Spitzer Space Telescope Imaging of Spatially- Resolved Debris Disks. Karl Stapelfeldt Jet Propulsion Laboratory MSC d2p: Mar

Size: px
Start display at page:

Download "Spitzer Space Telescope Imaging of Spatially- Resolved Debris Disks. Karl Stapelfeldt Jet Propulsion Laboratory MSC d2p: Mar"

Transcription

1 Spitzer Space Telescope Imaging of Spatially- Resolved Debris Disks Karl Stapelfeldt Jet Propulsion Laboratory MSC d2p: Mar

2 In collaboration with Jet Propulsion Laboratory: Michael Werner, Chas Beichman, Nick Gautier, Geoff Bryden University of Arizona : George Rieke, Kate Su, John Stansberry, David Trilling NOAO : Christine Chen Harvard/Smithsonian : Tom Megeath, Massimo Marengo Univ. of Rochester : Dan Watson UCLA : Michael Jura Space Science Institute : Dean Hines Ball Aerospace : Jeff van Cleve NASA Ames: Dana Backman 2

3 What are the Fabulous Four? Four nearby main sequence stars with strong far-infrared excess emission Three are A stars: Fomalhaut, Vega, beta Pictoris; all spatially resolved by IRAS One is a K star: epsilon Eridani Dust removal timescale much shorter than stellar ages: replenishment by ongoing parent body collisions & comet passages: Debris disks Disks also spatially resolved by JCMT/SCUBA IRAC MIPS MIPS MIPS 8 μm 24 μm 70 μm 160 μm FWHM ( ) Spitzer diffraction-limited spatial resolution 3

4 Science Goals for Spitzer Observations of the Fab4 1. Resolve disk spatial structures that may indicate planetary perurbations on the disks: central holes, clumps, asymmetries, radial gaps, warps, 2. Study the dust grain composition and search for a gas component using IRS and MIPS SED mode 3. IRAC 4.5 μm search for substellar companions which may be perturbing the disks 4. Provide a proving ground for disk models that will be broadly applied to other Spitzer disk survey datasets (GTO/Legacy/GO) 4

5 Background on Fomalhaut disk 850 μm 450 μm A3 V star, distance= 8 pc Disk resolved with IRAS & KAO (Gillett et al. 1986; Harvey et al. 1996) Submm detection of edge-on ring by Holland et al. 1998, AU ring radius; slightly asymmetric to the SE First debris disk science target for Spitzer, November

6 Fomalhaut MIPS 24 μm (Stapelfeldt et al. 2004) Left: Reference star image Center: Fomalhaut direct image 160 FOV Right: Dust disk revealed by PSF subtraction Kurucz photosphere model fit determines scale factor About 80% of 24 micron excess from unresolved core 6

7 Fomalhaut MIPS 70 μm (Stapelfeldt et al. 2004) 90 = 700 AU Left: 70 micron fine scale image Right: Deconvolution with 20 iterations of the HIRES algorithm Aumann, Fowler & Melnick (1992); implemented at JPL by Velusamy, Backus, and Thompson Asymmetric bar of 70 μm emission overlies the submm ring 7

8 New Fomalhaut MIPS 70 μm results November 2004 dataset: Deeper exposures, better calibration than in Stapelfeldt et al. (2004) Simple ring morphology is now seen clearly after deconvolutions with the HIRES algorithm; material interior to the ring near the SE ansa may not be needed Iteration number CSO map: Marsh et al

9 Fomalhaut Results Summary No obvious spectral features detected grainsizes > 5 microns Disk outer radius (20 = 150 AU) is almost the same in all three MIPS bands, and in the submillimeter (Holland 2003) There is a warm disk component inside the submm ring: Most of 24 μm excess is in compact central core, radius < 20 AU Spectra show warmer, brighter excess on star than disk ansae To have gone undetected in the submm, this warm inner dust must have a low optical depth or emissivity (< 10% of the outer dust ring). Tenuous inner dust cloud. Asymmetric disk is detected in all three MIPS bands SE ansa always brighter than NW ansa; difference greater at short wavelengths: 50%, 30%, 10% at 24, 70, and 160 μm respectively JCMT maps suggested 10% asymmetry at 450 microns What is the origin of this feature? 9

10 Eccentric ring model (Wyatt et al. 1999) Outer disk is perturbed by eccentric interior planet Brightness asymmetry induced by warmer dust temperature at periastron Disk e~ 0.07 would account for observed brightness asymmetry, would not be geometrically discernable 10

11 New evidence supports the eccentric ring model for Fomalhaut s asymmetry Marsh et al argue that their CSO Sharc II 350 μm continuum image shows the ring center displaced from the star The new MIPS 70 μm image now resolves the SE ansa into a simple ring with azimuthal brightness variations Kalas et al. (Nature, in press) have detected the ring in scattered light using HST; definite elliptical morphology and 2 offset of star from ring center CLEAREST CASE of a debris disk structure that requires a planetary perturber to maintain it 11

12 Fomalhaut epilogue Additional work needed to tune/explore the secular perturbation models for the eccentric ring Beth Holmes ( ) Link between inner & outer dust clouds should be clarified by spatially resolved spectra (IRS, MIPS SED) Inner dust cloud should be excellent target for Keck nulling interferometry 12

13 Background on Vega disk A0 V star, 50 L, 8 pc distant Prototype main sequence star with IR excess Large particle population, T 80 K, resolved diameter of 160 AU at 60 μm, central hole (IRAS; Aumann et al. 1984) Fractional infrared luminosity is 1.8x10-5, about 200 times that of Sun s zodiacal cloud Disk undetectable in scattered light 1990 s artist rendering of the Vega disk 13

14 Vega dust disk dynamical model: Resonant trapping in a face-on disk Wilner et al. (2002): Large dust grains, 3 M J planet, e=

15 Vega observed with MIPS Spitzer images here are 160 square (Su et al. 2005) Reference star Vega direct image Vega PSF-subtracted 24 μm results: Emission extends to r> 30 Dark hole = saturation artifact 70 μm results: Source has ~25 FWHM Fine scale HIRES deconvolution SCUBA 850 μm map by Holland et al. (1998) 15

16 Vega disk: observed radial profile (Su et al. 2005) 24 μm 70 μm 160 μm Inner hole inferred from radial profiles 16

17 Vega disk color temperature profile: outer disk is too warm to explain with large dust grains (Su et al. 2005) 17

18 Vega radial profile models (Su et al. 2005) = data 24 μm 70 μm 160 μm 850 μm 18

19 Vega Results Summary Population of small (2 μm) grains is required to account for profile & extent of the 24 μm emission. Lifetime < 1000 yrs. Best-fit radial surface density profile is Σ= Σ 0 r -1 consistent with steady-state escape of the grains The inferred mass loss rate is probably unsustainable: (8x10 14 gm/s) x (350 Myrs) = 4.4 Jupiter masses of dust would be lost over the age of the system. Recent breakup of moderate-sized asteroid is good alternative model Distinct population of much larger (200 μm) grains is needed to account for the (sub)millimeter continuum emission Issue of resonant trapping of dust by a planet remains open: small particles dominating the Spitzer images can t become trapped, due to the dominance of radiation pressure (Su et al. 2005) 19

20 ε Eri MIPS 70 μm (Megeath et al. 2005) Left: 70 μm fine scale Right: HIRES deconvolution SCUBA 850 μm (Greaves et al. 1998) 70 μm source has 15 FWHM, and fills the interior of the submillimeter ring No extended 24 μm emission 160 μm data is still pending All images shown at the same linear scale 20

21 ε Eridani Companion Search: IRAC 3.5 μm Roll-subtraction of two epochs (Marengo et al. 2005) Single direct image Red circle diameter = 40 21

22 ε Eridani companion search: Nearby objects to photometer (Marengo et al. 2005) 22

23 AU Mic Debris Disk Liu et al M0 star at 10 pc distance, age 12 Myrs Submillimeter excess led to imaging of the disk in scattered light Kalas 2004 Liu 2004 Krist et al Metchev et al Spitzer does not resolve the disk, but does refine the SED somewhat MIPS 70 μm image; Chen et al

24 β Pictoris MIPS Results MIPS 70 μm default scale, 5 FOV 24 μm direct image 24 μm HIRES deconvolution 850 μm SCUBA image (Holland et al. 1998) All images shown at the same linear scale 24

25 Other nearby IRAS debris disks not spatially resolved in MIPS 70 μm fine scale images 61 Cyg B α CrB β Leo β UMa δ Vel η Tel γ Oph τ Ceti ζ Lep 25

26 MIPS 70 μm coarse scale results: Resolved disk of HD G0 star, d= 17 pc, L d /L *, = 7x x18.7, PA 72 deg Major axis diameter = 240 AU HIRES deconvolution 26

27 Conclusions Major differences are seen between outwardly similar disks: Fomalhaut, Vega. SED can mask this diversity. Emission at different wavelengths (24 μm vs. 70 μm vs. submm) can arise from very different grain populations, at different radial locations in the disk. Beware of debris disk models that postulate a single emission region! To Spitzer, spatially resolved debris disks remain a rarity. Stay tuned for the full story on ε Eri and β Pic later this year. Fomalhaut 24 & 70 μm 27

The Fomalhaut Debris Disk

The Fomalhaut Debris Disk The Fomalhaut Debris Disk IRAS 12 micron http://ssc.spitzer.caltech.edu/documents/compendium/foma lhaut/ Fomalhaut is a bright A3 V star 7.7 pc away IRAS discovered an IR excess indicating a circumstellar

More information

Debris Disks from Spitzer to Herschel and Beyond. G. H. Rieke, K. Y. L. Su, et al. Steward Observatory The University of Arizona

Debris Disks from Spitzer to Herschel and Beyond. G. H. Rieke, K. Y. L. Su, et al. Steward Observatory The University of Arizona Debris Disks from Spitzer to Herschel and Beyond G. H. Rieke, K. Y. L. Su, et al. Steward Observatory The University of Arizona Our neighborhood debris disk There was a huge amount of collisional activity

More information

IRS SPECTRA OF SOLAR-TYPE STARS: A SEARCH FOR ASTEROID BELT ANALOGS

IRS SPECTRA OF SOLAR-TYPE STARS: A SEARCH FOR ASTEROID BELT ANALOGS IRS SPECTRA OF SOLAR-TYPE STARS: A SEARCH FOR ASTEROID BELT ANALOGS Debris disks Around Stars In our Solar System, dust is generated by collisions between larger bodies in the asteroid and Kuiper belts,

More information

Kate Su (University of Arizona)

Kate Su (University of Arizona) Debris Disks with Spitzer and beyond Kate Su (University of Arizona) Collaborators: G. Rieke, K. Misselt, P. Smith J. Sierchio, P. Espinoza (U of A), K. Stapelfeldt, F. Morales, G. Bryden (Caltech/JPL),

More information

Debris Disks: A Brief Observational History Thomas Oberst April 19, 2006 A671

Debris Disks: A Brief Observational History Thomas Oberst April 19, 2006 A671 Debris Disks: A Brief Observational History Thomas Oberst A671 Debris Disk; Artist s rendition (T. Pyle (SSC), JPL-Caltech, & NASA http://www.spitz er.caltech.edu/m edia/happenings /20051214/) Debris Disks

More information

Exozodiacal discs with infrared interferometry

Exozodiacal discs with infrared interferometry Exozodiacal discs with infrared interferometry First results and perspectives * (post-doc at LAOG, Grenoble) and E. Di Folco (Obs. Geneva), J.C. Augereau (LAOG), V. Coudé du Foresto (Obs. Paris), A. Mérand

More information

Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009

Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009 Debris Disks and the Evolution of Planetary Systems Christine Chen September 1, 2009 Why Study Circumstellar Disks? How common is the architecture of our solar system (terrestrial planets, asteroid belt,

More information

Placing Our Solar System in Context: [A 12 step program to learn to accept disk evolution]

Placing Our Solar System in Context: [A 12 step program to learn to accept disk evolution] Placing Our Solar System in Context: [A 12 step program to learn to accept disk evolution] Michael R. Meyer Steward Observatory, The University of Arizona Dana Backman, SOFIA/SETI Institute Alycia Weinberger,

More information

Debris disk structure arising from planetary perturbations

Debris disk structure arising from planetary perturbations Debris disk structure arising from planetary perturbations Mark Wyatt Institute of Astronomy, Cambridge Debris disk structure arising from planetary perturbations Disk dynamical theory and the observables

More information

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge How inner planetary systems relate to inner and outer debris belts Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner

More information

A White Paper for the Astro2010 Decadal Survey Submitted to the Planetary and Star Formation Panel

A White Paper for the Astro2010 Decadal Survey Submitted to the Planetary and Star Formation Panel Debris Disks: Signposts to planetary systems Prospects for the next decade A White Paper for the Astro2010 Decadal Survey Submitted to the Planetary and Star Formation Panel Wayne Holland, UK ATC, Royal

More information

The Scientific Legacy of IRAS A Personal Perspective

The Scientific Legacy of IRAS A Personal Perspective The Scientific Legacy of IRAS A Personal Perspective TTTomTom Soifjer Tom Soifer Caltech & Spitzer Science Center BTS-1 Before and After Before 4 Ground Surveys, IR Optimized Telescopes, Simple Instruments

More information

Observations of exozodiacal disks. Jean-Charles Augereau LAOG, Grenoble, France. ISSI team: Exozodiacal dust diks and Darwin. Cambridge, August 2009

Observations of exozodiacal disks. Jean-Charles Augereau LAOG, Grenoble, France. ISSI team: Exozodiacal dust diks and Darwin. Cambridge, August 2009 + Olivier Absil Emmanuel Di Folco Hervé Beust Rémy Reche Alexander Krivov Philippe Thébault Torsten Loehne Vincent Coudé du Foresto Bertrand Menesson Pierre Kervella ISSI team: Exozodiacal dust diks and

More information

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018 2018 TIARA Summer School Origins of the Solar System Observations and Modelling of Debris Disks J.P. Marshall (ASIAA) Wednesday 18 th July 2018 [Hogerheijde 1998] Debris disks Tenuous belts of icy and

More information

Origins of Stars and Planets in the VLT Era

Origins of Stars and Planets in the VLT Era Origins of Stars and Planets in the VLT Era Michael R. Meyer Institute for Astronomy, ETH-Zurich From Circumstellar Disks to Planets 5 November 2009, ESO/MPE Garching Planet Formation = Saving the Solids

More information

The architecture of planetary systems revealed by debris disk imaging

The architecture of planetary systems revealed by debris disk imaging The architecture of planetary systems revealed by debris disk imaging Paul Kalas University of California at Berkeley Collaborators: James Graham, Mark Clampin, Brenda Matthews, Mike Fitzgerald, Geoff

More information

Formation and Evolution of Planetary Systems

Formation and Evolution of Planetary Systems Formation and Evolution of Planetary Systems Meyer, Hillenbrand et al., Formation and Evolution of Planetary Systems (FEPS): First Results from a Spitzer Legacy Science Program ApJ S 154: 422 427 (2004).

More information

DETAILED MODEL OF THE EXOZODIACAL DISK OF FOMALHAUT AND ITS ORIGIN

DETAILED MODEL OF THE EXOZODIACAL DISK OF FOMALHAUT AND ITS ORIGIN EXOZODI project http://ipag.osug.fr/~augereau/site/ ANR_EXOZODI.html IAU Symposium 299 EXPLORING THE FORMATION AND EVOLUTION OF PLANETARY SYSTEMS Victoria, Canada 2013, June 6 DETAILED MODEL OF THE EXOZODIACAL

More information

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona)

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona) Mid-IR and Far-IR Spectroscopic Measurements & Variability Kate Su (University of Arizona) Five Zones of Debris Dust edge-on view of the Fomalhaut planetary system distance, r 1500 K very hot dust 500

More information

Debris Disks and the Formation and Evolution of Planetary Systems. Christine Chen October 14, 2010

Debris Disks and the Formation and Evolution of Planetary Systems. Christine Chen October 14, 2010 Debris Disks and the Formation and Evolution of Planetary Systems Christine Chen October 14, 2010 1 Outline Dust Debris in our Solar System The Discovery of Dust Debris Around Other Stars The Connection

More information

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge Detectability of extrasolar debris Mark Wyatt Institute of Astronomy, University of Cambridge Why image extrasolar debris? Emission spectrum shows dust thermal emission, used to infer radius of parent

More information

arxiv: v1 [astro-ph] 8 Jul 2008

arxiv: v1 [astro-ph] 8 Jul 2008 Dynamics of small bodies in planetary systems Mark C. Wyatt arxiv:0807.1272v1 [astro-ph] 8 Jul 2008 Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK wyatt@ast.cam.ac.uk The number

More information

Are planets and debris correlated? Herschel imaging of 61 Vir

Are planets and debris correlated? Herschel imaging of 61 Vir Are planets and debris correlated? Herschel imaging of 61 Vir Mark Wyatt Institute of Astronomy, University of Cambridge + Grant Kennedy, Amaya Moro-Martin, Jean-Francois Lestrade, Geoff Bryden, Bruce

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

FLUOR Science Recent results, ongoing projects

FLUOR Science Recent results, ongoing projects FLUOR Science Recent results, ongoing projects V. Coudé du Foresto, O. Absil, E. Di Folco, P. Kervella, A. Mérand, + CHARA team! + J.-C. Augereau, D. Defrère, F. Thévenin + FLUOR science papers since last

More information

Placing Our Solar System in Context with the Spitzer Space Telescope

Placing Our Solar System in Context with the Spitzer Space Telescope Placing Our Solar System in Context with the Spitzer Space Telescope Michael R. Meyer Steward Observatory, The University of Arizona D. Backman (NASA-Ames, D.P.I.), S.V.W. Beckwith (STScI), J. Bouwman

More information

Exozodi Monitoring. & JouFLU updates. Nic Scott

Exozodi Monitoring. & JouFLU updates. Nic Scott Exozodi Monitoring & JouFLU updates Nic Scott 2 Update on JouFLU - Hardware FTS Lithium plates Instrument visibility up from 0.3 to 0.7 Differential Polarization Rotation 0.3 mouse ear adjustments 0 Polarizer

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge Debris discs, exoasteroids and exocomets Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner debris: Asteroid belt

More information

Modeling interactions between a debris disc and planet: which initial conditions?

Modeling interactions between a debris disc and planet: which initial conditions? Modeling interactions between a debris disc and planet: which initial conditions? Elodie Thilliez @ET_astro Supervisors : Prof Sarah Maddison (Swinburne) Prof Jarrod Hurley (Swinburne) Crédit : NASA/JPL-Caltech

More information

Discovery of a Large Dust Disk Around the Nearby Star AU Microscopium

Discovery of a Large Dust Disk Around the Nearby Star AU Microscopium Discovery of a Large Dust Disk Around the Nearby Star AU Microscopium Paul Kalas, 1,2 * Michael C. Liu, 3 Brenda C. Matthews 1 1 Astronomy Department and Radio Astronomy Laboratory, 601 Campbell Hall,

More information

Recent advances in understanding planet formation

Recent advances in understanding planet formation Credit: ALMA (ESO/NAOJ/NRAO) Recent advances in understanding planet formation Misato Fukagawa Chile observatory (Mitaka), NAOJ Contents of this talk 1. Introduction: Exoplanets, what we want to know from

More information

Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems. KALAS et al.

Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems. KALAS et al. Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems KALAS et al. 2008 THE STAR Spectral type: F8 Distance : 17.4 pc Age : ~ 2 Gyr A

More information

AU Mic: Transitional Disk?

AU Mic: Transitional Disk? disks to planets AU Mic: Transitional Disk? 33 AU AU Mic [Liu 2004] AU Mic: SED suggests inner disk clearing AO and HST imaging resolves structure no planets >1M Jup at >20 AU STIS counts β Pic 120 AU

More information

WFIRST Preparatory Science (WPS) Project: The Circumstellar Environments of Exoplanet Host Stars (NNH14ZDA001N-WPS; PI: Christine Chen)

WFIRST Preparatory Science (WPS) Project: The Circumstellar Environments of Exoplanet Host Stars (NNH14ZDA001N-WPS; PI: Christine Chen) Permission to use these WFIRST CGI simulated data products and information within this document is granted under the condition that credit is given to: Charles Poteet (STScI), Christine Chen (STScI), Maxime

More information

THE VEGA DEBRIS DISK: A SURPRISE FROM SPITZER 1

THE VEGA DEBRIS DISK: A SURPRISE FROM SPITZER 1 The Astrophysical Journal, 628:487 500, 2005 July 20 Copyright is not claimed for this article. Printed in U.S.A. A THE VEGA DEBRIS DISK: A SURPRISE FROM SPITZER 1 K. Y. L. Su, 2 G. H. Rieke, 2 K. A. Misselt,

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

The Infrared Universe as Seen by Spitzer and Beyond. February 20, 2007

The Infrared Universe as Seen by Spitzer and Beyond. February 20, 2007 The Infrared Universe as Seen by Spitzer and Beyond The Holly Berry Cluster [NOT the Halle Berry cluster] in Serpens February 20, 2007 Presented to the Herschel Open Time Key Project Workshop Michael Werner,

More information

The Golden Era of Planetary Exploration: From Spitzer to TPF. The Observational Promise

The Golden Era of Planetary Exploration: From Spitzer to TPF. The Observational Promise The Golden Era of Planetary Exploration: From Spitzer to TPF C. Beichman March 14, 2004 The Observational Promise In the next decade we will progress from rudimentary knowledge of gas giant planets around

More information

IRS SPECTRA OF SOLAR-TYPE STARS: A SEARCH FOR ASTEROID BELT ANALOGS

IRS SPECTRA OF SOLAR-TYPE STARS: A SEARCH FOR ASTEROID BELT ANALOGS The Astrophysical Journal, 639:1166 1176, 2006 March 10 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. IRS SPECTRA OF SOLAR-TYPE STARS: A SEARCH FOR ASTEROID BELT ANALOGS

More information

FREQUENCY OF DEBRIS DISKS AROUND SOLAR-TYPE STARS: FIRST RESULTS FROM A SPITZER MIPS SURVEY

FREQUENCY OF DEBRIS DISKS AROUND SOLAR-TYPE STARS: FIRST RESULTS FROM A SPITZER MIPS SURVEY The Astrophysical Journal, 636:1098 1113, 2006 January 10 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. A FREQUENCY OF DEBRIS DISKS AROUND SOLAR-TYPE STARS: FIRST RESULTS

More information

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at 10150 AU using PDI Henning Avenhaus Institute for Astronomy, ETH Zürich 2013 ROCKS! Conference, Hawaii Sascha Quanz, Hans Martin Schmid,

More information

Debris Disks: An Overview

Debris Disks: An Overview DEBRIS DISKS AND THE FORMATION OF PLANETS: A SYMPOSIUM IN MEMORY OF FRED GILLETT ASP Conference Series, Vol. 324, 2004 L. Caroff, L.J. Moon, D. Backman and E. Praton, eds. Debris Disks: An Overview Dana

More information

Lynne A. Hillenbrand. Spitzer Imaging and. Spectroscopy of Disks. Hillenbrand & Carpenter. (Or imagine some flashier title if you must) W.

Lynne A. Hillenbrand. Spitzer Imaging and. Spectroscopy of Disks. Hillenbrand & Carpenter. (Or imagine some flashier title if you must) W. Lynne A. Hillenbrand Spitzer Imaging and Hillenbrand & Carpenter Spectroscopy of Disks (Or imagine some flashier title if you must) W. Hartmann Pre-main Sequence Evolution 10 Disk/wind 10 5 yr L star Planet

More information

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at 10150 AU using PDI Henning Avenhaus Institute for Astronomy, ETH Zürich 2013 ROCKS! Conference, Hawaii Sascha Quanz, Hans Martin Schmid,

More information

arxiv:astro-ph/ v1 16 Jun 2006

arxiv:astro-ph/ v1 16 Jun 2006 Evolution of Circumstellar Disks Around Normal Stars: Placing Our Solar System in Context Michael R. Meyer The University of Arizona Dana E. Backman SOFIA/SETI Institute arxiv:astro-ph/0606399v1 16 Jun

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details

More information

Olivier Absil. University of Liège

Olivier Absil. University of Liège Olivier Absil University of Liège Seminar at MPIfR Bonn July 15 th, 2011 We all live in a debris disk! 2 nd generation dust (asteroids, comets) Dust is luminous (much more than planets) Dust is expected

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

Warm dust ring. Hot dust. H2L2 3.5 Diameter of the solar Diameter of the solar Diameter of the solar system

Warm dust ring. Hot dust. H2L2 3.5 Diameter of the solar Diameter of the solar Diameter of the solar system The Institute of Space and Astronautical Science Report SP No.14, December 2000 Search for Exozodiacal Dust: Are Vega-like Stars Common? By Takanori Hirao Λ, Hiroshi Matsuo y, Shuji Matsuura z, Hiroshi

More information

SIGNATURES OF EXOSOLAR PLANETS IN DUST DEBRIS DISKS Leonid M. Ozernoy, 1,2 Nick N. Gorkavyi, 2 John C. Mather, 2 and Tanya A.

SIGNATURES OF EXOSOLAR PLANETS IN DUST DEBRIS DISKS Leonid M. Ozernoy, 1,2 Nick N. Gorkavyi, 2 John C. Mather, 2 and Tanya A. The Astrophysical Journal, 537:L000 L000, 2000 July 10 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. SIGNATURES OF EXOSOLAR PLANETS IN DUST DEBRIS DISKS Leonid M. Ozernoy,

More information

Six Years of Astrophysics with the Far Ultraviolet Spectroscopic Explorer

Six Years of Astrophysics with the Far Ultraviolet Spectroscopic Explorer Six Years of Astrophysics with the Far Ultraviolet Spectroscopic Explorer George Sonneborn FUSE Project Scientist NASA s Goddard Space Flight Center 207th AAS Meeting Washington, DC 12 Jan. 2006 FUSE Mission

More information

Review of near-ir interferometric detections Update on PIONIER work in progress

Review of near-ir interferometric detections Update on PIONIER work in progress Review of near-ir interferometric detections Update on PIONIER work in progress Steve Ertel ESO Santiago, PIONIER instrument fellow Detection strategy Detections & statistics News from PIONIER The challenge

More information

Evolution of Circumstellar Disks Around Normal Stars: Placing Our Solar System in Context

Evolution of Circumstellar Disks Around Normal Stars: Placing Our Solar System in Context Meyer et al.: Evolution of Circumstellar Disks Around Normal Stars 573 Evolution of Circumstellar Disks Around Normal Stars: Placing Our Solar System in Context Michael R. Meyer The University of Arizona

More information

Received 1998 April 22; accepted 1998 June 12; published 1998 July 17

Received 1998 April 22; accepted 1998 June 12; published 1998 July 17 The Astrophysical Journal, 503:L83 L87, 1998 August 10 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. MID-INFRARED IMAGING OF A CIRCUMSTELLAR DISK AROUND HR 4796: MAPPING

More information

DU t d st around NE b ar y Stars

DU t d st around NE b ar y Stars DUNES DUst around NEarby Stars Carlos Eiroa on behalf of thedunes consortium DUNES - Herschel Open time Key Programme with the aim of studying cold dust disks around nearby solar-type stars T l PACS h

More information

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries Extended X- ray emission from PSR B1259-63/LS 2883 and other gamma- ray binaries George Pavlov (Pennsylvania State University) Oleg Kargaltsev (George Washington University) Martin Durant (University of

More information

CIRCUMSTELLAR DISKS AND OUTER PLANET FORMATION

CIRCUMSTELLAR DISKS AND OUTER PLANET FORMATION CIRCUMSTELLAR DISKS AND OUTER PLANET FORMATION A. LECAVELIER DES ETANGS Institut d Astrophysique de Paris 98 Bld Arago, F-75014 Paris, France Abstract. The dust disk around β Pictoris must be produced

More information

Molecular gas in young debris disks

Molecular gas in young debris disks Molecular gas in young debris disks Attila Moór1, Péter Ábrahám1, Ágnes Kóspál1, Michel Curé2, Attila Juhász3 et al. 1 - Konkoly Observatory, Budapest, Hungary 2 Universidad Valparaíso, Chile 3 - Institute

More information

Hot Dust Around Young Stars and Evolved Stars

Hot Dust Around Young Stars and Evolved Stars Hot Dust Around Young Stars and Evolved Stars Kate Su Steward Observatory University of Arizona Dust Zones Revealed by Great Observatories edge-on view of nearby planetary debris disks distance, r, increases

More information

SPITZER-MIPS OBSERVATIONS OF THE CHAMAELEONTIS YOUNG ASSOCIATION

SPITZER-MIPS OBSERVATIONS OF THE CHAMAELEONTIS YOUNG ASSOCIATION The Astrophysical Journal, 683:813Y821, 2008 August 20 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. SPITZER-MIPS OBSERVATIONS OF THE CHAMAELEONTIS YOUNG ASSOCIATION

More information

Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks

Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks Leonardo Testi (European Southern Observatory) Disk Evolution From Grains to Pebbles Do we understand what we observe? Wish List

More information

Predictions for a planet just inside Fomalhaut s eccentric ring

Predictions for a planet just inside Fomalhaut s eccentric ring Mon. Not. R. Astron. Soc. 372, L14 L18 (2006) doi:10.1111/j.1745-3933.2006.00216.x Predictions for a planet just inside Fomalhaut s eccentric ring Alice C. Quillen Department of Physics and Astronomy,

More information

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Collecting Area Light bucket : the bigger the area of the telescope s mirror or lens, the more photons

More information

Constraining the Evolution of Molecular Gas in Weak-Line T-Tauri Stars. 1. Motivation

Constraining the Evolution of Molecular Gas in Weak-Line T-Tauri Stars. 1. Motivation Constraining the Evolution of Molecular Gas in Weak-Line T-Tauri Stars 1. Motivation The formation of planets from protoplanetary disks is greatly influenced by the presence or absence of gas in these

More information

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech A Tale of Star and Planet Formation Lynne Hillenbrand Caltech Vermeer s The Astronomer (1688) Mauna Kea (last week) photos by: Sarah Anderson and Bill Bates Context: Our Sun The Sun is a completely average

More information

Planets in a Sandbox: Hubble s Renaissance of Debris Disk Imaging

Planets in a Sandbox: Hubble s Renaissance of Debris Disk Imaging National Aeronautics and Space Administration Planets in a Sandbox: Hubble s Renaissance of Debris Disk Imaging Paul Kalas Taken from: Produced by NASA Goddard Space Flight Center and Space Telescope Science

More information

Characterizing Exoplanets and Brown Dwarfs With JWST

Characterizing Exoplanets and Brown Dwarfs With JWST Characterizing Exoplanets and Brown Dwarfs With JWST C. Beichman NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology On Behalf of the NIRCam Exoplanet Team September

More information

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry Thomas Preibisch, Stefan Kraus, Keiichi Ohnaka Max Planck Institute for Radio Astronomy, Bonn

More information

Using Spitzer to Observe the Solar System

Using Spitzer to Observe the Solar System Using Spitzer to Observe the Solar System Sean Carey Spitzer Science Center 47 th DPS meeting 09 November 2015 SJC - 1 Spitzer Space Telescope NASA s Infrared Great Observatory Launched on 25 August 2003

More information

Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects

Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects A. S. Evans (Stony Brook) J. A. Surace & D. T. Frayer (Caltech) D. B. Sanders (Hawaii) Luminous Infrared Galaxies Properties

More information

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany Circumstellar disks The MIDI view Sebastian Wolf Kiel University, Germany MPIA MIDI SG concluding meeting May 5, 2014 Overview Circumstellar disks: Potential of IR long-baseline interferometry MIDI: Exemplary

More information

Exoplanet Science with SPHEREx s All-Sky Spectro-photometric Survey in the Near-Infrared. A White Paper in support of the Exoplanet Science Strategy

Exoplanet Science with SPHEREx s All-Sky Spectro-photometric Survey in the Near-Infrared. A White Paper in support of the Exoplanet Science Strategy Exoplanet Science with SPHEREx s All-Sky Spectro-photometric Survey in the Near-Infrared A White Paper in support of the Exoplanet Science Strategy March 9, 2018 Daniel J. Stevens (stevens.725@osu.edu,

More information

Resolved imaging of the HD debris disc

Resolved imaging of the HD debris disc Mon. Not. R. Astron. Soc. 410, 2 12 (2011) doi:10.1111/j.1365-2966.2010.17422.x Resolved imaging of the HD 191089 debris disc Laura Churcher, 1 Mark Wyatt 1 and Rachel Smith 2 1 Institue of Astronomy,

More information

CCAT: Key Science Goals. Jonas Zmuidzinas and the CCAT Science Steering Committee

CCAT: Key Science Goals. Jonas Zmuidzinas and the CCAT Science Steering Committee CCAT: Key Science Goals Jonas Zmuidzinas and the CCAT Science Steering Committee Science reports in CCAT Study Co-Chairs Terry Herter (Cornell) and Jonas Zmuidzinas (CIT) Science Theme Lead Distant Galaxies

More information

Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations

Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations Eric L. Nielsen Institute for Astronomy University of Hawaii Michael Liu (IfA), Zahed Wahhaj (IfA), Beth A. Biller (MPIA),

More information

Dust in the 55 Cancri planetary system

Dust in the 55 Cancri planetary system Dust in the 55 Cancri planetary system Ray Jayawardhana 1,2,3, Wayne S. Holland 2,4,JaneS.Greaves 4, William R. F. Dent 5, Geoffrey W. Marcy 6,LeeW.Hartmann 1, and Giovanni G. Fazio 1 ABSTRACT The presence

More information

arxiv:astro-ph/ v1 28 Oct 2006

arxiv:astro-ph/ v1 28 Oct 2006 **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Spitzer White Dwarf Planet Limits arxiv:astro-ph/0610856v1 28 Oct 2006 F. Mullally, Ted von Hippel, D.

More information

PProbing New Planet Views Forming on Disks: INTRODUCTION! Contributions from Spitzer and Ground-based Facilities. Joan Najita (NOAO)

PProbing New Planet Views Forming on Disks: INTRODUCTION! Contributions from Spitzer and Ground-based Facilities. Joan Najita (NOAO) PProbing New Planet Views Forming on Disks: Gas Clues in the to the Planet Origins Formation of Planetary Region Systems! of Disks INTRODUCTION! Contributions from Spitzer and Ground-based Facilities Joan

More information

Glenn Schneider* Steward Observatory, The University of Arizona *

Glenn Schneider* Steward Observatory, The University of Arizona * Probing for Exoplanets Hiding in Dusty Debris Disks III: Disk Imaging, Characterization, and Exploration with HST/ STIS Multi-Roll Coronagraphy - Completing the Survey HST/GO 12228 Team Joseph Carson John

More information

OBSERVATIONAL CONSTRAINTS on the FORMATION of VERY LOW MASS STARS & BROWN DWARFS

OBSERVATIONAL CONSTRAINTS on the FORMATION of VERY LOW MASS STARS & BROWN DWARFS OBSERVATIONAL CONSTRAINTS on the FORMATION of VERY LOW MASS STARS & BROWN DWARFS Subhanjoy Mohanty (Spitzer Fellow, Harvard University) Gibor Basri, Ray Jayawardhana, Antonella Natta David Barrado y Navascués,

More information

Solar-System Objects as Radiance Calibrators in the Far-Infrared and Submillimeter

Solar-System Objects as Radiance Calibrators in the Far-Infrared and Submillimeter Solar-System Objects as Radiance Calibrators in the Far-Infrared and Submillimeter Glenn Orton Jet Propulsion Laboratory California Institute of Technology Planetary astronomers: Calibrate planetary flux

More information

THE DYNAMICAL INFLUENCE OF A PLANET AT SEMIMAJOR AXIS 3.4 AU ON THE DUST AROUND ERIDANI

THE DYNAMICAL INFLUENCE OF A PLANET AT SEMIMAJOR AXIS 3.4 AU ON THE DUST AROUND ERIDANI The Astrophysical Journal, 612:1163 1170, 2004 September 10 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE DYNAMICAL INFLUENCE OF A PLANET AT SEMIMAJOR AXIS 3.4 AU

More information

Millimeter Emission Structure in the AU Mic Debris Disk

Millimeter Emission Structure in the AU Mic Debris Disk Millimeter Emission Structure in the AU Mic Debris Disk Meredith MacGregor Harvard University Wilner, D.J., Rosenfeld, K.A., Andrews, S.M., Ma7hews, B., Hughes, A.M., Booth, M., Chiang, E., Graham, J.R.,

More information

arxiv:astro-ph/ v1 19 Jun 1998

arxiv:astro-ph/ v1 19 Jun 1998 Mid-infrared Imaging of a Circumstellar Disk Around HR 4796: Mapping the Debris of Planetary Formation D.W. Koerner 1,2, M.E. Ressler 1, M.W. Werner 1, and D.E. Backman 3 arxiv:astro-ph/9806268v1 19 Jun

More information

arxiv: v1 [astro-ph.co] 27 May 2009

arxiv: v1 [astro-ph.co] 27 May 2009 **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** The Pedigrees of DOGs (Dust-Obscured Galaxies) arxiv:0905.453v [astro-ph.co] 27 May 2009 Arjun Dey National

More information

Do two-temperature debris discs have multiple belts?

Do two-temperature debris discs have multiple belts? doi:10.1093/mnras/stu1665 Do two-temperature debris discs have multiple belts? G. M. Kennedy andm.c.wyatt Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK Accepted

More information

Kuiper Belt Dynamics and Interactions

Kuiper Belt Dynamics and Interactions Kuiper Belt Dynamics and Interactions Minor Planet Center Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kuiper belt µm ejected by radiation pressure larger grains migrate in via PR drag

More information

DUSTY DEBRIS DISKS AS SIGNPOSTS OF PLANETS: IMPLICATIONS FOR SPITZER SPACE TELESCOPE

DUSTY DEBRIS DISKS AS SIGNPOSTS OF PLANETS: IMPLICATIONS FOR SPITZER SPACE TELESCOPE The Astrophysical Journal, 603:738 743, 2004 March 10 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. DUSTY DEBRIS DISKS AS SIGNPOSTS OF PLANETS: IMPLICATIONS FOR SPITZER

More information

Part III: Circumstellar Properties of Intermediate-Age PMS Stars

Part III: Circumstellar Properties of Intermediate-Age PMS Stars 160 Part III: Circumstellar Properties of Intermediate-Age PMS Stars 161 Chapter 7 Spitzer Observations of 5 Myr-old Brown Dwarfs in Upper Scorpius 7.1 Introduction Ground-based infrared studies have found

More information

Revealing the evolution of disks at au from high-resolution IR spectroscopy

Revealing the evolution of disks at au from high-resolution IR spectroscopy Protoplanetary seen through the eyes of new-generation high-resolution instruments - Rome, June 6, 08 Revealing the evolution of at 0.0-0 au from high-resolution IR spectroscopy VLT IR interferometry (not

More information

Signatures of Planets in Spatially Unresolved Debris Disks

Signatures of Planets in Spatially Unresolved Debris Disks Signatures of Planets in Spatially Unresolved Debris Disks Amaya Moro-Martín 1,2, Sebastian Wolf 2,3 & Renu Malhotra 4 amaya@as.arizona.edu, swolf@astro.caltech.edu, renu@lpl.arizona.edu ABSTRACT Main

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

First Science with JouFLU and some instrument updates

First Science with JouFLU and some instrument updates First Science with JouFLU and some instrument updates Nicholas J Scott March 2015 JouFLU Software integrated with CHARA environment Remote operations Pupil imaging Upgraded fiber injection Improved alignment

More information

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Planetary system dynamics Part III Mathematics / Part III Astrophysics Planetary system dynamics Part III Mathematics / Part III Astrophysics Lecturer: Prof. Mark Wyatt (Dr. Amy Bonsor on 9,11 Oct) Schedule: Michaelmas 2017 Mon, Wed, Fri at 10am MR11, 24 lectures, start Fri

More information

On the direct imaging of Exoplanets. Sebastian Perez Stellar Coffee - December 2008

On the direct imaging of Exoplanets. Sebastian Perez Stellar Coffee - December 2008 On the direct imaging of Exoplanets Sebastian Perez Stellar Coffee - December 2008 Outline Exoplanets overview Direct Imaging: - Observing strategy - Angular differential imaging HR8799 Fomalhaut beta

More information

arxiv:astro-ph/ v1 20 Jan 2006

arxiv:astro-ph/ v1 20 Jan 2006 The Astrophysical Journal, Vol. 637: L57-L60, 2006 January 20 Preprint typeset using L A TEX style emulateapj v. 6/22/04 FIRST SCATTERED LIGHT IMAGES OF DEBRIS DISKS AROUND HD 53143 AND HD 139664 Paul

More information