SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni

Size: px
Start display at page:

Download "SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni"

Transcription

1 SN1987A before(right) and during the explosion Supernova Explosion Qingling Ni

2 Overview Core-Collapse supernova (including Type II supernova) -Mechanism: collapse+rebound Type Ia supernova -Mechanism: accrete+ignite possible progenitor models observational clues for progenitors

3 Core Collapse supernova For white dwarf creates by a star more massive than 8M Gravity VS electron degeneracy pressure Relativistic gas easily compressed by gravity, until reaching nuclear density Rebound: generating shock litters freshly synthesized heavy elements and leaves a neutron star (or a black hole)

4 Core-Collapse Supernova Origin of Elements Fusion: Onion-skin structure Fusion is exothermic only for the assembly of lighter elements into elements up to the iron group Post-processing

5 Core-Collapse Supernova Mechanism for the shock Simple Bounce and rebound model? Through neutrino energy losses and nuclear breakup: Shock stalls between a radius of 100 and 200 km into a quasistationary accretion shock Neutrinos: Reviving explosion Neutrinos diffuse to escape in seconds Mantle heated by the absorption of a fraction of the escaping neutrino in the gain region Accretion pressure(subsiding) VS Heat from neutrinos : Explode!

6 Core-Collapse Supernova source of γ ray burst Observational coincidences GRB970228: power-law decay expected in the relativistic blast model and can be interpreted as a superposition of classic power-law afterglows with supernova light curves. GRB980425: type Ic supernova, SN1998bw, that exploded in a nearby galaxy Some supernova may be able to spawn a gamma ray burst and its early afterglows, followed by supernova explosion

7 Type Ia Supernova For by low-mass stars in binary system Transfer mass from companion to reach the Chandrasekhar mass thermonuclear incineration Nuclear energy released: The gravitational binding energy: Ejecta Velocity

8 Type Ia Supernova Revealing the geometry of the universe A Hubble diagram depicting the calibrated peak blue brightness L of the collection of type Ia supernovae discovered and studied by the Supernova Cosmology project. A plot of Supernova Team using their type Ia supernova data. The Universe will expand forever and to be accelerating. H Age: 14.5 Gyr

9 Type Ia Supernova Progenitor Problem SD model VS DD model Single-degenerate model accretion from a non-degenerate secondary(a main sequence star, a helium star, or a red giant Accretion range Centered around: resembling supersoft X-ray sources the effi accretion mode is limited

10 Type Ia Supernova Progenitor Problem SD model VS DD model Double-degenerate model the more-massive WD tidally disrupts and accretes lower-mass WD off-center ignition accretion-induced collapse?

11 Type Ia Supernova Progenitor Problem SD model VS DD model The possibility of other models: Collisional DD model(triple system?) Double denotations model Super Chandrasekhar-mass model (rotation-supported against collapse and ignition) The calculation of binary population synthesis (BPS) together with observational clues DD model: not an underdog anymore

12 Observational clues for Type Ia Supernova Progenitors Clues from potential progenitor populations SD model progenitors: Progenitor Galactic population of recurrent novae: ~300 VS number of systems needed for the SN Ia rate:~3300 Supersoft X-ray sources: <1% of the WD s growth time spent in this phase DD model progenitors: Total merger rate 1 10 BPS calculation, is same with the SN Ia rate.

13 Observational clues for Type Ia Supernova Progenitors Pre-explosion evidence Li et al. (2011a) SN 2011fe: setting the preexplosion limit SD origin: no red giant and helium-star donors, bright supersoft X-ray sources; allow mainsequence and sub-giant SD donors, and faint supersoft sources DD origin: all survived

14 Observational clues for Type Ia Supernova Progenitors During the SN event bloom et al. (2012):Early light curve puts

15 Observational clues for Type Ia Supernova Progenitors During the SN event Margutti et al. (2012) Chomiuk et al. (2012b)

16 Observational clues for Type Ia Supernova Progenitors Post-explosion evidence in SN remnants No obvious donor in the SD scenario has been detected in strict limits Tycho s SN of 1572 SN1006 SNR : L SNR Not likely to have wind regulation in SD scenario according to h models of remnants Composite HST/Chandra image, in B, V, I, Hα, and X-rays, of the ~ Ia remnant in the LMC

17 Observational clues for Type Ia Supernova Progenitors Delay-time distribution Delay time: time between star formation and SN Ia explosio Nelemans, Toonen & Bours (2013): Obeserved versus theoretical delay time distribution BPS calculations of DD model fits more with data

18 Type Ia Supernova Progenitors Problem Future Outlook Theoretical side: SD model DD model: the process of ignition in DD mergers Observational side: Gaia Gamma ray observations Space-based gravitational wave interferometer

19 Core collapse supernova: Summary Onion-skin structure; Relativistic gas being compressed by gravity, reaching nuclear density; Shock generated through rebounding and revived through the absorption of neutrinos Type Ia supernova Transfer mass from companion to reach the Chandrasekhar mass a strong tool for cosmology Progenitors long in doubt: The observations suggests that, among the various models, only DD progenitors are not ruled out

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with spiral arms in spiral galaxies Supernova in M75 Type

More information

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6. Supernovae The spectra of supernovae fall into many categories (see below), but beginning in about 1985, astronomers recognized that there were physically, only two basic types of supernovae: Type Ia and

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

The Origin of Type Ia Supernovae

The Origin of Type Ia Supernovae The Origin of Type Ia Supernovae Gijs Nelemans Radboud University Nijmegen with Rasmus Voss, Mikkel Nielsel, Silvia Toonen, Madelon Bours, Carsten Dominik Outline Introduction: supernovae Relevance Type

More information

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Chapter 6: Stellar Evolution (part 2): Stellar end-products Chapter 6: Stellar Evolution (part 2): Stellar end-products Final evolution stages of high-mass stars Stellar end-products White dwarfs Neutron stars and black holes Supernovae Core-collapsed SNe Pair-Instability

More information

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002 Outline Novae (detonations on the surface of a star) Supernovae (detonations of a star) The Mystery of Gamma Ray Bursts (GRBs) Sifting through afterglows for clues! Stellar Explosions Novae Nova V838Mon

More information

Life and Evolution of a Massive Star. M ~ 25 M Sun

Life and Evolution of a Massive Star. M ~ 25 M Sun Life and Evolution of a Massive Star M ~ 25 M Sun Birth in a Giant Molecular Cloud Main Sequence Post-Main Sequence Death The Main Sequence Stars burn H in their cores via the CNO cycle About 90% of a

More information

Supernovae, Neutron Stars, Pulsars, and Black Holes

Supernovae, Neutron Stars, Pulsars, and Black Holes Supernovae, Neutron Stars, Pulsars, and Black Holes Massive stars and Type II supernovae Massive stars (greater than 8 solar masses) can create core temperatures high enough to burn carbon and heavier

More information

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table: Compton Lecture #4: Massive Stars and Welcome! On the back table: Supernovae Lecture notes for today s s lecture Extra copies of last week s s are on the back table Sign-up sheets please fill one out only

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

Boris Gänsicke. Type Ia supernovae and their progenitors

Boris Gänsicke. Type Ia supernovae and their progenitors Boris Gänsicke Type Ia supernovae and their progenitors November 1572, in Cassiopeia: a nova a new star V~-4 Tycho Brahe: De nova et nullius aevi memoria prius visa stella (1602) October 9, 1604, in Ophiuchus

More information

BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars

BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf Mass Limit for White Dwarfs S. Chandrasekhar (1983 Nobel Prize) -calculated max. mass

More information

Stars with Mⵙ go through two Red Giant Stages

Stars with Mⵙ go through two Red Giant Stages Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Death of Stars Nuclear reactions in small stars How stars disperse carbon How low mass stars die The nature of white dwarfs

More information

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes Astronomy 110: SURVEY OF ASTRONOMY 11. Dead Stars 1. White Dwarfs and Supernovae 2. Neutron Stars & Black Holes Low-mass stars fight gravity to a standstill by becoming white dwarfs degenerate spheres

More information

Supernovae and cosmology

Supernovae and cosmology Supernovae and cosmology On the Death of Stars and Standard Candles Gijs Hijmans Supernovae Types of Supernovae Type I Ia (no hydrogen but strong silicon lines in spectrum) Ib (non ionized helium lines)

More information

Evolution of Low-Mass stars M < 4 M sun No C Burning!

Evolution of Low-Mass stars M < 4 M sun No C Burning! Evolution of Low-Mass stars M < 4 M sun No C Burning! C-O Core Envelope Ejection 0.1Myr Luminosity (L sun ) 10 6 10 4 10 2 1 10-2 10-4 C-O White Dwarf (forever) Asymptotic Giant Branch C-O core contraction,

More information

Lecture 9: Supernovae

Lecture 9: Supernovae Lecture 9: Supernovae Senior Astrophysics 2018-03-28 Senior Astrophysics Lecture 9: Supernovae 2018-03-28 1 / 35 Outline 1 Core collapse 2 Supernova 3 SN 1987A 4 Next lecture Senior Astrophysics Lecture

More information

Wolfgang Hillebrandt. Garching. DEISA PRACE Symposium Barcelona May 10 12, 2010

Wolfgang Hillebrandt. Garching. DEISA PRACE Symposium Barcelona May 10 12, 2010 Modelling Cosmic Explosions Wolfgang Hillebrandt MPI für Astrophysik Garching DEISA PRACE Symposium Barcelona May 10 12, 2010 Outline of the talk Supernova types and phenomenology (in brief) Models of

More information

Supernova Explosions and Remnants

Supernova Explosions and Remnants Supernova Explosions and Remnants stellar structure For a 25 solar mass star, the duration of each stage is stellar corpses: the core When the central iron core continues to grow and approaches M, two

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

X-Ray Spectroscopy of Supernova Remnants. Introduction and Background:

X-Ray Spectroscopy of Supernova Remnants. Introduction and Background: X-Ray Spectroscopy of Supernova Remnants Introduction and Background: RCW 86 (Chandra, XMM-Newton) RCW 86 is a supernova remnant that was created by the destruction of a star approximately two thousand

More information

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS Main Categories of Compact Systems Formation of Compact Objects Mass and Angular Momentum Loss Evolutionary Links to Classes of Binary Systems Future Work

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies Life and Death of High Mass Stars (M > 8 M sun ) REVIEW Last stage: Iron core surrounded by shells of increasingly lighter elements. REVIEW When mass

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Lecture 26. High Mass Post Main Sequence Stages

Lecture 26. High Mass Post Main Sequence Stages Lecture 26 Fate of Massive Stars Heavy Element Fusion Core Collapse Supernova Neutrinoes Gaseous Remnants Neutron Stars Mar 27, 2006 Astro 100 Lecture 26 1 High Mass Post Main Sequence Stages For M(main

More information

STELLAR DEATH, AND OTHER THINGS THAT GO BOOM IN THE NIGHT. Kevin Moore - UCSB

STELLAR DEATH, AND OTHER THINGS THAT GO BOOM IN THE NIGHT. Kevin Moore - UCSB STELLAR DEATH, AND OTHER THINGS THAT GO BOOM IN THE NIGHT Kevin Moore - UCSB Overview Stellar evolution basics! Fates of stars related to their mass! Mass transfer adds many possibilities Historical supernovae

More information

Lecture 13: Binary evolution

Lecture 13: Binary evolution Lecture 13: Binary evolution Senior Astrophysics 2017-04-12 Senior Astrophysics Lecture 13: Binary evolution 2017-04-12 1 / 37 Outline 1 Conservative mass transfer 2 Non-conservative mass transfer 3 Cataclysmic

More information

20. Stellar Death. Interior of Old Low-Mass AGB Stars

20. Stellar Death. Interior of Old Low-Mass AGB Stars 20. Stellar Death Low-mass stars undergo three red-giant stages Dredge-ups bring material to the surface Low -mass stars die gently as planetary nebulae Low -mass stars end up as white dwarfs High-mass

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

A1199 Are We Alone? " The Search for Life in the Universe

A1199 Are We Alone?  The Search for Life in the Universe ! A1199 Are We Alone? " The Search for Life in the Universe Instructor: Shami Chatterjee! Summer 2018 Web Page: http://www.astro.cornell.edu/academics/courses/astro1199/! HW2 now posted...! So far: Cosmology,

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard 18.1 White Dwarfs What is a white dwarf? What can happen to a white dwarf in a close binary system? What supports

More information

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Brock University Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

Termination of Stars

Termination of Stars Termination of Stars Some Quantum Concepts Pauli Exclusion Principle: "Effectively limits the amount of certain kinds of stuff that can be crammed into a given space (particles with personal space ). When

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. Stellar Deaths/Endpoints 13-2 Low Mass Stars ³ Like the Sun (< 2 M ) ² Live about 10 billion years (sun is middle aged) ² Create elements through Carbon, Nitrogen,

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

Binary Evolution Novae, Supernovae, and X-ray Sources

Binary Evolution Novae, Supernovae, and X-ray Sources Binary Evolution Novae, Supernovae, and X-ray Sources The Algol Mystery Algol is a double-lined eclipsing binary system with a period of about 3 days (very short). The two stars are: Star A: B8, 3.4M o

More information

Science Olympiad Astronomy C Regional Event February 11, 2017 Maryland

Science Olympiad Astronomy C Regional Event February 11, 2017 Maryland Science Olympiad Astronomy C Regional Event February 11, 2017 Maryland TEAM NUMBER: TEAM NAME: INSTRUCTIONS: 1) Please turn in ALL MATERIALS at the end of this event. 2) Do not forget to put your TEAM

More information

The Progenitors of Type Ia Supernovae

The Progenitors of Type Ia Supernovae The Progenitors of Type Ia Supernovae Philipp Podsiadlowski, Richard Booth, Mark Sullivan (Oxford), Shazrene Mohamed (Bonn), Paolo Mazzali (MPA/Padova), Zhanwen Han (Kunming), Stephen Justham (Beijing),

More information

The Evolution of Close Binaries

The Evolution of Close Binaries The Evolution of Close Binaries Philipp Podsiadlowski (Oxford) The case of RS Ophiuchi as a test of binary stellar evolution as a potential Type Ia supernova (SN Ia) progenitor I. Testing Binary Evolution:

More information

Chapter 15. Supernovae Classification of Supernovae

Chapter 15. Supernovae Classification of Supernovae Chapter 15 Supernovae Supernovae represent the catastrophic death of certain stars. They are among the most violent events in the Universe, typically producing about 10 53 erg, with a large fraction of

More information

Binary Evolution Novae, Supernovae, and X-ray Sources

Binary Evolution Novae, Supernovae, and X-ray Sources Binary Evolution Novae, Supernovae, and X-ray Sources http://apod.nasa.gov/apod/ http://www.space.com/32150-farthest-galaxy-smashes-cosmic-distance-record.html The Algol Mystery Algol is a double-lined

More information

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo)

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo) Evolution and Final Fates of Accreting White Dwarfs Ken Nomoto (Kavli IPMU / U. Tokyo) AD 1572 Korean & Chinese Record Guest Star as bright as Venus (Sonjo Sujong Sillok: Korea) AD 1572 Tycho Brahe s Supernova

More information

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Brock University Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Number of hours: 50 min Time of Examination: 18:00 15:50 Instructor:

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: I. The End of a Star s Life When all the fuel in a star is used up, will win over pressure and the star will die nuclear fuel; gravity High-mass

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. The Deaths of Stars The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. Once the giant phase of a mediummass star ends, it exhales its outer

More information

Dead & Variable Stars

Dead & Variable Stars Dead & Variable Stars Supernovae Death of massive Stars As the core collapses, it overshoots and bounces A shock wave travels through the star and blows off the outer layers, including the heavy elements

More information

Prof. Kenney Class 8 June 6, 2018

Prof. Kenney Class 8 June 6, 2018 Prof. Kenney Class 8 June 6, 2018 differences in textbook editions 10 th ed vs 8 th & 9 th ed all chapter assignments starting with ch 21 on are shifted by 1 in 10th edition relative to 8th, 9th editions

More information

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

More information

Supernovae and gamma- ray bursts

Supernovae and gamma- ray bursts Supernovae and gamma- ray bursts Supernovae Observa(ons: a star that temporarily becomes extremely bright, some:mes comparable to a whole galaxy Supernovae Supernovae Visible at very great distance (cosmology)

More information

The Algol Mystery. Binary Evolution Novae, Supernovae, and X-ray Sources. Algol. Mass Transfer in Binaries

The Algol Mystery. Binary Evolution Novae, Supernovae, and X-ray Sources. Algol. Mass Transfer in Binaries The Algol Mystery Binary Evolution Novae, Supernovae, and X-ray Sources http://apod.nasa.gov/apod/ Algol is a double-lined eclipsing binary system with a period of about 3 days (very short). The two stars

More information

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star Star Death High Mass Star Red Supergiant A star with mass between 8 M and 20 M will become a red supergiant and will subsequently experience a supernova explosion. The core of this star will have a mass

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics IV: Novae, x-ray bursts and thermonuclear supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics

More information

Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM

Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM RLM 15.216B (Backup RLM 15.202A) Reading: Chapter 6

More information

LIFE STAGES OF HIGH-MASS STARS

LIFE STAGES OF HIGH-MASS STARS LIFE STAGES OF HIGH-MASS STARS Late life stages of high-mass stars are similar to those of low-mass stars: Hydrogen core fusion (main sequence) Hydrogen shell fusion (giant) Helium core fusion (horizontal

More information

Fate of Stars. INITIAL MASS Final State relative to Sun s mass

Fate of Stars. INITIAL MASS Final State relative to Sun s mass Fate of Stars INITIAL MASS Final State relative to Sun s mass M < 0.01 planet.01 < M

More information

Supernovae. Richard McCray University of Colorado. 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A

Supernovae. Richard McCray University of Colorado. 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A Supernovae Richard McCray University of Colorado 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A Why are supernovae interesting? They are the source of all elements in the universe (except H, He,

More information

Pulsars - a new tool for astronomy and physics

Pulsars - a new tool for astronomy and physics 1 Reading: Chapter 24, Sect. 24.5-24.6; Chap. 20, Chap. 25, Sec. 25.1 Exam 2: Thursday, March 22; essay question given on Tuesday, March 20 Last time:death of massive stars - supernovae & neutron stars

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. HW3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused by falling matter from the atmosphere of

More information

CHAPTER 14 II Stellar Evolution

CHAPTER 14 II Stellar Evolution 14-5. Supernova CHAPTER 14 II Stellar Evolution Exactly which stars become supernovae is not yet clear, but more than likely they are massive stars that become highly evolved. A star that develops an iron

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

The dying sun/ creation of elements

The dying sun/ creation of elements The dying sun/ creation of elements Homework 6 is due Thurs, 2 April at 6:00am OBAFGKM extra credit Angel: Lessons>Extra Credit Due 11:55pm, 31 March Final exam (new, later time) 6 May, 3:00-5:00, BPS

More information

Astronomy Notes Chapter 13.notebook. April 11, 2014

Astronomy Notes Chapter 13.notebook. April 11, 2014 All stars begin life in a similar way the only difference is in the rate at which they move through the various stages (depends on the star's mass). A star's fate also depends on its mass: 1) Low Mass

More information

Life of a High-Mass Stars

Life of a High-Mass Stars Life of a High-Mass Stars 1 Evolutionary Tracks Paths of high-mass stars on the HR Diagram are different from those of low-mass stars. Once these stars leave the main sequence, they quickly grow in size

More information

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course Relativistic Astrophysics Neutron Stars, Black Holes & Grav. Waves... A brief description of the course May 2, 2009 Structure of the Course Introduction to General Theory of Relativity (2-3 weeks) Gravitational

More information

The Bizarre Stellar Graveyard

The Bizarre Stellar Graveyard The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White dwarfs

More information

Evolution of High Mass Stars

Evolution of High Mass Stars Luminosity (L sun ) Evolution of High Mass Stars High Mass Stars O & B Stars (M > 4 M sun ): Burn Hot Live Fast Die Young Main Sequence Phase: Burn H to He in core Build up a He core, like low-mass stars

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Supernovae and their Remnants 1/2 Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk March 2012 Supernovae and their

More information

Astro 1050 Fri. Apr. 10, 2015

Astro 1050 Fri. Apr. 10, 2015 Astro 1050 Fri. Apr. 10, 2015 Today: Continue Ch. 13: Star Stuff Reading in Bennett: For Monday: Finish Chapter 13 Star Stuff Reminders: Ch. 12 HW now on Mastering Astronomy, due Monday. Ch. 13 will be

More information

Hydrostatic Equilibrium in an ordinary star:

Hydrostatic Equilibrium in an ordinary star: Hydrostatic Equilibrium in an ordinary star: Pressure due to gravity is balanced by pressure of the ionized gas in the star which behaves like an ideal gas. Radiation leaving from the surface determines

More information

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc. Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

SUPERNOVAE: A COSMIC CATASTROPHE. Gloria Dubner IAFE- ARGENTINA

SUPERNOVAE: A COSMIC CATASTROPHE. Gloria Dubner IAFE- ARGENTINA SUPERNOVAE: A COSMIC CATASTROPHE Gloria Dubner IAFE- ARGENTINA A Supernova is not an object, but an event It is the catastrophic end of a long stellar life. It represents the sudden injection of: about

More information

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with:

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with: This is a one quarter course dealing chiefly with: ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS Spring, 2015 http://www.ucolick.org/~woosley a) Nuclear astrophysics and the relevant

More information

White Dwarfs, Novae, and Type 1a Supernovae: The Vampire Stars

White Dwarfs, Novae, and Type 1a Supernovae: The Vampire Stars Ohio University - Lancaster Campus slide 1 of 64 Spring 2009 PSC 100 White Dwarfs, Novae, and Type 1a Supernovae: The Vampire Stars Ohio University - Lancaster Campus slide 2 of 64 Spring 2009 PSC 100

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Thermonuclear shell flashes II: on WDs (or: classical novae)

Thermonuclear shell flashes II: on WDs (or: classical novae) : on WDs (or: classical novae) Observations Thermonuclear flash model Nova/X-ray burst comparison Effects of super-eddington fluxes To grow or not to grow = to go supernova Ia or not.. 1 Nova Cygni 1975

More information

The Stellar Graveyard Neutron Stars & White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs The Stellar Graveyard Neutron Stars & White Dwarfs White Dwarfs White dwarfs are the remaining cores of low-mass (M < 8M sun ) stars Electron degeneracy pressure supports them against gravity Density ~

More information

The light curves for a nova look like the following.

The light curves for a nova look like the following. End of high mass stars Nova Supernova Type I Type II Stellar nucleo-synthesis Stellar Recycling Nova (means new): is a star that suddenly increases greatly in brightness, then slowly fades back to its

More information

Type Ia supernovae observable nuclear astrophysics

Type Ia supernovae observable nuclear astrophysics Astrophysics and Nuclear Structure Hirschegg, January 27, 2013 Type Ia supernovae observable nuclear astrophysics Julius-Maximilians-Universität Würzburg, Germany W. Hillebrandt, S. Woosley, S. Sim, I.

More information

PHYS 1401: Descriptive Astronomy Notes: Chapter 12

PHYS 1401: Descriptive Astronomy Notes: Chapter 12 CHAPTER 12: STELLAR EVOLUTION 12.1: LEAVING THE MAIN SEQUENCE Stars and the Scientific Method You cannot observe a single star from birth to death You can observe a lot of stars in a very short period

More information

Dark Matter. About 90% of the mass in the universe is dark matter Initial proposals: MACHOs: massive compact halo objects

Dark Matter. About 90% of the mass in the universe is dark matter Initial proposals: MACHOs: massive compact halo objects 1 Dark Matter About 90% of the mass in the universe is dark matter Initial proposals: MACHOs: massive compact halo objects Things like small black holes, planets, other big objects They must be dark (so

More information

R-process in Low Entropy Neutrino Driven Winds

R-process in Low Entropy Neutrino Driven Winds R-process in Low Entropy Neutrino Driven Winds E. Baron John J. Cowan, Tamara Rogers, 1 and Kris Gutierrez 2 Dept. of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Rm 131, Norman, OK 73019-0225

More information

MIDTERM #2. ASTR 101 General Astronomy: Stars & Galaxies. Can we detect BLACK HOLES? Black Holes in Binaries to the rescue. Black spot in the sky?

MIDTERM #2. ASTR 101 General Astronomy: Stars & Galaxies. Can we detect BLACK HOLES? Black Holes in Binaries to the rescue. Black spot in the sky? ASTR 101 General Astronomy: Stars & Galaxies Can we detect BLACK HOLES? NEXT Friday 04/03: MIDTERM #2 [Image by A. Hamilton] Black spot in the sky? Black Holes in Binaries to the rescue Black Holes in

More information

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

THE 82ND ARTHUR H. COMPTON LECTURE SERIES THE 82ND ARTHUR H. COMPTON LECTURE SERIES by Dr. Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow FLASH Center for Computational Science Department of Astronomy & Astrophysics University of Chicago

More information

Fate of Stars. INITIAL MASS Final State relative to Sun s mass

Fate of Stars. INITIAL MASS Final State relative to Sun s mass Fate of Stars INITIAL MASS Final State relative to Sun s mass M < 0.01 planet.01 < M

More information

Friday, March 21, 2014 Reading for Exam 3: End of Section 6.6 (Type Ia binary evolution), 6.7 (radioactive decay), Chapter 7 (SN 1987A), NOT Chapter

Friday, March 21, 2014 Reading for Exam 3: End of Section 6.6 (Type Ia binary evolution), 6.7 (radioactive decay), Chapter 7 (SN 1987A), NOT Chapter Friday, March 21, 2014 Reading for Exam 3: End of Section 6.6 (Type Ia binary evolution), 6.7 (radioactive decay), Chapter 7 (SN 1987A), NOT Chapter 8 (Neutron Stars), keep for Exam 4. Background: Sections

More information

Death of stars is based on. one thing mass.

Death of stars is based on. one thing mass. Death of stars is based on one thing mass. Not the mass they have when born, but the mass they have when they die. Star Death for mass 1.4 solar masses and less. These stars started big 7.5-10 solar masses.

More information

Supernovae. Type II, Ib, and Ic supernova are core-collapse supernova. Type Ia supernovae are themonuclear explosions.

Supernovae. Type II, Ib, and Ic supernova are core-collapse supernova. Type Ia supernovae are themonuclear explosions. Type Ia Supernovae Supernovae Gravitational collapse powers the explosion. Type Ia supernovae are themonuclear explosions. (Carroll and Ostlie) Type II, Ib, and Ic supernova are core-collapse supernova.

More information

Core-collapse supernovae are thermonuclear explosions

Core-collapse supernovae are thermonuclear explosions Core-collapse supernovae are thermonuclear explosions Doron Kushnir Collaborators: Boaz Katz (WIS), Kfir Blum (WIS), Roni Waldman (HUJI) 17.9.2017 The progenitors are massive stars SN2008bk - Red Super

More information

Supernovae. M. Della Valle. INAF-Napoli ICRANet-Pescara

Supernovae. M. Della Valle. INAF-Napoli ICRANet-Pescara Supernovae M. Della Valle INAF-Napoli ICRANet-Pescara Nice, September 4 2011 Supernova types Explosion trigger mechanisms SN & GRB connection What Supernovae? SUPERNOVA = super - nova very bright new star

More information

3/18/14. Today on Stellar Explosions. Second Mid-Term Exam. Things to do SECOND MID-TERM EXAM. Making a millisecond pulsars spin it up!

3/18/14. Today on Stellar Explosions. Second Mid-Term Exam. Things to do SECOND MID-TERM EXAM. Making a millisecond pulsars spin it up! 3/18/14 ASTR 1040: Stars & Galaxies Binary mass transfer: accretion disk Today on Stellar Explosions Spinning up pulsars through mass transfer from (surviving!) companions White dwarf supernovae from mass

More information