"Dark Energy" and "Dark Matter" in Friedmann Universes

Size: px
Start display at page:

Download ""Dark Energy" and "Dark Matter" in Friedmann Universes"

Transcription

1 "Dark Energy" and "Dark Matter" in Friedmann Universes Understanding modern puzzles with physics from the 1920's William Q. Sumner January 16, 2012 St. Petersburg, Russia 1

2 2

3 The puzzles of Dark Energy and Dark Matter are beautifully solved using the geometry found by Friedmann in

4 Key Points Schrödinger and Sumner proved that size of atoms are directly proportional to the Friedmann radius. Размер атомов меняется с течением времени! Это ключ! This changes the interpretation of Hubble redshifts. The Universe is collapsing. Text Recent accelerating redshift measurements dramatically confirm this reasoning. No Dark Energy is needed to explain redshift data. The Universe is more than 1300 billion years old and will end in about 9.8 billion years. Most Dark Matter likely consists of burned-out stars. 4

5 5

6 Edwin Hubble 6

7 7

8 Earth Nebula 8

9 More Blue More Red Hubble redshifts were explained as Doppler shifts caused by nebular velocities away from the earth. 9

10 VELOCITY DISTANCE 10

11 Albert Einstein 11

12 12

13 Alexandr Friedmann 13

14 Isotropic & homogeneous dust 14

15 15

16 a(t) time (t) 16

17 a(t) time (t) (t 1 ) (t 2 ) = a(t 1) a(t 2 ) 17

18 a(t) emission today time (t) redshift 18

19 19

20 20

21 21

22 22

23 Expanding Friedmann Universes 23

24 An explanation is needed for this accelerating redshift. Dark Energy has been proposed to modify gravity. 24

25 Erwin Schrödinger 25

26 26

27 Vladimir Fock 27

28 What are the basis functions for ψ? 28

29

30 In an expanding space all momenta decrease... This simple law has an even simpler interpretation in wave mechanics: all wavelengths, being inversely proportional to the momenta, simply expand with space. Erwin Schrödinger a(t) time (t) 30

31 Astronomers assume that light changes exactly as Schrödinger showed but they ignore the changes in atomic size. This is wrong. The wavelengths of both atoms and photons change. Астрономы согласны с Шрёдингером, что размер волны фотонов изменяется, но они игнорируют изменения размера атомов. Это неверно. Длина волн фотонов и атомов изменяется одновременно. 31

32 William Sumner (Same result as Schrödinger) 32

33 James Clerk Maxwell 33

34 34

35 Vacuum permittivity is proportional to the Friedmann radius a Stronger Weaker Weaker Stronger 35

36 Atomic Sizes Change Bohr radius a o (t) = " 0(t)h 2 m e e 2 And " 0 (t) a(t) a o (t 1 ) a o (t 2 ) = a (t 1) a (t 2 ) 36

37 Atomic Energy Levels Change e = h E = 8"2 0h 3 me 4 n 2 1 n 2 2 n 2 1 n 2 2 e (t 1 ) e (t 2 ) = a2 (t 1 ) a 2 (t 2 ) 37

38 Photons change exactly Like Schrödinger found (t 1 ) (t 2 ) = a(t 1) a(t 2 ) Именно поэтому красное смещение переворачивается But for atomic emissions e (t 1 ) e (t 2 ) = a2 (t 1 ) a 2 (t 2 ) 38

39 a(t) time (t) 39

40 a(t) emission today time (t) redshift Conventional Interpretation 40

41 a(t) emission today time (t) blueshift Schrödinger/Sumner Interpretation 41

42 a(t) time (t) emission today redshift Schrödinger/Sumner Interpretation 42

43 SN SN 43

44 SN Today SN SN Today 44

45 Today SN Today SN SN Today 45

46 Today SN Today SN Redshift SN Today 46

47 Today SN Today SN Redshift Redshift means collapse SN Today 47

48 48

49 Calculate Redshift for a Collapsing Friedmann Universe 49

50 Define redshift Characterize the Friedmann curve using the Hubble constant, Ho, and the deceleration parameter, qo. Derive from Friedmann solution Vary Ho and qo for best fit for supernova brightness, m - M, and redshifts, k, using Details: arxiv:astro-ph/ v1 50

51 Data error average This fit Details: arxiv:astro-ph/ v1 51

52 Dark Energy is not needed to explain accelerating redshift 52

53 The Universe Is Nearly Flat (qo ~ 1/2) 53

54 Estimating the Age of the Universe Age (10 9 years) 54

55 Estimating minimum age by using the maximum observed redshift q0 decreases Age (10 9 years) 1300 Max Redshift Details: arxiv:astro-ph/ v1 8.6 maximum redshift 55

56 Max Redshift Details: arxiv:astro-ph/ v1 8.6 maximum redshift 56

57 Time Until Collapse For the time until collapse, 2/3 x Ho -1 is a good estimate when qo is near 0.5. For Ho = km s -1 Mpc -1, this is 9.8 billion years. 9.8 billion years 57

58 We are here Time to collapse is ~9.8 billion years 58

59 Dark Matter is mass that neither emits nor scatters electromagnetic radiation. It cannot be directly detected by optical or radio astronomy. 59

60 There is Dark Matter The closed Friedmann Universe requires much more matter than has been directly observed. Many astronomical studies indicate there is much more matter than has been directly observed. These include: Motions of clusters of galaxies. Rotational speeds of galaxies. Gravitational lensing. Temperature distributions of hot gases. 60

61 There is Dark Matter The closed Friedmann Universe requires much more matter than has been directly observed. Many astronomical studies indicate there is much more matter than has been directly observed. Motions of clusters of galaxies. Rotational speeds of galaxies. Gravitational lensing. Temperature distributions of hot gases. 61

62 There is Dark Matter The closed Friedmann Universe requires much more matter than has been directly observed. Many astronomical studies indicate there is much more matter than has been directly observed. Motions of clusters of galaxies. Rotational speeds of galaxies. Gravitational lensing. Temperature distributions of hot gases. 62

63 A Simple Explanation of Dark Matter The universe is at least 1300 billion years old. The lifetime of our sun, an average star, is estimated to be of the order of 10 billion years. Stars began forming soon after the Big Bang. Those and most stars from the following billion years have gone dark. This leads to the hypothesis that Most Dark Matter likely consists of burned-out stars. 63

64 Summary Schrödinger and Sumner have shown that the wavelengths of photons and atoms are directly proportional to the Friedmann radius. The evolution of atoms changes the interpretation of Hubble redshift. Redshift is characteristic of a collapsing Universe. Recent redshift measurements provide dramatic confirmation of this reasoning. No Dark Energy is needed to explain redshift data. The Universe is more than 1300 billion years old and will end in about 9.8 billion years. Considering the age of the universe, most "Dark Matter" likely consists of burned-out stars. 64

65 katoon.org/stp/ 65

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 26 Astronomy Today 8th Edition Chaisson/McMillan Chapter 26 Cosmology Units of Chapter 26 26.1 The Universe on the Largest Scales 26.2 The Expanding Universe 26.3 The Fate of the

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

Lecture 37 Cosmology [not on exam] January 16b, 2014

Lecture 37 Cosmology [not on exam] January 16b, 2014 1 Lecture 37 Cosmology [not on exam] January 16b, 2014 2 Structure of the Universe Does clustering of galaxies go on forever? Looked at very narrow regions of space to far distances. On large scales the

More information

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence that the Universe began with a Big Bang? How has the Universe

More information

Homework 6 Name: Due Date: June 9, 2008

Homework 6 Name: Due Date: June 9, 2008 Homework 6 Name: Due Date: June 9, 2008 1. Where in the universe does the general expansion occur? A) everywhere in the universe, including our local space upon Earth, the solar system, our galaxy and

More information

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light _ (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

Cosmology Dark Energy Models ASTR 2120 Sarazin

Cosmology Dark Energy Models ASTR 2120 Sarazin Cosmology Dark Energy Models ASTR 2120 Sarazin Late Homeworks Last day Wednesday, May 1 My mail box in ASTR 204 Maximum credit 50% unless excused (but, better than nothing) Final Exam Thursday, May 2,

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

Chapter 26: Cosmology

Chapter 26: Cosmology Chapter 26: Cosmology Cosmology means the study of the structure and evolution of the entire universe as a whole. First of all, we need to know whether the universe has changed with time, or if it has

More information

Lecture 05. Cosmology. Part I

Lecture 05. Cosmology. Part I Cosmology Part I What is Cosmology Cosmology is the study of the universe as a whole It asks the biggest questions in nature What is the content of the universe: Today? Long ago? In the far future? How

More information

MIT Exploring Black Holes

MIT Exploring Black Holes THE UNIVERSE and Three Examples Alan Guth, MIT MIT 8.224 Exploring Black Holes EINSTEIN'S CONTRIBUTIONS March, 1916: The Foundation of the General Theory of Relativity Feb, 1917: Cosmological Considerations

More information

ASTRONOMY II Spring 1995 FINAL EXAM. Monday May 8th 2:00pm

ASTRONOMY II Spring 1995 FINAL EXAM. Monday May 8th 2:00pm ASTRONOMY II - 79202 Spring 1995 FINAL EXAM Monday May 8th 2:00pm Name: You have three hours to complete this exam. I suggest you read through the entire exam before you spend too much time on any one

More information

Cosmology. Thornton and Rex, Ch. 16

Cosmology. Thornton and Rex, Ch. 16 Cosmology Thornton and Rex, Ch. 16 Expansion of the Universe 1923 - Edwin Hubble resolved Andromeda Nebula into separate stars. 1929 - Hubble compared radial velocity versus distance for 18 nearest galaxies.

More information

TA Final Review. Class Announcements. Objectives Today. Compare True and Apparent brightness. Finding Distances with Cepheids

TA Final Review. Class Announcements. Objectives Today. Compare True and Apparent brightness. Finding Distances with Cepheids Class Announcements Vocab Quiz 4 deadline is Saturday Midterm 4 has started, ends Monday Lab was in the Planetarium. You still need to do the 2 questions Check PS100 webpage, make sure your clicker is

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

Sun Building Activity 2 The Signature of the Stars

Sun Building Activity 2 The Signature of the Stars Sun Building The Signature of the Stars Rainbows reveal that white light is a combination of all the colours. In 1666, Isaac Newton showed that white light could be separated into its component colours

More information

Chapter 17 Cosmology

Chapter 17 Cosmology Chapter 17 Cosmology Over one thousand galaxies visible The Universe on the Largest Scales No evidence of structure on a scale larger than 200 Mpc On very large scales, the universe appears to be: Homogenous

More information

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 Astronomy 101.003 Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 atoms, approximately how many Ra 226 atoms would be left

More information

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology Cosmology is the study of the universe; its nature, origin and evolution. General Relativity is the mathematical basis of cosmology from which

More information

INFLATIONARY COSMOLOGY. and the ACCELERATING UNIVERSE. Alan Guth, MIT

INFLATIONARY COSMOLOGY. and the ACCELERATING UNIVERSE. Alan Guth, MIT INFLATIONARY COSMOLOGY and the ACCELERATING UNIVERSE Alan Guth, MIT An Open World of Physics Talks and Discussion by Friends of Fred Goldhaber Harriman Hall, SUNY Stony Brook, October 7, 2001 OUTLINE The

More information

The Cosmological Principle

The Cosmological Principle Cosmological Models John O Byrne School of Physics University of Sydney Using diagrams and pp slides from Seeds Foundations of Astronomy and the Supernova Cosmology Project http://www-supernova.lbl.gov

More information

(Part 1) Recycling Universe

(Part 1) Recycling Universe (Part 1) Recycling Universe Nuri Saryal Abstract Existence of galaxies starts with star formation from the great amount of hydrogen, available in outer space. Stars spiral around the galaxy and end up

More information

Chapter 18. Cosmology in the 21 st Century

Chapter 18. Cosmology in the 21 st Century Chapter 18 Cosmology in the 21 st Century Guidepost This chapter marks a watershed in our study of astronomy. Since Chapter 1, our discussion has focused on learning to understand the universe. Our outward

More information

Short introduction to the accelerating Universe

Short introduction to the accelerating Universe SEMINAR Short introduction to the accelerating Universe Gašper Kukec Mezek Our expanding Universe Albert Einstein general relativity (1917): Our expanding Universe Curvature = Energy Our expanding Universe

More information

Edwin Hubble Discovered galaxies other than the milky way. Galaxy:

Edwin Hubble Discovered galaxies other than the milky way. Galaxy: Edwin Hubble Discovered galaxies other than the milky way. Galaxy: A collection of stars, planets, gas, and dust that are held together by gravity. Our sun and planets are in the Milky Way He noticed that

More information

Astronomy 114. Lecture35:TheBigBang. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture35:TheBigBang. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture35:TheBigBang Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 35 09 May 2005 Read: Ch. 28,29 Astronomy 114 1/18 Announcements PS#8 due Monday!

More information

Physics 24: The Big Bang, Week 3: Hubble s Law David Schlegel, LBNL

Physics 24: The Big Bang, Week 3: Hubble s Law David Schlegel, LBNL Physics 24: The Big Bang, Week 3: Hubble s Law David Schlegel, LBNL 1905: Albert Einstein s theory of special relativity 1915: Albert Einstein s theory of general relativity 1920: Harlow Shapley & Heber

More information

Origins Lecture 15; May

Origins Lecture 15; May Origins Lecture 15; May 29 2014 Previously on Origins Time of history/humans vs. time of god What was there before time? Does this make sense? The way we measure time influences the way we use time The

More information

Supernovae and cosmology

Supernovae and cosmology Supernovae and cosmology Gavin Lawes Wayne State University David Cinabro Wayne State University Johanna-Laina Fischer Outline Structure of the universe Dynamics of the universe Type 1a supernova Michigan

More information

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra The Big Bang Theory Rachel Fludd and Matthijs Hoekstra Theories from Before the Big Bang came from a black hole from another universe? our universe is part of a multiverse? just random particles? The Big

More information

Astronomy 102: Stars and Galaxies Examination 3 Review Problems

Astronomy 102: Stars and Galaxies Examination 3 Review Problems Astronomy 102: Stars and Galaxies Examination 3 Review Problems Multiple Choice Questions: The first eight questions are multiple choice. Except where explicitly noted, only one answer is correct for each

More information

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox Suppose the Universe were not expanding, but was in some kind of steady state. How should galaxy recession velocities correlate with distance? They should a) be directly proportional to distance. b) reverse

More information

Geoscience Astronomy Formative on Stellar Evolution and Galaxies

Geoscience Astronomy Formative on Stellar Evolution and Galaxies Name: Class: _ Date: _ Geoscience Astronomy Formative on Stellar Evolution and Galaxies Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What are binary

More information

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need Exam 3 Astronomy 100, Section 3 Some Equations You Might Need modified Kepler s law: M = [a(au)]3 [p(yr)] (a is radius of the orbit, p is the rotation period. You 2 should also remember that the period

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1) Chapter 11 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

More information

8. The Expanding Universe, Revisited

8. The Expanding Universe, Revisited 8. The Expanding Universe, Revisited A1143: History of the Universe, Autumn 2012 Now that we have learned something about Einstein s theory of gravity, we are ready to revisit what we have learned about

More information

Stars, Galaxies, and the Universe

Stars, Galaxies, and the Universe Stars, Galaxies, and the Universe Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. What is a giant ball of hot gases that undergo nuclear fusion? a. a planet

More information

Ay1 Lecture 17. The Expanding Universe Introduction to Cosmology

Ay1 Lecture 17. The Expanding Universe Introduction to Cosmology Ay1 Lecture 17 The Expanding Universe Introduction to Cosmology 17.1 The Expanding Universe General Relativity (1915) A fundamental change in viewing the physical space and time, and matter/energy Postulates

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Beyond Our Solar System Earth Science, 13e Chapter 24 Stanley C. Hatfield Southwestern Illinois College Properties of stars Distance Distances to the stars are very

More information

Lecture 22: The expanding Universe. Astronomy 111 Wednesday November 15, 2017

Lecture 22: The expanding Universe. Astronomy 111 Wednesday November 15, 2017 Lecture 22: The expanding Universe Astronomy 111 Wednesday November 15, 2017 Reminders Online homework #10 due Monday at 3pm Then one week off from homeworks Homework #11 is the last one The nature of

More information

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 Number of hours: 50 min Time of Examination:

More information

with Matter and Radiation By: Michael Solway

with Matter and Radiation By: Michael Solway Interactions of Dark Energy with Matter and Radiation By: Michael Solway Advisor: Professor Mike Berger What is Dark Energy? Dark energy is the energy needed to explain the observed accelerated expansion

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

HUBBLE REDSHIFT REVISITED

HUBBLE REDSHIFT REVISITED HUBBLE REDSHIFT REVISITED W. Q. SUMNER Abstract. In 1907 Einstein used special relativity to prove that vacuum permittivity is a function of gravity by assuming that acceleration and gravity are equivalent.

More information

Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

COSMOLOGY The Universe what is its age and origin?

COSMOLOGY The Universe what is its age and origin? COSMOLOGY The Universe what is its age and origin? REVIEW (SUMMARY) Oppenheimer Volkhoff limit: upper limit to mass of neutron star remnant more than 1.4 M à neutron degeneracy Supernova à extremely dense

More information

LESSON 1. Solar System

LESSON 1. Solar System Astronomy Notes LESSON 1 Solar System 11.1 Structure of the Solar System axis of rotation period of rotation period of revolution ellipse astronomical unit What is the solar system? 11.1 Structure of the

More information

CHAPTER 28 STARS AND GALAXIES

CHAPTER 28 STARS AND GALAXIES CHAPTER 28 STARS AND GALAXIES 28.1 A CLOSER LOOK AT LIGHT Light is a form of electromagnetic radiation, which is energy that travels in waves. Waves of energy travel at 300,000 km/sec (speed of light Ex:

More information

Module 3: Astronomy The Universe Topic 1 Content: Cosmology Presentation Notes

Module 3: Astronomy The Universe Topic 1 Content: Cosmology Presentation Notes Pretend that you have been given the opportunity to travel through time to explore cosmology. Cosmology is the study of how the universe formed and what will happen to it. Watch through your viewport as

More information

Chapter 30. Galaxies and the Universe. Chapter 30:

Chapter 30. Galaxies and the Universe. Chapter 30: Chapter 30 Galaxies and the Universe Chapter 30: Galaxies and the Universe Chapter 30.1: Stars with varying light output allowed astronomers to map the Milky Way, which has a halo, spiral arm, and a massive

More information

26. Cosmology. Significance of a dark night sky. The Universe Is Expanding

26. Cosmology. Significance of a dark night sky. The Universe Is Expanding 26. Cosmology Significance of a dark night sky The Universe is expanding The Big Bang initiated the expanding Universe Microwave radiation evidence of the Big Bang The Universe was initially hot & opaque

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background The Cosmic Microwave Background Key Concepts 1) The universe is filled with a Cosmic Microwave Background (CMB). 2) The microwave radiation that fills the universe is nearly

More information

What is the solar system?

What is the solar system? Notes Astronomy What is the solar system? 11.1 Structure of the Solar System Our solar system includes planets and dwarf planets, their moons, a star called the Sun, asteroids and comets. Planets, dwarf

More information

The State of the Universe

The State of the Universe The State of the Universe Harry Ringermacher, PhD General Electric Research Center Adj. Prof. of Physics, U. of S. Mississippi State of the Universe Universe is still going strong! - At least 100,000,000,000

More information

There are three basic types of galaxies:

There are three basic types of galaxies: Galaxies There are three basic types of galaxies: Spirals Ellipticals Irregulars To make a long story short, elliptical galaxies are galaxies that have used up all their gas forming stars, or they have

More information

One of the factors that misled Herschel into concluding that we are at the Universe's center was

One of the factors that misled Herschel into concluding that we are at the Universe's center was Homework 11! This is a preview of the draft version of the quiz Started: Apr 14 at 9:17am Quiz Instruc!ons Question 1 One of the factors that misled Herschel into concluding that we are at the Universe's

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information

Earth Science Lesson Plan Quarter 4, Week 10, Day 1

Earth Science Lesson Plan Quarter 4, Week 10, Day 1 Earth Science Lesson Plan Quarter 4, Week 10, Day 1 Outcomes for Today Standard Focus: PREPARE 1. Background knowledge necessary for today s reading. Before the term black hole was coined in 1967, these

More information

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW: Cosmology and the Evolution of the Universe Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -greater distance greater redshift Implications of the Hubble Law: - Universe is

More information

Astroparticle physics the History of the Universe

Astroparticle physics the History of the Universe Astroparticle physics the History of the Universe Manfred Jeitler and Wolfgang Waltenberger Institute of High Energy Physics, Vienna TU Vienna, CERN, Geneva Wintersemester 2016 / 2017 1 The History of

More information

Introduction and Fundamental Observations

Introduction and Fundamental Observations Notes for Cosmology course, fall 2005 Introduction and Fundamental Observations Prelude Cosmology is the study of the universe taken as a whole ruthless simplification necessary (e.g. homogeneity)! Cosmology

More information

Today. life the university & everything. Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations

Today. life the university & everything. Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations life the university & everything Phys 2130 Day 41: Questions? The Universe Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations Today Today: - how big is the universe?

More information

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe Standard 1: Students will understand the scientific evidence that supports theories that explain how the universe and the solar system developed. They will compare Earth to other objects in the solar system.

More information

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law Chapter 21 Evidence of the Big Bang Hubble s Law Universal recession: Slipher (1912) and Hubble found that all galaxies seem to be moving away from us: the greater the distance, the higher the redshift

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 6; April 30 2013 Lecture 5 - Summary 1 Mass concentrations between us and a given object in the sky distort the image of that object on the sky, acting like magnifying

More information

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology Mysteries of D.V. Fursaev JINR, Dubna the Universe Problems of the Modern Cosmology plan of the lecture facts about our Universe mathematical model, Friedman universe consequences, the Big Bang recent

More information

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath A2020 Disk Component: stars of all ages, many gas clouds Review of Lecture 15 Spheroidal Component: bulge & halo, old

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

25/11/ Cosmological Red Shift:

25/11/ Cosmological Red Shift: 12.1 Edwin Hubble Discovered galaxies other than the milky way. Galaxy: A collection of stars, planets, gas, and dust that are held together by gravity. Our sun and planets are in the Milky Way Hubble

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) Unseen Influences Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from

More information

Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Chapter 29 THE UNIVERSE

Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Chapter 29 THE UNIVERSE Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Constellations are groups of stars named over antiquity. A familiar constellation is Ursa Major, the Great Bear. Chapter 29 THE UNIVERSE The monthly

More information

Past, Present and Future of the Expanding Universe

Past, Present and Future of the Expanding Universe Past, Present and Future of the Expanding University of Osnabrück, Germany Talk presented at TEDA College on the occasion of its Tenth Anniversary October 17, 2010 Past, Present and Future of the Expanding

More information

Test Natural Sciences 102 Section 8 noon --- VERSION A February 28, 2007

Test Natural Sciences 102 Section 8 noon --- VERSION A February 28, 2007 Correct responses indicated in boldface. 1. An astronomer is designing a new telescope to use in space. The Hubble Space Telescope operates at wavelengths close to 500nm ( 1nm = 10-9 meter). The new telescope

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

Cosmology Distinction Course

Cosmology Distinction Course 2006 HIGHER SCHOOL CERTIFICATE EXAMINATION Cosmology Distinction Course Modules 1, 2 and 3 (including Residential 1) Total marks 60 Section I Page 2 General Instructions Reading time 5 minutes Working

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com 1 1. State the Cosmological Principle. [Total 2 marks] 2. Describe the important properties of the cosmic microwave background radiation and how the standard model of the Universe

More information

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data.

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data. Cosmology Cosmology is the study of the origin and evolution of the Universe, addressing the grandest issues: How "big" is the Universe? Does it have an "edge"? What is its large-scale structure? How did

More information

ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY. Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193

ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY. Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193 ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193 Examination date: 4 March 2017 Time limit: 50 min Time of

More information

The Theory of Electromagnetism

The Theory of Electromagnetism Notes: Light The Theory of Electromagnetism James Clerk Maxwell (1831-1879) Scottish physicist. Found that electricity and magnetism were interrelated. Moving electric charges created magnetism, changing

More information

Tuesday: Special epochs of the universe (recombination, nucleosynthesis, inflation) Wednesday: Structure formation

Tuesday: Special epochs of the universe (recombination, nucleosynthesis, inflation) Wednesday: Structure formation Introduction to Cosmology Professor Barbara Ryden Department of Astronomy The Ohio State University ICTP Summer School on Cosmology 2016 June 6 Today: Observational evidence for the standard model of cosmology

More information

Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017

Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017 Test Name: 09.LCW.0352.SCIENCE.GR7.2017.Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: 243920 Date: 09/21/2017 Section 1.1 - According to the Doppler Effect, what happens to the wavelength of light as galaxies

More information

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe 16.1 Unseen Influences Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from its gravitational

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

More information

Modern Cosmology Solutions 4: LCDM Universe

Modern Cosmology Solutions 4: LCDM Universe Modern Cosmology Solutions 4: LCDM Universe Max Camenzind October 29, 200. LCDM Models The ansatz solves the Friedmann equation, since ȧ = C cosh() Ωm sinh /3 H 0 () () ȧ 2 = C 2 cosh2 () sinh 2/3 () (

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Learning Objectives! What is Electromagnetic Radiation?! What are spectra? How could we measure a spectrum?! How do wavelengths correspond to colors for optical light? Does

More information

Overview DARK MATTER & DARK ENERGY. Dark Matter and Dark Energy I. Definition Current Understanding Detection Methods Cosmological Impact

Overview DARK MATTER & DARK ENERGY. Dark Matter and Dark Energy I. Definition Current Understanding Detection Methods Cosmological Impact DARK MATTER & DARK ENERGY Source: Max Ehrhardt Modiefied for Astronomy 101 Dark Matter and Dark Energy I Physics 113 Goderya Chapter(s): 18 Learning Outcomes: Overview Definition Current Understanding

More information

Outline. Cosmological parameters II. Deceleration parameter I. A few others. Covers chapter 6 in Ryden

Outline. Cosmological parameters II. Deceleration parameter I. A few others. Covers chapter 6 in Ryden Outline Covers chapter 6 in Ryden Cosmological parameters I The most important ones in this course: M : Matter R : Radiation or DE : Cosmological constant or dark energy tot (or just ): Sum of the other

More information

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E FURTHER COSMOLOGY Book page 675-683 T H E M A K E U P O F T H E U N I V E R S E COSMOLOGICAL PRINCIPLE Is the Universe isotropic or homogeneous? There is no place in the Universe that would be considered

More information

The Universe and Light

The Universe and Light The Big Bang The big bang theory states that at one time, the entire universe was confined to a dense, hot, supermassive ball. Then, about 13.7 billion years ago, a violent explosion occurred, hurling

More information

1 (a) Explain what is meant by a white dwarf when describing the evolution of a star [1]

1 (a) Explain what is meant by a white dwarf when describing the evolution of a star [1] 1 (a) Explain what is meant by a white dwarf when describing the evolution of a star.... [1] (b) Antares is a red giant and one of the brightest stars in the night sky. The parallax angle for this star

More information

Astronomy 150: Killer Skies Lecture 35, April 23

Astronomy 150: Killer Skies Lecture 35, April 23 Assignments: ICES available online Astronomy 150: Killer Skies Lecture 35, April 23 HW11 due next Friday: last homework! note: lowest HW score dropped but: HW11 material will be on Exam 3, so be sure to

More information

Advanced Topics on Astrophysics: Lectures on dark matter

Advanced Topics on Astrophysics: Lectures on dark matter Advanced Topics on Astrophysics: Lectures on dark matter Jesús Zavala Franco e-mail: jzavalaf@uwaterloo.ca UW, Department of Physics and Astronomy, office: PHY 208C, ext. 38400 Perimeter Institute for

More information