On the direct imaging of Exoplanets. Sebastian Perez Stellar Coffee - December 2008

Size: px
Start display at page:

Download "On the direct imaging of Exoplanets. Sebastian Perez Stellar Coffee - December 2008"

Transcription

1 On the direct imaging of Exoplanets Sebastian Perez Stellar Coffee - December 2008

2 Outline Exoplanets overview Direct Imaging: - Observing strategy - Angular differential imaging HR8799 Fomalhaut beta Pictoris Conclusions

3 Exoplanets overview 329 planets detected so far! 11 directly imaged: 2M1207 b * AB Pic b * GQ Lupi b * SCR 1845 b * UScoCTIO 108 b (Bejar et al. 01/2008) CT Cha b * (Schmidt et al. 09/2008) HR 8799 b,c,d (Marois et al. 16/11/2008) Fomalhaut b (Kalas et al. 19/11/2008) beta Pic b (Lagrange et al. 21/11/2008) (*) observed with NACO on Yepun, VLT 3

4 Detection Radial velocity, transits, microlensing: - limited to small/moderate planet-star separations Direct imaging: - Jupiter-like planets with wide orbits - key step towards imaging Earth-like planets What do we look at? Gravitational potential energy turned into heat (infra-red) Problems: - we need really good resolution (AO) - huge luminosity contrast between planet and hot star L visible = 10 9 L L infrared = 10 4 L due to reduced stellar flux and thermal radiation from gravitational contraction of the planet

5 Credit: ESO A3V A5V A5V

6 Why A-type stars? Can support heavier and larger discs. May form more massive planets at wider separations: perfect for direct imaging! Young A-star discs can have many times the minimum mass solar nebula (0.01 solar mass, estimated by Weindenschilling 1977) Extreme example: Gomez s Hamburger * disc ~ 0.1 solar mass radius ~ 3000 au (*) discovered by Arturo Gomez at CTIO in

7 Imaging technique Take a mix of many unsaturated images (0.1s) and saturated ones (~30s). Once the star s emission is effectively cancelled, the next strong thermal emission will be thermal emission from zodiacal dust (Brian May 2007). Problem: AO is limited by quasi-static speckle artefacts. Solution: Angular Differential Imaging! (Marois et al. 2006) (*) discovered by Arturo Gomez at CTIO in 1985

8 HR 8799 Marois et al arxiv: v1 A5V star, about 40 pc away. Keck (2004, 2008) ADI + Gemini (2007) revealed: 3 planets! M b 7 M Jupiter M c 10 M Jupiter M d 10 M Jupiter JHK bands - NIRC2/Keck 8

9 Marois et al arxiv: v1

10 Fomalhaut Kalas et al arxiv: v2 A3V star, at 7.7 pc away, Ma old. Belt was detected in Truncated in the inner edge, centred 15 au away from the star. A planet would explain this feature! Planet detected with HST by analysing data (R-band) located at 120 au from the star M planet 3M J to avoid disruption of the belt. R band - WFPC2/HST

11 R band - ACS/HST

12 Beta Pictoris Lagrange et al arxiv: l A6V star at 20 pc away. Prototype of young (20 Ma) planetary systems (Smith and Terrile 1984). Inner region (<50 au) of debris disc is odd: - void of material - tilted inner disc - UV spectra shows loads of carbon a Jupiter size planet at > 6 au would explain the situation.. Colliding planetesimals with giant planet on a slightly inclined orbit! J-band/ESO 3.6-m Beuzit et al. (1997) T-ReCS/Gemini - Telesco et al. (2005)

13 Dynamical simulations show that the gravitational perturbation of a giant planet at ~10 au can account for the evaporated bodies.

14 field of view ~ 13 x 13 arcsec 3.6 microns/naco Lagrange et al. (2008)

15 Conclusions Direct imaging of Jupiter-like planets is a key step towards imaging Earth-like planets. We live in a fortunate time when space exploration could realise the dreams of past generations, of finding Earth-like planets and life independent of the Earth. - Woolf and Angel (1998) ARA&A

16 Life on Earth Spectroscopic evidence nco 2 + nh 2 O + 2n photons > (H 2 CO) n + no 2 We need life to sustain oxygen (Woolf & Angel 1998). Oxygen is in equilibrium with ozone (absorption at 9.7 microns). Second indicator of life is methane: produced by decomposition of organic matter

17 Life on Earth Spectroscopic evidence nco 2 + nh 2 O + 2n photons > (H 2 CO) n + no 2 We need life to sustain oxygen (Woolf & Angel 1998). Oxygen is in equilibrium with ozone (absorption at 9.7 microns). Second indicator of life is methane: produced by decomposition of organic matter

18

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging Photometry of planetary atmospheres from direct imaging Exoplanets Atmospheres Planets and Astrobiology (2016-2017) G. Vladilo Example: planetary system detected with direct imaging HR 8799 b, c, d (Marois

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22837 holds various files of this Leiden University dissertation. Author: Juan Ovelar, Maria de Title: Imaging polarimetry for the characterisation of exoplanets

More information

Extrasolar Planets = Exoplanets III.

Extrasolar Planets = Exoplanets III. Extrasolar Planets = Exoplanets III http://www.astro.keele.ac.uk/~rdj/planets/images/taugruishydra2.jpg Outline Gravitational microlensing Direct detection Exoplanet atmospheres Detecting planets by microlensing:

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations

Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations Eric L. Nielsen Institute for Astronomy University of Hawaii Michael Liu (IfA), Zahed Wahhaj (IfA), Beth A. Biller (MPIA),

More information

The Fomalhaut Debris Disk

The Fomalhaut Debris Disk The Fomalhaut Debris Disk IRAS 12 micron http://ssc.spitzer.caltech.edu/documents/compendium/foma lhaut/ Fomalhaut is a bright A3 V star 7.7 pc away IRAS discovered an IR excess indicating a circumstellar

More information

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets Jiangpei Dou 1, Deqing Ren 1,2, Yongtian Zhu 1, Xi Zhang 1 1 Astronomical Observatories/Nanjing Institute of Astronomical

More information

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge How inner planetary systems relate to inner and outer debris belts Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

Exozodiacal discs with infrared interferometry

Exozodiacal discs with infrared interferometry Exozodiacal discs with infrared interferometry First results and perspectives * (post-doc at LAOG, Grenoble) and E. Di Folco (Obs. Geneva), J.C. Augereau (LAOG), V. Coudé du Foresto (Obs. Paris), A. Mérand

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge Detectability of extrasolar debris Mark Wyatt Institute of Astronomy, University of Cambridge Why image extrasolar debris? Emission spectrum shows dust thermal emission, used to infer radius of parent

More information

Planets are plentiful

Planets are plentiful Extra-Solar Planets Planets are plentiful The first planet orbiting another Sun-like star was discovered in 1995. We now know of 209 (Feb 07). Including several stars with more than one planet - true planetary

More information

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Planetary system dynamics Part III Mathematics / Part III Astrophysics Planetary system dynamics Part III Mathematics / Part III Astrophysics Lecturer: Prof. Mark Wyatt (Dr. Amy Bonsor on 9,11 Oct) Schedule: Michaelmas 2017 Mon, Wed, Fri at 10am MR11, 24 lectures, start Fri

More information

Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009

Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009 Debris Disks and the Evolution of Planetary Systems Christine Chen September 1, 2009 Why Study Circumstellar Disks? How common is the architecture of our solar system (terrestrial planets, asteroid belt,

More information

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology A. Sozzetti INAF Osservatorio Astrofisico di Torino Detection/Characterization Detection (Visible): - Doppler spectroscopy (95%) -

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018 2018 TIARA Summer School Origins of the Solar System Observations and Modelling of Debris Disks J.P. Marshall (ASIAA) Wednesday 18 th July 2018 [Hogerheijde 1998] Debris disks Tenuous belts of icy and

More information

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy)

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy) Project RISARD - the story so far credit : wiki Marcin P. Gawroński (Toruń Centre for Astronomy) in collaboration with K. Goźdzewski, K. Katarzyński, G. Rycyk (TCfA) Overview RISARD motivation and current

More information

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany Circumstellar disks The MIDI view Sebastian Wolf Kiel University, Germany MPIA MIDI SG concluding meeting May 5, 2014 Overview Circumstellar disks: Potential of IR long-baseline interferometry MIDI: Exemplary

More information

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

More information

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars 4. Direct imaging of extrasolar planets Reminder: Direct imaging is challenging: The proximity to its host star: 1 AU at 1 for alpha Cen 0.15 for the 10th most nearby solar-type star The low ratio of planet

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

The formation & evolution of solar systems

The formation & evolution of solar systems The formation & evolution of solar systems Content expectations Birth of the Solar System What did the material that eventually became the Sun and planets look like originally? Interstellar clouds like

More information

Exoplanets in the mid-ir with E-ELT & METIS

Exoplanets in the mid-ir with E-ELT & METIS Exoplanets in the mid-ir with E-ELT & METIS Wolfgang Brandner (MPIA), Eric Pantin (CEA Saclay), Ralf Siebenmorgen (ESO), Sebastian Daemgen (MPIA/ESO), Kerstin Geißler (MPIA/ESO), Markus Janson (MPIA/Univ.

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Planets and Brown Dwarfs

Planets and Brown Dwarfs Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

More information

ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. Presentations. Presentations. HW #2 is due on Friday First Presentations on

ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. Presentations. Presentations. HW #2 is due on Friday First Presentations on This Class (Lecture 8): Planet Formation Next Class: ET: Astronomy 230 Section 1 MWF 1400-1450 134 Astronomy Building Nature of Solar Systems HW #2 is due on Friday First Presentations on 19 th and 23

More information

Astronomy December, 2016 Introduction to Astronomy: The Solar System. Final exam. Practice questions for Unit V. Name (written legibly):

Astronomy December, 2016 Introduction to Astronomy: The Solar System. Final exam. Practice questions for Unit V. Name (written legibly): Astronomy 101 12 December, 2016 Introduction to Astronomy: The Solar System Final exam Practice questions for Unit V Name (written legibly): Honor Pledge: On my honor, I have neither given nor received

More information

Star Formation. Stellar Birth

Star Formation. Stellar Birth Star Formation Lecture 12 Stellar Birth Since stars don t live forever, then they must be born somewhere and at some time in the past. How does this happen? And when stars are born, so are planets! 1 Molecular

More information

Searching for extrasolar planets with SPHERE. Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD)

Searching for extrasolar planets with SPHERE. Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD) Searching for extrasolar planets with SPHERE Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD) The field of extrasolar planets today At the moment 2017 planets have been discovered.

More information

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds 10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

More information

Young Solar-like Systems

Young Solar-like Systems Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show

More information

Characterization of Exoplanets in the mid-ir with JWST & ELTs

Characterization of Exoplanets in the mid-ir with JWST & ELTs Characterization of Exoplanets in the mid-ir with JWST & ELTs Jupiter HR8799 Saturn VLT/ISAAC VLT/NACO Cassini/VIMS Wolfgang Brandner (MPIA), Eric Pantin (CEA Saclay), Ralf Siebenmorgen (ESO), Carolina

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11 Fundamental (Sub)stellar Parameters: Surface Gravity PHY 688, Lecture 11 Outline Review of previous lecture binary stars and brown dwarfs (sub)stellar dynamical masses and radii Surface gravity stars,

More information

Debris Disks and the Formation and Evolution of Planetary Systems. Christine Chen October 14, 2010

Debris Disks and the Formation and Evolution of Planetary Systems. Christine Chen October 14, 2010 Debris Disks and the Formation and Evolution of Planetary Systems Christine Chen October 14, 2010 1 Outline Dust Debris in our Solar System The Discovery of Dust Debris Around Other Stars The Connection

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Collecting Area Light bucket : the bigger the area of the telescope s mirror or lens, the more photons

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Other planetary systems

Other planetary systems Exoplanets are faint! Other planetary systems Planets are seen only by reflected light at optical wavelengths At the distance of another star the faint light of a planet is lost in the glare of the star

More information

Gemini Planet Imager. Raphaël Galicher from presentations provided by James Graham and Marshall Perrin

Gemini Planet Imager. Raphaël Galicher from presentations provided by James Graham and Marshall Perrin Gemini Planet Imager from presentations provided by James Graham and Marshall Perrin Outline Ojectives The instrument Three examples of observations The GPI Exoplanet Survey 2 Objectives Radial velocity

More information

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or The Interstellar Medium About 99% of the material between the stars is in the form of a gas The remaining 1% exists as interstellar grains or interstellar dust If all the interstellar gas were spread evenly,

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

HOMEWORK - Chapter 17 The Stars

HOMEWORK - Chapter 17 The Stars Astronomy 20 HOMEWORK - Chapter 7 The Stars Use a calculator whenever necessary. For full credit, always show your work and explain how you got your answer in full, complete sentences on a separate sheet

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute How Common Are Planets Around Other Stars? Transiting Exoplanets Kailash C. Sahu Space Tel. Sci. Institute Earth as viewed by Voyager Zodiacal cloud "Pale blue dot" Look again at that dot. That's here.

More information

HW #2. Solar Nebular Theory. Predictions: Young stars have disks. Disks contain gas & dust. Solar System should contain disk remnants

HW #2. Solar Nebular Theory. Predictions: Young stars have disks. Disks contain gas & dust. Solar System should contain disk remnants Astronomy 330: Extraterrestrial Life This class (Lecture 9): Next Class: Planet Formation Zachary Brewer Quinn Calvert Exoplanets Itamar Allali Brian Campbell-Deem HW #3 due Sunday night. Music: Another

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

COSMOLOGY PHYS 30392 OBSERVING THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - January 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Astro Week 1. (a) Show that the transit duration for a non-central transit (see Figures) is: R R. b = a cos i

Astro Week 1. (a) Show that the transit duration for a non-central transit (see Figures) is: R R. b = a cos i Astro-286 - Week 1 1. Radial Velocity (10 pt) What is the expected amplitude of velocity oscillations of 1 M star that is orbited by a Jupiter mass planet (m J = 0.001 M ) at 1 AU separation? What is the

More information

Revealing the evolution of disks at au from high-resolution IR spectroscopy

Revealing the evolution of disks at au from high-resolution IR spectroscopy Protoplanetary seen through the eyes of new-generation high-resolution instruments - Rome, June 6, 08 Revealing the evolution of at 0.0-0 au from high-resolution IR spectroscopy VLT IR interferometry (not

More information

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

BUT, what happens when atoms, with electrons attached, are packed really close together? The electrons from the neighboring atoms can have a small

BUT, what happens when atoms, with electrons attached, are packed really close together? The electrons from the neighboring atoms can have a small Quiz #5 There are two stars, star A and star B. Star A is approaching the Earth at 100 km/s and Star B is moving away from the Earth at 200 km/s. Compare the Doppler shift for these two stars by explaining

More information

Recent advances in understanding planet formation

Recent advances in understanding planet formation Credit: ALMA (ESO/NAOJ/NRAO) Recent advances in understanding planet formation Misato Fukagawa Chile observatory (Mitaka), NAOJ Contents of this talk 1. Introduction: Exoplanets, what we want to know from

More information

Atmospheric Chemistry on Substellar Objects

Atmospheric Chemistry on Substellar Objects Atmospheric Chemistry on Substellar Objects Channon Visscher Lunar and Planetary Institute, USRA UHCL Spring Seminar Series 2010 Image Credit: NASA/JPL-Caltech/R. Hurt Outline introduction to substellar

More information

The Solar Nebula Theory

The Solar Nebula Theory Reading: Chap. 21, Sect.21.1, 21.3 Final Exam: Tuesday, December 12; 4:30-6:30PM Homework 10: Due in recitation Dec. 1,4 Astro 120 Fall 2017: Lecture 25 page 1 Astro 120 Fall 2017: Lecture 25 page 2 The

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Beta Pictoris : Disk, comets, planet

Beta Pictoris : Disk, comets, planet Beta Pictoris : Disk, comets, planet Hervé Beust Institut de Planétologie et d Astrophysique de Grenoble (IPAG) 1 Outline of the talk 1. The star 2. The dust disk Clues for the presence of planets 3. The

More information

Remember from Stefan-Boltzmann that 4 2 4

Remember from Stefan-Boltzmann that 4 2 4 Lecture 17 Review Most stars lie on the Main sequence of an H&R diagram including the Sun, Sirius, Procyon, Spica, and Proxima Centauri. This figure is a plot of logl versus logt. The main sequence is

More information

Planets & Life. Planets & Life PHYS 214. Please start all class related s with 214: 214: Dept of Physics (308A)

Planets & Life. Planets & Life PHYS 214. Please start all class related  s with 214: 214: Dept of Physics (308A) Planets & Life Planets & Life PHYS 214 Dr Rob Thacker Dept of Physics (308A) thacker@astro.queensu.ca Please start all class related emails with 214: 214: Today s s lecture Assignment 1 marked will hand

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

Astronomy 210 Midterm #2

Astronomy 210 Midterm #2 Astronomy 210 Midterm #2 This Class (Lecture 27): Birth of the Solar System II Next Class: Exam!!!! 2 nd Hour Exam on Friday!!! Review Session on Thursday 12-1:30 in room 236 Solar Observing starts on

More information

! Group project! a)! 65% b)! 70% c)! 75% d)! 80% e)! 85%

! Group project! a)! 65% b)! 70% c)! 75% d)! 80% e)! 85% This Class (Lecture 6): More Asteroids Next Class: Dino-Killers HW1 due on Sun. Last day to go to the Nat History Building before deadline. Music: The Day Lassie Went to the Moon Camper van Beethoven!

More information

Science with EPICS, the E-ELT planet finder

Science with EPICS, the E-ELT planet finder The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution Proceedings IAU Symposium No. 276, 2010 c International Astronomical Union 2011 A. Sozzetti, M. G. Lattanzi & A. P.

More information

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)? How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Brown dwarfs and hot young planets

Brown dwarfs and hot young planets Brown dwarfs and hot young planets D. Saumon Los Alamos National Laboratory Images: Cassini; Marois et al. (2008) 2009 Sagan Exoplanet Summer Workshop, 21 July 2009 LA-UR-09-04365 Brown dwarfs and hot

More information

Extrasolar Planets: Molecules and Disks

Extrasolar Planets: Molecules and Disks Extrasolar Planets: Molecules and Disks The basic question: Is our solar system typical of what we should affect around other stars (inhabited or not), or is it an unusual freak? One approach is to look

More information

Non-axisymmetric structure in million-year-old discs around intermediate-mass stars

Non-axisymmetric structure in million-year-old discs around intermediate-mass stars Non-axisymmetric structure in million-year-old discs around intermediate-mass stars Misato Fukagawa (NAOJ) C. A. Grady, J. P. Wisniewski, Y. Ohta, M. Momose, Y. Matura, T. Kotani, Y. Okamoto, J. Hashimoto,

More information

Exoplanets: a dynamic field

Exoplanets: a dynamic field Exoplanets: a dynamic field Alexander James Mustill Amy Bonsor, Melvyn B. Davies, Boris Gänsicke, Anders Johansen, Dimitri Veras, Eva Villaver The (transiting) exoplanet population Solar System Hot Jupiters:

More information

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details

More information

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Planet is Much Fainter than Star! Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

What will the future bring? Scientific discoveries expected from the E-ELT

What will the future bring? Scientific discoveries expected from the E-ELT What will the future bring? Scientific discoveries expected from the E-ELT Planets & Stars Stars & Galaxies Galaxies & Cosmology Eline Tolstoy Kapteyn Astronomical Institute, University of Groningen E-ELT

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 18 Planetary System Formation and Evolution February 25, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Origins of Stars and Planets in the VLT Era

Origins of Stars and Planets in the VLT Era Origins of Stars and Planets in the VLT Era Michael R. Meyer Institute for Astronomy, ETH-Zurich From Circumstellar Disks to Planets 5 November 2009, ESO/MPE Garching Planet Formation = Saving the Solids

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller 1 Chapter Overview Distant Suns (11.1) Life cycle of stars and their habitability zones Extrasolar

More information

! p. 1. Observations. 1.1 Parameters

! p. 1. Observations. 1.1 Parameters 1 Observations 11 Parameters - Distance d : measured by triangulation (parallax method), or the amount that the star has dimmed (if it s the same type of star as the Sun ) - Brightness or flux f : energy

More information

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech A Tale of Star and Planet Formation Lynne Hillenbrand Caltech Vermeer s The Astronomer (1688) Mauna Kea (last week) photos by: Sarah Anderson and Bill Bates Context: Our Sun The Sun is a completely average

More information

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST ExSoCal Conference September 18-19th 2017, Pasadena HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST Marie Ygouf HR 8799 planetary system Jason Wang / Christian Marois Keck data Giants planets and brown

More information

Jessica Donaldson (Carnegie DTM) Aki Roberge (NASA GSFC)

Jessica Donaldson (Carnegie DTM) Aki Roberge (NASA GSFC) Jessica Donaldson (Carnegie DTM) Aki Roberge (NASA GSFC) Gas evolution in disks 10 100 M Jupiter few M Lunar (dust) Total Mass 10 100 M Jupiter? Gas Mass Star Time (Myr) formation 1 5 10 ~ 1 Gyr Planetary

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

Nature and Origin of Planetary Systems f p "

Nature and Origin of Planetary Systems f p Nature and Origin of Planetary Systems f p " Our Solar System as Example" We know far more about our solar system than about any other" It does have (at least) one planet suitable for life" Start with

More information

Planetary system dynamics Mathematics tripos part III / part III Astrophysics

Planetary system dynamics Mathematics tripos part III / part III Astrophysics Planetary system dynamics Mathematics tripos part III / part III Astrophysics Lecturer: Dr Mark Wyatt Schedule: Lent 2014 Mon Wed Fri 10am MR9, 24 lectures, start Fri 17 Jan, end Wed 12 Mar Problems: My

More information

Kuiper Belt Dynamics and Interactions

Kuiper Belt Dynamics and Interactions Kuiper Belt Dynamics and Interactions Minor Planet Center Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kuiper belt µm ejected by radiation pressure larger grains migrate in via PR drag

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

Comments on WFIRST AFTA Coronagraph Concept. Marc Kuchner NASA Goddard Space Flight Center

Comments on WFIRST AFTA Coronagraph Concept. Marc Kuchner NASA Goddard Space Flight Center Comments on WFIRST AFTA Coronagraph Concept Marc Kuchner NASA Goddard Space Flight Center Exoplanet Science Has Changed Since 2010 35 Habitable Zone Kepler Planet Candidates known, ~12 confirmed planets

More information

Planet Detection! Estimating f p!

Planet Detection! Estimating f p! Planet Detection! Estimating f p! Can We See Them?! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information