss of Red Supergiants Dr. Donald F. Figer Director, Center for Detectors Speaker: Yuanhao (Harry) Zhang RIT 9/12/13 1 9/12/13 2 Outline IntroducJon MoJvaJon Objects Method Need for SOFIA/FORCAST

More information

Problem Set 3, AKA First midterm review Astrophysics 4302 Due Date: Sep. 23, 2013

Problem Set 3, AKA First midterm review Astrophysics 4302 Due Date: Sep. 23, 2013 Problem Set 3, AKA First midterm review Astrophysics 4302 Due Date: Sep. 23, 2013 1. δ Cephei is a fundamental distance scale calibrator. It is a Cepheid with a period of 5.4 days. A campaign with the

More information

Transient Events from Neutron Star Mergers

Transient Events from Neutron Star Mergers Transient Events from Neutron Star Mergers Li-Xin Li Kavli Institute for Astronomy and Astrophysics Peking University, Beijing Transient Astronomical Events Transient astronomical events include all astronomical

More information

Ultra-compact binaries in the Catalina Real-time Transient Survey. The Catalina Real-time Transient Survey. A photometric study of CRTS dwarf novae

Ultra-compact binaries in the Catalina Real-time Transient Survey. The Catalina Real-time Transient Survey. A photometric study of CRTS dwarf novae Patrick Woudt, Brian Warner & Deanne de Budé 3rd AM CVn workshop, University of Warwick, 16-20 April 2012 The Catalina Real-time Transient Survey A photometric study of CRTS dwarf novae Phase-resolved

More information

Stars with Mⵙ go through two Red Giant Stages

Stars with Mⵙ go through two Red Giant Stages Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Death of Stars Nuclear reactions in small stars How stars disperse carbon How low mass stars die The nature of white dwarfs

More information

What Supernovas Tell Us about Cosmology. Jon Thaler

What Supernovas Tell Us about Cosmology. Jon Thaler What Supernovas Tell Us about Cosmology Jon Thaler CU Astronomy Society Nov. 10, 2011 We know: What We Want to Learn The universe exploded about 14 billion years ago. The big bang. It is still expanding

More information

Present and Future Large Optical Transient Surveys. Supernovae Rates and Expectations

Present and Future Large Optical Transient Surveys. Supernovae Rates and Expectations Present and Future Large Optical Transient Surveys Supernovae Rates and Expectations Phil Marshall, Lars Bildsten, Mansi Kasliwal Transients Seminar Weds 12th December 2007 Many surveys designed to find

More information

Subaru telescope observes echo of the exploding star first seen in 1572, and reveals its nature

Subaru telescope observes echo of the exploding star first seen in 1572, and reveals its nature Institute for the Physics and Mathematics of the Universe IPMU Press Release 2008 12 04 Subaru telescope observes echo of the exploding star first seen in 1572, and reveals its nature Kashiwa, Japan A

More information

arxiv: v1 [astro-ph.im] 5 Jun 2012

arxiv: v1 [astro-ph.im] 5 Jun 2012 DRAFT OF JUNE 7, 0 Preprint typeset using L A TEX style emulateapj v. 5// THE PALOMAR TRANSIENT FACTORY PHOTOMETRIC CATALOG.0 E. O. OFEK, R. LAHER, J. SURACE, D. LEVITAN, B. SESAR, A. HORESH, N. LAW, J.

More information

CORE-COLLAPSE SUPERNOVAE

CORE-COLLAPSE SUPERNOVAE CORE-COLLAPSE SUPERNOVAE Ryan Chornock (Ohio University) J. Hester & A. Loll/NASA/ESA WHY CC SUPERNOVAE ARE IMPORTANT Final deaths of massive (M > 8 M ) stars Formation of compact objects (i.e., NS/BH)

More information

Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2

Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2 Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2 Key Ideas Measuring the Distances to Galaxies and Determining the Scale of the Universe Distance Methods: Trigonometric Parallaxes Spectroscopic

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug Halo Tidal Star Streams with DECAM Brian Yanny Fermilab DECam Community Workshop NOAO Tucson Aug 19 2011 M31 (Andromeda) Our Local Group neighbors: Spiral galaxies similar to The Milky Way 150 kpc M33

More information

Early Supernova Light Curves: Now and in the Future

Early Supernova Light Curves: Now and in the Future Early Supernova Light Curves: Now and in the Future Anthony Piro George Ellery Hale Distinguished Scholar in Theoretical Astrophysics (Carnegie Observatories, Pasadena) Supernovae: The LSST Revolution

More information

Protostars evolve into main-sequence stars

Protostars evolve into main-sequence stars Understanding how stars evolve requires both observation and ideas from physics The Lives of Stars Because stars shine by thermonuclear reactions, they have a finite life span That is, they fuse lighter

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

Stars & Galaxies. Chapter 27 Modern Earth Science

Stars & Galaxies. Chapter 27 Modern Earth Science Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars How do astronomers determine the composition and surface temperature of a star? Composition & Temperature

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya Foundations Chapter of Astronomy 15 13e Our Milky Way Seeds Phys1403 Stars and Galaxies Instructor: Dr. Goderya Selected Topics in Chapter 15 A view our Milky Way? The Size of our Milky Way The Mass of

More information

BUILDING GALAXIES. Question 1: When and where did the stars form?

BUILDING GALAXIES. Question 1: When and where did the stars form? BUILDING GALAXIES The unprecedented accuracy of recent observations of the power spectrum of the cosmic microwave background leaves little doubt that the universe formed in a hot big bang, later cooling

More information

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae Guiding Questions Stellar Evolution 1. Why do astronomers think that stars evolve? 2. What kind of matter exists in the spaces between the stars? 3. What steps are involved in forming a star like the Sun?

More information

MIT Invitational, Jan Astronomy C. 2. You may separate the pages, but do not forget to put your team number at the top of all answer pages.

MIT Invitational, Jan Astronomy C. 2. You may separate the pages, but do not forget to put your team number at the top of all answer pages. MIT Invitational, Jan 2019 Astronomy C Competitors: School name: Team number: INSTRUCTIONS 1. Please turn in all materials at the end of the event. 2. You may separate the pages, but do not forget to put

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6. Supernovae The spectra of supernovae fall into many categories (see below), but beginning in about 1985, astronomers recognized that there were physically, only two basic types of supernovae: Type Ia and

More information

ASTR Midterm 2 Phil Armitage, Bruce Ferguson

ASTR Midterm 2 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 2 Phil Armitage, Bruce Ferguson SECOND MID-TERM EXAM MARCH 21 st 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA Hello! The Universe of Galaxies The Universe o Galaxies Ajit Kembhavi IUCAA Galaxies: Stars: ~10 11 Mass: ~10 11 M Sun Contain stars, gas and dust, possibly a supermassive black hole at the centre. Much

More information

Lecture 19: Galaxies. Astronomy 111

Lecture 19: Galaxies. Astronomy 111 Lecture 19: Galaxies Astronomy 111 Galaxies What is a galaxy? Large assembly of stars, gas and dust, held together by gravity Sizes: Largest: ~1 Trillion stars (or more) Smallest: ~10 Million stars Milky

More information

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web Astro 2299 The Search for Life in the Universe Lecture 9 Last time: Star formation Formation of protostars and planetary systems This time A few things about the epoch of reionization and free fall times

More information

Young stellar objects and their environment

Young stellar objects and their environment Recent Advances in Star Formation: Observations and Theory ASI Conference Series, 2012, Vol. 4, pp 107 111 Edited by Annapurni Subramaniam & Sumedh Anathpindika Young stellar objects and their environment

More information

Exploring the Depths of the Universe

Exploring the Depths of the Universe Exploring the Depths of the Universe Jennifer Lotz Hubble Science Briefing Jan. 16, 2014 Hubble is now observing galaxies 97% of the way back to the Big Bang, during the first 500 million years 2 Challenge:

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

Ultra Luminous Infared Galaxies. Yanling Wu Feb 22 nd,2005

Ultra Luminous Infared Galaxies. Yanling Wu Feb 22 nd,2005 Ultra Luminous Infared Galaxies Yanling Wu Feb 22 nd,2005 The Biggest and the brightest Biggest and the best & best and the brightest Definition: LIRG: L8-1000umL

More information