Early Supernova Light Curves: Now and in the Future

Size: px
Start display at page:

Download "Early Supernova Light Curves: Now and in the Future"

Transcription

1 Early Supernova Light Curves: Now and in the Future Anthony Piro George Ellery Hale Distinguished Scholar in Theoretical Astrophysics (Carnegie Observatories, Pasadena) Supernovae: The LSST Revolution - Northwestern June 1, 2017

2 Why Early Light Curves? Observations of early light curves during the first ~days to weeks after explosion provide key information about SNe and their progenitors 1. Shock cooling measures the radius of the exploding star 2. Interaction with a companion constrains progenitors models 3. Probes circumstellar material reflecting activity of the progenitor right before death What kind of observing strategies will allow LSST to address these issues?

3 The first signature of a supernova Shock propagating through star tsh ~ δr/v tdif ~ τ δr/c tdif < tsh τ < c/v ~ 30 Shock breakout!

4 Following Breakout is Shock Cooling Early UV/optical dominated by cooling of shock-heated material Luminosity proportional to initial radius Piro, Chang, & Weinberg (2010) L R 0c apple E M

5 Core-Collapse Shock Cooling Emission Nakar & Sari 10 (also see Chevalier 92)

6 Shock Cooling Proportional to R0 Expands and cools Expands and cools but not as much

7 Rising Light Curve of SN 2011fe No detection of shock cooling Upper limit constrains progenitor radius <0.02 R sun 1 st direct evidence that Type Ia SNe are from white dwarfs Bloom et al. (2011)

8 Companion interaction in Type Ia LCs? Early light curve also provides constraints on companion radius (Kasen 10) Shappee, Piro, et al. (2015) Constraints depend on explosion time!

9 Companion constraints from Kepler Three exquisite light curves from Kepler by Olling et al (only 2 shown here) No evidence of interaction with a companion

10 Evidence for companion interactions? Cao et al. (2015) Marion et al. (2016) If true, this would be support for single degenerate scenario. Not a normal SN Ia (see McCully et al; Foley et al) Although see Shappee, Piro, et al. (2016) for a contrary opinion

11 Radius Upper Limits for Stripped SNe Corsi et al. (2012) Piro & Nakar (2013) Cao et al. (2013) using Piro & Nakar (2013) R * =4R sun R * =1.5R sun R * =0.3R sun PTF 10vgv, SN Ic R * < 3R sun PTF 13bvn, SN Ib R * < few R sun

12 Shock Cooling from Type IIb SNe Tenuous, extended envelope (~300R sun ) leads to distinct shock cooling signature (Woosley et al. 94, Shigeyama et al. 94, Blinnikov et al. 98) Consistent with yellow supergiant progenitors (e.g., Van Dyk) SN 2011dh by Bersten et al. (2012) SN 1993J, Piro ( 15), Nakar & Piro ( 14)

13 Recent Results on Superluminous SNe Type I Superluminous SN with peak at M = -22 (powering source still controversial, see Kasen & Bildsten, etc) Nicholl et al. (2015) First peak at M = -20, brighter than a Type Ia! What is it?

14 Another Double-peaked SLSN Multi-band light curve well fit by extended material (Piro 2015): ~ 400 R sun ~ 3 M sun ~ 6x10 51 erg Magnetar model might work as well (Kasen, Metzger, & Bildsten 16) Smith, Sullivan, et al (2016)

15 Are all SLSNe double peaked? LSST well-suited to find more SLSNe (low rate and bright) First peak is not that short lived for LSST Nicholl & Smartt (2016) Understanding the first peak s occurrence rate and diversity is key for unraveling this mystery

16 SuperNova Explosion Code (SNEC) Led by Viktoriya Morozova Morozova, Piro, et al. (2015) 1D Lagrangian hydrodynamics and radiative diffusion Bolometric light curves and specific wave bands Open source with growing usage (Taddia et al 16; Nagy & Vinko 16; Szalai et al. 16; Eldridge, Wheeler; Petcha; and more)

17 Type IIb SN 2016gkg Detailed modeling of first peak to constrain circumstellar structure Need ~0.02 M sun spread out to a radius of ~200 R sun around a helium core Consistent with preexplosion imaging and temperature evolution (Kilpatrick, Foley, et al. 17; Tartaglia et al. 17; Arcavi et al. 17) Piro, Muhleisen, et al. (2017)

18 What about boring Type II SNe? Morozova, Piro, & Valenti (2017)

19 How do we solve this? Expands and cools Expands and cools but not as much

20 What if... there s extra stuff around the star?

21 Maybe not so boring after all? Morozova, Piro, & Valenti (2017)

22 Further Evidence of Dense CSM Yaron et al. (2017) Emission lines seen in early Type II spectra indicate dense CSM Lower-density, larger-radius material than what we infer

23 Constraining the CSM Structure Moriya et al. (2017) What s causing this? Wind acceleration? Additional energy input? (see Fuller 17 and refs therein) Something exciting is happening at the end of these stars lives!

24 e R-band magnitude R-band magnitude R-band magnitude R-band magnitude R-band magnitude 19 Detailed Modeling of a Larger Population ecm 10gva 10osr 10uqg 11cwi Morozova, Piro, & Valenti, in preparation E fin = 1.00 foe M ZAMS = 11.0 M E fin = 2.25 foe M ZAMS = 11.0 M E fin = 0.75 foe M ZAMS = 11.0 M E fin = 1.25 foe M ZAMS = 11.0 M E fin = 0.75 foe M ZAMS = 11.0 M 09fma 10gxi 10rem E fin = 1.25 foe M ZAMS = 11.0 M E fin = 0.50 foe M ZAMS = 19.0 M E fin = 0.50 foe M ZAMS = 11.0 M 10abyy 10jwr 10uls E fin = 3.00 foe M ZAMS = 21.0 M E fin = 1.50 foe M ZAMS = 20.0 M E fin = 0.75 foe M ZAMS = 20.0 M Once these tools are in place, they will be a E fin = 0.75 foe E fin = 2.50 foe 10uqn M ZAMS useful for applying = 11.0 M 10xtq M ZAMS = 11.0 M to the larger LSST samples 11hsj E fin = 1.00 foe M ZAMS = 11.0 M 11htj E fin = 0.50 foe M ZAMS = 11.5 M 10bgl 10mug 10umz 11ajz 11iqb E fin = 2.25 foe M ZAMS = 20.0 M E fin = 1.75 foe M ZAMS = 11.0 M E fin = 0.75 foe M ZAMS = 11.0 M E fin = 1.25 foe M ZAMS = 11.0 M E fin = 2.75 foe M ZAMS = 11.0 M

25 Black Hole Formation Unnova

26 Deep Inside the Star Hot, young neutron star produces neutrinos Neutrinos carry away energy and mass (~0.1Msun) from the neutron star This decreases the neutron star s gravitational pull, causing the envelope to expand slightly

27 Birth of a black hole (Piro 13) Followed by ~yr long, dim, plateau-like light curve (Lovegrove & Woosley 13)

28 Observation of a BH birth? Adams et al. (2017) ~25 M sun RSG, increased from ~10 5 L sun to ~10 6 L sun, and then disappeared

29 LSST as a Discovery Machine Amazing sky coverage & depth is potentially ideal for catching early light curves, and rare and/or dim events Need high cadence! (between days to ~hrs depending on science) Color critical for identification (young and hot!) Quick communication (<hrs) key for crucial follow up Need to think about landscape (ZTF, ASAS-SN, ELTs, etc) during LSST era These are hard problems!

30 LSST as a Time Machine Exquisite record over a lot of the sky with a large time baseline After SNe discovered by others, search LSST records for early LCs ~hr to day cadence needed LC features Longer cadence may still be exciting for preexplosion activity (see Type II light curves!) and early SLSNe

31 General LSST Cadence Thoughts What is the main transient science we want to address? (not now, but when LSST is operating!) What will be the landscape when LSST is operating? (ASAS-SN, ZTF, GMT, TMT, ELT, etc) There s cadence AND color AND targeting. What is the correct balance? What is the best way to make data useful for transient scientists? Is there a way to build in flexibility? How much?

32 Conclusions Early light curves provide new and valuable information about exploding stars Shock cooling non-detections provide radius constraints for SN Ia progenitors (< 0.02 R sun ) and stripped-envelope SNe (< 5 R sun ) Evidence (or not) for non-degenerate companions in SNe Ia Direct measurements of the radius of extended material around SNe IIb (~300 R sun ), SLSNe (~ R sun ) Surprisingly, boring Type II SNe show signs of dense CSM LSST is a Discovery Machine but is also a Time Machine, providing a record of early LCs and pre-explosion activity

CORE-COLLAPSE SUPERNOVAE

CORE-COLLAPSE SUPERNOVAE CORE-COLLAPSE SUPERNOVAE Ryan Chornock (Ohio University) J. Hester & A. Loll/NASA/ESA WHY CC SUPERNOVAE ARE IMPORTANT Final deaths of massive (M > 8 M ) stars Formation of compact objects (i.e., NS/BH)

More information

Elizabeth Lovegrove. Los Alamos National Laboratory

Elizabeth Lovegrove. Los Alamos National Laboratory Elizabeth Lovegrove Los Alamos National Laboratory 06.08.2017 OUTLINE VLE SNe & Shock Breakout Theory CASTRO Simulations Prospects for Observations Conclusions & Future Work 06.08.2017 2 IN CASE YOU HAVE

More information

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

THE 82ND ARTHUR H. COMPTON LECTURE SERIES THE 82ND ARTHUR H. COMPTON LECTURE SERIES by Dr. Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow FLASH Center for Computational Science Department of Astronomy & Astrophysics University of Chicago

More information

what powers the brightest supernovae?

what powers the brightest supernovae? what powers the brightest supernovae? time-domain astronomy Palomar-48 inch a data driven revolution 2005ap 2008es ASASSN-15lh PTF-13ajg scp06f6 ptf09cnd 2006gy optical superluminous supernovae 2007bi

More information

Diverse Energy Sources for Stellar Explosions. Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara

Diverse Energy Sources for Stellar Explosions. Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Diverse Energy Sources for Stellar Explosions Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Traditional Energy Sources Core collapse to NS or BH depositing

More information

The dynamical sky Two frontiers Joel Johansson, Uppsala university

The dynamical sky Two frontiers Joel Johansson, Uppsala university The dynamical sky Two frontiers Joel Johansson, Uppsala university Time Wavelength Optical surveys faster! HSC, 1.7 deg 2 DES, 2.5 deg 2 PS1, 7 deg 2 PTF/iPTF, 7.3 deg 2 ZTF, 47 deg 2 LSST, 9.6 deg 2 Survey

More information

Light curve modeling of core-collapse supernovae

Light curve modeling of core-collapse supernovae UNIVERSITY OF SZEGED FACULTY OF SCIENCE AND INFORMATICS DOCTORAL SCHOOL OF PHYSICS Light curve modeling of core-collapse supernovae PhD thesis statements Andrea Nagy SUPERVISOR: Dr. József Vinkó associate

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

10 Years of Super-Luminous Supernovae: Analytical and Numerical Models

10 Years of Super-Luminous Supernovae: Analytical and Numerical Models F.O.E. meeting - 6/2/2015, Raleigh, NC 10 Years of Super-Luminous Supernovae: Analytical and Numerical Models Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow FLASH Center for Computational Science

More information

A Fast-Evolving, Luminous Transient Discovered by K2/Kepler

A Fast-Evolving, Luminous Transient Discovered by K2/Kepler A Fast-Evolving, Luminous Transient Discovered by K2/Kepler A. Rest, 1 P. M. Garnavich, 2 D. Khatami, 3,4 D. Kasen, 3,4 B. E. Tucker, 5,6 E. J. Shaya, 7 R. P. Olling, 7 R. Mushotzky, 7 A. Zenteno, 8 S.

More information

Explosive/Eruptive LBV-like mass loss and Superluminous Supernovae (especially Type IIn)

Explosive/Eruptive LBV-like mass loss and Superluminous Supernovae (especially Type IIn) Explosive/Eruptive LBV-like mass loss and Superluminous Supernovae (especially Type IIn) Nathan Smith University of Arizona/Steward Observatory In Tucson (not ASU in Tempe) Chandra/HST OVERVIEW SLSN IIn

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6. Supernovae The spectra of supernovae fall into many categories (see below), but beginning in about 1985, astronomers recognized that there were physically, only two basic types of supernovae: Type Ia and

More information

A new method to search for Supernova Progenitors in the PTF Archive. Frank Masci & the PTF Collaboration

A new method to search for Supernova Progenitors in the PTF Archive. Frank Masci & the PTF Collaboration A new method to search for Supernova Progenitors in the PTF Archive Frank Masci & the PTF Collaboration 1 The Palomar Transient Factory (PTF) Fully automated wide-field time-domain survey in optical Carried

More information

Astronomy in the news? Patriots goal-line interception

Astronomy in the news? Patriots goal-line interception Monday, February 2, 2015 First exam Friday. First Sky Watch Due. Review sheet posted Today. Review session Thursday, 5 6 PM, RLM 6.104 Reading: Chapter 6 Supernovae, Sections 6.1, 6.2, 6.3 Chapter 1 Introduction,

More information

The Red Supergiant Progenitors of Core-collapse Supernovae. Justyn R. Maund

The Red Supergiant Progenitors of Core-collapse Supernovae. Justyn R. Maund The Red Supergiant Progenitors of Core-collapse Supernovae Justyn R. Maund Stellar Populations Workshop IAG-USP 1 st December 2015 Astronomy and Astrophysics at Sheffield 8 Academic staff 5 Postdocs 13

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

STELLAR DEATH, AND OTHER THINGS THAT GO BOOM IN THE NIGHT. Kevin Moore - UCSB

STELLAR DEATH, AND OTHER THINGS THAT GO BOOM IN THE NIGHT. Kevin Moore - UCSB STELLAR DEATH, AND OTHER THINGS THAT GO BOOM IN THE NIGHT Kevin Moore - UCSB Overview Stellar evolution basics! Fates of stars related to their mass! Mass transfer adds many possibilities Historical supernovae

More information

Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae

Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae 1 Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae Emmanouil Georgios Drimalas Department of Physics, National and Kapodistrian University of Athens Supervisor: Professor Toshikazu

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table: Compton Lecture #4: Massive Stars and Welcome! On the back table: Supernovae Lecture notes for today s s lecture Extra copies of last week s s are on the back table Sign-up sheets please fill one out only

More information

Lecture 16. Supernova Light Curves and Observations SN 1994D

Lecture 16. Supernova Light Curves and Observations SN 1994D Lecture 16 Supernova Light Curves and Observations SN 1994D Supernovae - Observed Characteristics See also Spectroscopic classification of supernovae Properties: Type Ia supernovae Classical SN Ia; no

More information

Life Cycle of a Star - Activities

Life Cycle of a Star - Activities Name: Class Period: Life Cycle of a Star - Activities A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas

More information

The Many Deaths of a Massive Star. S. E. Woosley with Justin Brown, Alexander Heger, Elizabeth Lovegrove, and Tuguldur Sukhbold

The Many Deaths of a Massive Star. S. E. Woosley with Justin Brown, Alexander Heger, Elizabeth Lovegrove, and Tuguldur Sukhbold The Many Deaths of a Massive Star S. E. Woosley with Justin Brown, Alexander Heger, Elizabeth Lovegrove, and Tuguldur Sukhbold This talk will explore a few of the reasons for, and consequences of black

More information

Direct Identification of Core- Collapse SN Progenitors. Schuyler D. Van Dyk (IPAC/Caltech)

Direct Identification of Core- Collapse SN Progenitors. Schuyler D. Van Dyk (IPAC/Caltech) Direct Identification of Core- Collapse SN Progenitors Schuyler D. Van Dyk (IPAC/Caltech) Core- Collapse SNe: Classification Thermonuclear SNe Si II lines Ia (adapted from Turatto 2003) NO Hydrogen NO

More information

Lobster X-ray Telescope Science. Julian Osborne

Lobster X-ray Telescope Science. Julian Osborne Lobster X-ray Telescope Science Julian Osborne What we want The whole high-energy sky right now 1.00E+13 1.00E+12 1 / f_lim (100 s) 1.00E+11 1.00E+10 1.00E+09 1.00E+08 0.0000001 0.000001 0.00001 0.0001

More information

Life Cycle of a Star Worksheet

Life Cycle of a Star Worksheet Life Cycle of a Star Worksheet A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas and dust in a nebula together.

More information

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with spiral arms in spiral galaxies Supernova in M75 Type

More information

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO)

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO) Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO) What do we want to learn about supernovae? What explodes? progenitors, evolution towards explosion How does it explode? explosion mechanisms

More information

Stars and Galaxies. Evolution of Stars

Stars and Galaxies. Evolution of Stars chapter 13 3 Stars and Galaxies section 3 Evolution of Stars Before You Read What makes one star different from another? Do you think the Sun is the same as other stars? Write your ideas on the lines below.

More information

WHAT DO X-RAY OBSERVATIONS

WHAT DO X-RAY OBSERVATIONS WHAT DO X-RAY OBSERVATIONS OF SNRS TELL US ABOUT THE SN AND ITS PROGENITOR DAN PATNAUDE (SAO) ANATOMY OF A SUPERNOVA REMNANT Forward Shock Cas A viewed in X-rays (Patnaude & Fesen 2009). Red corresponds

More information

The Theory of Supernovae in Massive Binaries

The Theory of Supernovae in Massive Binaries The Theory of Supernovae in Massive Binaries Philipp Podsiadlowski (Oxford) the majority of massive stars are in interacting binaries the large diversity of observed supernova types and (sub-)types is

More information

Supernova Shock Breakout. Lorenzo Sironi AST 541 Theoretical Seminar 11 th November 2009

Supernova Shock Breakout. Lorenzo Sironi AST 541 Theoretical Seminar 11 th November 2009 Supernova Shock Breakout Lorenzo Sironi AST 541 Theoretical Seminar 11 th November 2009 SN Shock Breakout (SB) For any core-collapse SN, a flash of thermal UV (or soft X-ray) radiation is expected when

More information

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso L Aquila - 14/11/2018 Multi-messenger studies of NS mergers, GRBs and magnetars Simone Dall Osso OUTLINE 1. Overview of GW/EM discoveries since 2015 binary black hole mergers binary neutron star mergers

More information

Curriculum Vitae. Anthony L. Piro

Curriculum Vitae. Anthony L. Piro Curriculum Vitae Anthony L. Piro Carnegie Observatories E-mail: piro@carnegiescience.edu 813 Santa Barbara Street Web: http://users.obs.carnegiescience.edu/piro Pasadena, CA, 91101 Phone: (626) 304-0297

More information

Explosive transients in the next decade

Explosive transients in the next decade Explosive transients in the next decade S.J. Smartt Queen s University Belfast Public ESO Spectroscopic Survey of Transient Objects 90N per yr on NTT, visitor mode, flexible time domain science All of

More information

The case for Magnetar power in SNe Ib/c and SLSNe. Paolo A. Mazzali and LJMU group: Simon PrenCce Chris Ashall and Elena Pian

The case for Magnetar power in SNe Ib/c and SLSNe. Paolo A. Mazzali and LJMU group: Simon PrenCce Chris Ashall and Elena Pian The case for Magnetar power in SNe Ib/c and SLSNe Paolo A. Mazzali and LJMU group: Simon PrenCce Chris Ashall and Elena Pian Magnetars have been invoked: XRF/SNe: to explain the large Luminosity [i.e.

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

arxiv: v1 [astro-ph.he] 18 Jul 2017

arxiv: v1 [astro-ph.he] 18 Jul 2017 Accepted for publication in the Astrophysical Journal Letters Preprint typeset using L A TEX style emulateapj v. 12/16/11 ULTRAVIOLET LIGHT CURVES OF GAIA16APD IN SUPERLUMINOUS SUPERNOVA MODELS arxiv:1707.05746v1

More information

SUPERNOVA LIGHT CURVES

SUPERNOVA LIGHT CURVES HANDS-ON UNIVERSE DISCUSSION SHEET SUPERNOVA LIGHT CURVES In the spring of 1994 several high school students were studying M51, the spiral galaxy also known as the Whirlpool Galaxy. Various images had

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Fate of Stars. relative to Sun s mass

Fate of Stars. relative to Sun s mass INITIAL MASS relative to Sun s mass M < 0.01 Fate of Stars Final State planet.01 < M

More information

Supernovae. For several weeks a supernova s luminosity rivals that of a large galaxy. SUPERNOVAE. A supernova is the explosive death of a star.

Supernovae. For several weeks a supernova s luminosity rivals that of a large galaxy. SUPERNOVAE. A supernova is the explosive death of a star. SUPERNOVAE Supernovae Pols 13 Glatzmaier and Krumholz 17, 18 Prialnik 10 A supernova is the explosive death of a star. Two types are easily distinguishable by their spectrum. Type II has hydrogen (H ).

More information

Supernovae. Pols 13 Glatzmaier and Krumholz 17, 18 Prialnik 10

Supernovae. Pols 13 Glatzmaier and Krumholz 17, 18 Prialnik 10 Supernovae Pols 13 Glatzmaier and Krumholz 17, 18 Prialnik 10 SUPERNOVAE A supernova is the explosive death of a star. Two types are easily distinguishable by their spectrum. Type II has hydrogen (H ).

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

SUPERNOVA LIGHT CURVES What type of supernova?

SUPERNOVA LIGHT CURVES What type of supernova? SUPERNOVA LIGHT CURVES What type of supernova? ImageJ In the spring of 1994 several high school students were studying M51, the spiral galaxy also known as the Whirlpool Galaxy. Various images had been

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Extreme Transients in the Multimessenger Era

Extreme Transients in the Multimessenger Era Extreme Transients in the Multimessenger Era Philipp Mösta Einstein fellow @ UC Berkeley pmoesta@berkeley.edu BlueWBlueWaters Symposium 2018 Sunriver Resort Core-collapse supernovae neutrinos turbulence

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Fate of Stars. INITIAL MASS Final State relative to Sun s mass

Fate of Stars. INITIAL MASS Final State relative to Sun s mass Fate of Stars INITIAL MASS Final State relative to Sun s mass M < 0.01 planet.01 < M

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

ELT Contributions to The First Explosions 1

ELT Contributions to The First Explosions 1 ELT Contributions to The First Explosions 1 A Whitepaper Submitted to the Astro 2020 Decadal Survey Committee J. Craig Wheeler (The University of Texas at Austin) József Vinkó (Konkoly Observatory) Rafaella

More information

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Chapter 6: Stellar Evolution (part 2): Stellar end-products Chapter 6: Stellar Evolution (part 2): Stellar end-products Final evolution stages of high-mass stars Stellar end-products White dwarfs Neutron stars and black holes Supernovae Core-collapsed SNe Pair-Instability

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

Why Do Stars Leave the Main Sequence? Running out of fuel

Why Do Stars Leave the Main Sequence? Running out of fuel Star Deaths Why Do Stars Leave the Main Sequence? Running out of fuel Observing Stellar Evolution by studying Globular Cluster HR diagrams Plot stars in globular clusters in Hertzsprung-Russell diagram

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

Chapter 15. Supernovae Classification of Supernovae

Chapter 15. Supernovae Classification of Supernovae Chapter 15 Supernovae Supernovae represent the catastrophic death of certain stars. They are among the most violent events in the Universe, typically producing about 10 53 erg, with a large fraction of

More information

The Stellar Graveyard Neutron Stars & White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs The Stellar Graveyard Neutron Stars & White Dwarfs White Dwarfs White dwarfs are the remaining cores of low-mass (M < 8M sun ) stars Electron degeneracy pressure supports them against gravity Density ~

More information

20. Stellar Death. Interior of Old Low-Mass AGB Stars

20. Stellar Death. Interior of Old Low-Mass AGB Stars 20. Stellar Death Low-mass stars undergo three red-giant stages Dredge-ups bring material to the surface Low -mass stars die gently as planetary nebulae Low -mass stars end up as white dwarfs High-mass

More information

EMISSION FROM ROTATING PAIR INSTABILITY SUPERNOVAE

EMISSION FROM ROTATING PAIR INSTABILITY SUPERNOVAE AAS HEAD meeting, August 20, 2014 EMISSION FROM ROTATING PAIR INSTABILITY SUPERNOVAE Dr. Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow Department of Astronomy & Astrophysics FLASH Center for Computational

More information

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star Star Death High Mass Star Red Supergiant A star with mass between 8 M and 20 M will become a red supergiant and will subsequently experience a supernova explosion. The core of this star will have a mass

More information

High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova

High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova arxiv:1705.04750 Kohta Murase (Penn State) TeVPA 2017 @ Columbus, Ohio Neutrinos: Unique Probe of Cosmic Explosions

More information

Type Ibn Supernovae. Type Ibn Supernovae. Andrea Pastorello (INAF-OAPd) Andrea Pastorello (INAF-OAPd) Stockholm May 28 - June 1, 2018

Type Ibn Supernovae. Type Ibn Supernovae. Andrea Pastorello (INAF-OAPd) Andrea Pastorello (INAF-OAPd) Stockholm May 28 - June 1, 2018 Type Ibn Supernovae Type Ibn Supernovae Andrea Pastorello (INAF-OAPd) Stockholm May 28 - June 1, 2018 Andrea Pastorello (INAF-OAPd) Overview Introduction; SN 2006jc Heterogeneity of SN Ibn observables

More information

Identifying Progenitors of Stripped-Envelope Supernovae

Identifying Progenitors of Stripped-Envelope Supernovae Identifying Progenitors of Stripped-Envelope Supernovae Gastón Folatelli Instituto de Astrofísica de La Plata (IALP), CONICET, Argentina Aug 11th, 2016 Collaborators: S. Van Dyk, H. Kuncarayakti, K. Maeda,

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

To infinity, and beyond!

To infinity, and beyond! stars The night sky is filled with stars that shine at different levels of brightness. The brightness of the stars we observe can be related to the size of the star or its distance from Earth. In order

More information

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes The spectral lines of stars tell us their approximate composition Remember last year in Physics?

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Supernovae. Richard McCray University of Colorado. 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A

Supernovae. Richard McCray University of Colorado. 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A Supernovae Richard McCray University of Colorado 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A Why are supernovae interesting? They are the source of all elements in the universe (except H, He,

More information

Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM

Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM RLM 15.216B (Backup RLM 15.202A) Reading: Chapter 6

More information

Monday, October 14, 2013 Reading: Chapter 8. Astronomy in the news?

Monday, October 14, 2013 Reading: Chapter 8. Astronomy in the news? Monday, October 14, 2013 Reading: Chapter 8 Astronomy in the news? Goal: To understand the nature and importance of SN 1987A for our understanding of massive star evolution and iron core collapse. 1 st

More information

Wednesday, September 7, 2011 First exam Friday. First Sky Watch due. Review sheet posted. Reading posted under announcements on web page, Section

Wednesday, September 7, 2011 First exam Friday. First Sky Watch due. Review sheet posted. Reading posted under announcements on web page, Section Wednesday, September 7, 2011 First exam Friday. First Sky Watch due. Review sheet posted. Reading posted under announcements on web page, Section 5.1, Sections 6.1 6.3, other background. Exam will draw

More information

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc. Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

More information

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: I. The End of a Star s Life When all the fuel in a star is used up, will win over pressure and the star will die nuclear fuel; gravity High-mass

More information

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni SN1987A before(right) and during the explosion Supernova Explosion Qingling Ni Overview Core-Collapse supernova (including Type II supernova) -Mechanism: collapse+rebound Type Ia supernova -Mechanism:

More information

Chapter 18 The Bizarre Stellar Graveyard

Chapter 18 The Bizarre Stellar Graveyard Chapter 18 The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White

More information

Fate of Stars. INITIAL MASS Final State relative to Sun s mass

Fate of Stars. INITIAL MASS Final State relative to Sun s mass Fate of Stars INITIAL MASS Final State relative to Sun s mass M < 0.01 planet.01 < M

More information

Lecture 17: Supernovae and Neutron Stars. For several weeks a supernova s luminosity rivals that of a large galaxy. SUPERNOVAE

Lecture 17: Supernovae and Neutron Stars. For several weeks a supernova s luminosity rivals that of a large galaxy. SUPERNOVAE SUPERNOVAE Lecture 17: Supernovae and Neutron Stars http://apod.nasa.gov/apod/ A supernova is the explosive death of a star. Unlike an ordinary nova, it does not repeat. Two types are easily distinguishable

More information

April 13, 2011 Exam 4, Friday. Review sheet posted. Sky Watch 4 due. Review session Thursday, 5 6 PM, Room WEL 3.502, right here! Reading: Chapter 9,

April 13, 2011 Exam 4, Friday. Review sheet posted. Sky Watch 4 due. Review session Thursday, 5 6 PM, Room WEL 3.502, right here! Reading: Chapter 9, April 13, 2011 Exam 4, Friday. Review sheet posted. Sky Watch 4 due. Review session Thursday, 5 6 PM, Room WEL 3.502, right here! Reading: Chapter 9, Sections 9.5.2, 9.6.1, 9.6.2. 9.7, 9.8; Chapter 10,

More information

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars Classifying Stars In the early 1900s, Ejnar Hertzsprung and Henry Russell made some important observations. They noticed that, in general, stars with higher temperatures also have brighter absolute magnitudes.

More information

arxiv: v1 [astro-ph.he] 25 May 2015

arxiv: v1 [astro-ph.he] 25 May 2015 Preprint typeset using L A TEX style emulateapj v. 5/2/11 LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC) VIKTORIYA MOROZOVA

More information

Determining the distance of type II supernovae

Determining the distance of type II supernovae UNIVERSITY OF SZEGED FACULTY OF SCIENCE AND INFORMATICS DOCTORAL SCHOOL OF PHYSICS Determining the distance of type II supernovae PhD theses Takáts Katalin SUPERVISOR: Dr. Vinkó József Department of Optics

More information

Lecture 17: Supernovae and Neutron Stars. For several weeks a supernova s luminosity rivals that of a large galaxy. SUPERNOVAE

Lecture 17: Supernovae and Neutron Stars. For several weeks a supernova s luminosity rivals that of a large galaxy. SUPERNOVAE SUPERNOVAE Lecture 17: Supernovae and Neutron Stars http://apod.nasa.gov/apod/ A supernova is the explosive death of a star. Unlike an ordinary nova, it does not repeat. Two types are easily distinguishable

More information

Supernovae and possible NS-NS EM signatures. Keiichi Maeda

Supernovae and possible NS-NS EM signatures. Keiichi Maeda ? Supernovae and possible NS-NS EM signatures Keiichi Maeda Outline SN (mostly) optical obs. vs. radiation models. @max. Early, before max. Late-phase. w/ radio and/or X-ray. How to connect these to Progenitor,

More information

Termination of Stars

Termination of Stars Termination of Stars Some Quantum Concepts Pauli Exclusion Principle: "Effectively limits the amount of certain kinds of stuff that can be crammed into a given space (particles with personal space ). When

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Monday, January 30, 2012 First exam Friday. First Sky Watch due. Review sheet posted. Reading posted under announcements on web page, Chapter 6 -

Monday, January 30, 2012 First exam Friday. First Sky Watch due. Review sheet posted. Reading posted under announcements on web page, Chapter 6 - Monday, January 30, 2012 First exam Friday. First Sky Watch due. Review sheet posted. Reading posted under announcements on web page, Chapter 6 - Sections 6.1, 6.2, 6.3 (also sections 1.2.4, 2.1-2.5, and

More information

Supernovae. Type II, Ib, and Ic supernova are core-collapse supernova. Type Ia supernovae are themonuclear explosions.

Supernovae. Type II, Ib, and Ic supernova are core-collapse supernova. Type Ia supernovae are themonuclear explosions. Type Ia Supernovae Supernovae Gravitational collapse powers the explosion. Type Ia supernovae are themonuclear explosions. (Carroll and Ostlie) Type II, Ib, and Ic supernova are core-collapse supernova.

More information

7/9. What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less

7/9. What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less 7/9 What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less Medium-Mass Stars 0.2 solar masses up to between 2 and 3 solar masses.

More information

Life and Evolution of a Massive Star. M ~ 25 M Sun

Life and Evolution of a Massive Star. M ~ 25 M Sun Life and Evolution of a Massive Star M ~ 25 M Sun Birth in a Giant Molecular Cloud Main Sequence Post-Main Sequence Death The Main Sequence Stars burn H in their cores via the CNO cycle About 90% of a

More information

Core Collapse Supernovae

Core Collapse Supernovae Core Collapse Supernovae Supernovae, the catastrophic explosions of stars, are some of the most luminous events in the universe for the few weeks that they are at peak brightness. As we will discuss in

More information

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course Relativistic Astrophysics Neutron Stars, Black Holes & Grav. Waves... A brief description of the course May 2, 2009 Structure of the Course Introduction to General Theory of Relativity (2-3 weeks) Gravitational

More information

Lecture 26. High Mass Post Main Sequence Stages

Lecture 26. High Mass Post Main Sequence Stages Lecture 26 Fate of Massive Stars Heavy Element Fusion Core Collapse Supernova Neutrinoes Gaseous Remnants Neutron Stars Mar 27, 2006 Astro 100 Lecture 26 1 High Mass Post Main Sequence Stages For M(main

More information

PHYS 1401: Descriptive Astronomy Notes: Chapter 12

PHYS 1401: Descriptive Astronomy Notes: Chapter 12 CHAPTER 12: STELLAR EVOLUTION 12.1: LEAVING THE MAIN SEQUENCE Stars and the Scientific Method You cannot observe a single star from birth to death You can observe a lot of stars in a very short period

More information

Core-collapse supernovae are thermonuclear explosions

Core-collapse supernovae are thermonuclear explosions Core-collapse supernovae are thermonuclear explosions Doron Kushnir Collaborators: Boaz Katz (WIS), Kfir Blum (WIS), Roni Waldman (HUJI) 17.9.2017 The progenitors are massive stars SN2008bk - Red Super

More information

MIXING CONSTRAINTS ON THE PROGENITOR OF SUPERNOVA 1987A

MIXING CONSTRAINTS ON THE PROGENITOR OF SUPERNOVA 1987A MIXING CONSTRAINTS ON THE PROGENITOR OF SUPERNOVA 1987A Victor Utrobin ITEP, Moscow in collaboration with Annop Wongwathanarat (MPA, RIKEN), Hans-Thomas Janka (MPA), and Ewald Müller (MPA) Workshop on

More information