Gaia: algorithms for the external calibration

Size: px
Start display at page:

Download "Gaia: algorithms for the external calibration"

Transcription

1 Gaia: algorithms for the external calibration Montegriffo P., Cacciari C., Ragaini S.

2 Edinburgh (Royal Observatory) Cambridge (Institute of Astronomy) (CU5 leadership) Leiden (Observatory) Bologna (INAF-OABO) Bologna Roma & Teramo (Obs., ASDC) Barcelona (Universitat de Barcelona)

3 Photometry Measurement Concept RP spectrum of M dwarf (V = 17.3 mag) Red box: data sent to ground White contour: sky-background level Colour coding: signal intensity During 5 years of mission each source is observed on average 8 times all over the focal plane Figures courtesy Anthony Brown

4 Figure courtesy Alex Short Focal Plane Wave Front Sensor Wave Front Sensor Blue Photometer CCDs Red Photometer CCDs Radial-Velocity Spectrometer CCDs Basic Angle Monitor Basic Angle Monitor Star motion in 1 s Sky Mapper CCDs Astrometric Field CCDs

5 Focal Plane Figure courtesy Alex Short BP - FoV Preceding - ROW1 PSF/LSF variation.1 LSF.1 Wave Front Sensor Wave Front Sensor Blue Photometer CCDs.1 Red Photometer CCDs Sample position BP - FoV Preceding - ROW7 Radial-Velocity Spectrometer CCDs Basic Angle Monitor.1 Basic Angle Monitor LSF.1 Star motion in 1 s Sky Mapper CCDs Astrometric Field CCDs Sample position

6 Focal Plane PSF/LSF variation Dispersion & geometry Wave Front Sensor Wave Front Sensor Blue Photometer CCDs Red Photometer CCDs Radial-Velocity Spectrometer CCDs Basic Angle Monitor Basic Angle Monitor Star motion in 1 s Sky Mapper CCDs Astrometric Field CCDs

7 Focal Plane PSF/LSF variation Dispersion & geometry Small scale (flat fields...) Wave Front Sensor Wave Front Sensor Blue Photometer CCDs Red Photometer CCDs Radial-Velocity Spectrometer CCDs Basic Angle Monitor Basic Angle Monitor Star motion in 1 s Sky Mapper CCDs Astrometric Field CCDs

8 Focal Plane PSF/LSF variation Dispersion & geometry Small scale (flat fields...) Wave Front Sensor Background (stray-light) Wave Front Sensor Blue Photometer CCDs Red Photometer CCDs Radial-Velocity Spectrometer CCDs Basic Angle Monitor Basic Angle Monitor Star motion in 1 s Sky Mapper CCDs Astrometric Field CCDs

9 Focal Plane PSF/LSF variation Dispersion & geometry Small scale (flat fields...) Wave Front Sensor Background (stray-light) Wave Front Sensor Blue Photometer CCDs Red Photometer CCDs Radial-Velocity Spectrometer CCDs Basic Angle Monitor Basic Angle Monitor Star motion in 1 s Sky Mapper CCDs Astrometric Field CCDs Figure courtesy Giorgia Busso

10 Focal Plane PSF/LSF variation Dispersion & geometry Small scale (flat fields...) Wave Front Sensor Background (stray-light) Wave Front Sensor Large scale response (QEs, FoVs, filter coating...) Basic Angle Monitor Blue Photometer CCDs Red Photometer CCDs Radial-Velocity Spectrometer CCDs Basic Angle Monitor Star motion in 1 s Sky Mapper CCDs Astrometric Field CCDs

11 Focal Plane PSF/LSF variation Dispersion & geometry Small scale (flat fields...) Wave Front Sensor Background (stray-light) Wave Front Sensor Large scale response (QEs, FoVs, filter coating...) Linearity (gates) Flux loss Basic Angle Monitor CTI mitigation Basic Angle Monitor Decontamination Deblending Sky Mapper CCDs Astrometric Field CCDs Blue Photometer CCDs Red Photometer CCDs Radial-Velocity Spectrometer CCDs Star motion in 1 s

12 Calibration strategy Internal calibration The goal is to provide an internally consistent flux scale all through the mission, across the focal plane, and for bright and faint sources. This is achieved by calibrating the relative variations of the instrument through the comparison of observations at different positions of the focal plane and different epochs for a set of reference sources. Bologna, 18,19 February 216

13 Calibration strategy Internal calibration The goal is to provide an internally consistent flux scale all through the mission, across the focal plane, and for bright and faint sources. This is achieved by calibrating the relative variations of the instrument through the comparison of observations at different positions of the focal plane and different epochs for a set of reference sources. External calibration The aim of the external calibration is to determine the characteristics of the mean instrument by using a suitable number of spectrophotometric standard stars (SPSS) whose absolute spectral energy distributions (SEDs) are known with great accuracy from ground observations Bologna, 18,19 February 216

14 Calibration strategy Internal calibration The goal is to provide an internally consistent flux scale all through the mission, across the focal plane, and for bright and faint sources. This is achieved by calibrating the relative variations of the instrument through the comparison of observations at different positions of the focal plane and different epochs for a set of reference sources. External calibration The aim of the external calibration is to determine the characteristics of the mean instrument by using a suitable number of spectrophotometric standard stars (SPSS) whose absolute spectral energy distributions (SEDs) are known with great accuracy from ground observations Purpose: - provide calibrated spectra in physical units Bologna, 18,19 February 216

15 Calibration strategy Internal calibration The goal is to provide an internally consistent flux scale all through the mission, across the focal plane, and for bright and faint sources. This is achieved by calibrating the relative variations of the instrument through the comparison of observations at different positions of the focal plane and different epochs for a set of reference sources. External calibration The aim of the external calibration is to determine the characteristics of the mean instrument by using a suitable number of spectrophotometric standard stars (SPSS) whose absolute spectral energy distributions (SEDs) are known with great accuracy from ground observations Purpose: - provide calibrated spectra in physical units - give feedback to CU8 for AP classification Bologna, 18,19 February 216

16 Calibration strategy Internal calibration 14, The goal is to provide an internally consistent flux scale all through 13, 12, the mission, across the focal plane, and for bright and faint sources. 11, 1, This 9, is achieved by calibrating the relative variations of the 8, 7, instrument through the comparison of observations at different 6, 5, positions of the focal plane and different epochs for a set of reference 4, 3, sources. 2, flux [photons/s/nm] 1, Predictions Sample position 14, 13, External calibration 12, 11, The aim of the external calibration is to determine the characteristics 1, 9, of the 8, mean instrument by using a suitable number of spectrophotometric standard stars (SPSS) whose absolute spectral energy 7, 6, 5, 4, distributions (SEDs) are known with great accuracy from ground 3, 2, observations 1, flux [photons/s/nm] Sample position Purpose: - provide calibrated spectra in physical units - give feedback to CU8 for AP classification Bologna, 18,19 February 216

17 XP spectra formation General formulation of the XP instrument: f(u) = L (u + (1/, ), ) R(, ) s( ) d 2 u 4 3 samples wavelengths 5 ACf ieldangle Bologna, 18,19 February 216

18 XP spectra formation General formulation of the XP instrument: f(u) = L (u + (1/, ), ) R(, ) s( ) d 2 u 4 3 samples wavelengths 5 ACf ieldangle Observation LSF Dispersion Response SED Bologna, 18,19 February 216

19 XP spectra formation General formulation of the XP instrument: f(u) = L (u + (1/, ), ) R(, ) s( ) d 2 u 4 3 samples wavelengths 5 ACf ieldangle Observation LSF Dispersion Response SED BP - FoV Preceding - ROW4.1 LSF Sample position Bologna, 18,19 February 216

20 XP spectra formation General formulation of the XP instrument: f(u) = L (u + (1/, ), ) R(, ) s( ) d 2 u 4 3 samples wavelengths 5 ACf ieldangle Observation LSF Dispersion Response SED BP - FoV Preceding - ROW4 BP - FoV Preceding - ROW4.1.1 LSF.1 LSF Sample position Sample position Bologna, 18,19 February 216

21 XP spectra formation General formulation of the XP instrument: f(u) = L (u + (1/, ), ) R(, ) s( ) d 2 u 4 3 samples wavelengths 5 ACf ieldangle Observation LSF Dispersion Response SED BP - FoV Preceding - ROW4 BP - FoV Preceding - ROW4.1.1 LSF.1 LSF Sample position Sample position Γ1 Γ2 Γ3 Bologna, 18,19 February 216

22 XP spectra formation General formulation of the XP instrument: f(u) = L (u + (1/, ), ) R(, ) s( ) d 2 u 4 3 samples wavelengths 5 ACf ieldangle Observation LSF Dispersion Response SED Sample BP - FoV Preceding - ROW4 BP - FoV Preceding - ROW4.1.1 LSF.1 LSF Sample position Sample position Γ1 Γ2 Γ3 Bologna, 18,19 February 216

23 XP instrument model f(u) = L (u + (1/ )) R( ) s( ) d Bologna, 18,19 February 216

24 XP instrument model f(u) = L (u + (1/ )) R( ) s( ) d...discretize f(u j )= X i L (u j + (1/ i )) R( i ) s( i ) i Bologna, 18,19 February 216

25 XP instrument model f(u) = L (u + (1/ )) R( ) s( ) d...discretize f(u j )= X i L (u j + (1/ i )) R( i ) s( i ) i! f = I! s Bologna, 18,19 February 216

26 XP instrument model f(u) = L (u + (1/ )) R( ) s( ) d...discretize f(u j )= X i L (u j + (1/ i )) R( i ) s( i ) i! f = I! s Bologna, 18,19 February 216

27 XP instrument model f(u) = L (u + (1/ )) R( ) s( ) d...discretize f(u j )= X i L (u j + (1/ i )) R( i ) s( i ) i! f = I! s Calibrate s by solving a linear system of equations Bologna, 18,19 February 216

28 Source SED model Express source SEDs as a linear combination of a suitable set of basis functions: s( )= X i b i B i ( )... or in matrix notation! s = B! b! f =(I B)! b External calibration means solve for SED shape parameters Bologna, 18,19 February 216

29 Instrument update process Use SPSS to constraint instrument model I! f = I! s Each model component depends on a (small) number of adjustable parameters f(u) = L (u + (1/ )) R( ) s( ) d Constrained solution: response and the effective LSFs as linear combinations of ad hoc basis functions L (u) =H (u, )+ R( )= n R X j= n L X i=1 r j R j ( ) h i H i (u, ) (1/ )=d + d 1 (1/ ) Bologna, 18,19 February 216

30 Integrated photometry calibration f ' f(u) du = L (u + (1/ )) du R( ) s( ) d Bologna, 18,19 February 216

31 Integrated photometry calibration f ' f(u) du = L (u + (1/ )) du R( ) s( ) d Bologna, 18,19 February 216

32 Integrated photometry calibration f ' f(u) du = L (u + (1/ )) du R( ) s( ) d f ' R( ) s( ) d Bologna, 18,19 February 216

33 Integrated photometry calibration f ' f(u) du = L (u + (1/ )) du R( ) s( ) d f ' R( ) s( ) d External calibration of integrated G, GBP, GRP photometry achieved by fitting the actual shape of the passband through SPSS usage Only a zeropoint is needed (no color terms) to link to the absolute flux scale Bologna, 18,19 February 216

34 Schedule Proposal Definition Concept & Technology Study Mission Selection Re-Assessment Study Phase B Selection of Prime Contractor (EADS Astrium SAS) Implementation Phase B2 Phase C/D Launch December 213 Operation Data Processing Studies Scientific operation Software Development (DPAC) Data Processing Mission Products Intermediate Final Figure courtesy Michael Perryman and François Mignard Today

Selection of stars to calibrate Gaia

Selection of stars to calibrate Gaia Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8 12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-

More information

Gaia Photometric Data Analysis Overview

Gaia Photometric Data Analysis Overview Gaia Photometric Data Analysis Overview Gaia photometric system Paola Marrese Sterrewacht Leiden marrese@strw.leidenuniv.nl Role of photometry in overall Gaia data analysis Photometric data analysis goals

More information

Gaia Data Processing - Overview and Status

Gaia Data Processing - Overview and Status Gaia Data Processing - Overview and Status Anthony Brown Leiden Observatory, Leiden University brown@strw.leidenuniv.nl Teamwork to deliver the promise of Gaia 10+ years of effort 450 scientists and engineers

More information

The Gaia CCD radiation damage

The Gaia CCD radiation damage The Gaia CCD radiation damage Marco Delbo DPAC Radiation Task Force Action Spécifique Gaia -- Colloque d ouverture -- 18 décembre 2007 Outline CCD radiation damage: the problem The problem for GAIA and

More information

arxiv: v1 [astro-ph.im] 7 Nov 2016

arxiv: v1 [astro-ph.im] 7 Nov 2016 Astronomy & Astrophysics manuscript no. GAIA-CS-CP-UB-JMC-021_arxiv c ESO 2016 November 8, 2016 Gaia Data Release 1 Principles of the Photometric Calibration of the G band J. M. Carrasco 1, D. W. Evans

More information

Photometric relationships between Gaia photometry and existing photometric systems

Photometric relationships between Gaia photometry and existing photometric systems between Gaia photometry and existing photometric systems prepared by: affiliation : approved by: reference: issue: 11 revision: 0 date: 2018-02-19 status: Issued C. Jordi, carme@fqa.ub.edu University of

More information

The Impact of Gaia on Our Knowledge of Stars and Their Planets

The Impact of Gaia on Our Knowledge of Stars and Their Planets The Impact of Gaia on Our Knowledge of Stars and Their Planets A. Sozzetti INAF Osservatorio Astrofisico di Torino Know thy star know thy planet conference pasadena, 11/10/2017 The impact of Gaia on our

More information

Transient Astronomy with the Gaia Satellite

Transient Astronomy with the Gaia Satellite Transient Astronomy with the Gaia Satellite Simon Hodgkin, Lukasz Wyrzykowski, Ross Burgon, Sergey Koposov, Nadejda Blagorodnova, Floor van Leeuwen, Vasily Belokurov, Laurent Eyer, Timo Prusti, Nic Walton

More information

GDR1 photometry. CU5/DPCI team

GDR1 photometry. CU5/DPCI team GDR1 photometry CU5/DPCI team What is, or isn't included GDR1 only provides G mean flux and error Derived mean magnitude, all entries Zero point used is in Vega system Zero point for AB system also available

More information

arxiv: v1 [astro-ph.im] 25 Apr 2018

arxiv: v1 [astro-ph.im] 25 Apr 2018 Astronomy & Astrophysics manuscript no. gdr2photpipe c ESO 2018 April 26, 2018 Gaia Data Release 2 processing of the photometric data M. Riello 1, F. De Angeli 1, D. W. Evans 1, G. Busso 1, N. C. Hambly

More information

Science Alerts from GAIA. Simon Hodgkin Institute of Astronomy, Cambridge

Science Alerts from GAIA. Simon Hodgkin Institute of Astronomy, Cambridge Science Alerts from GAIA Simon Hodgkin Institute of Astronomy, Cambridge Simon Hodgkin, IoA, Cambridge, UK 1 Discover the Cosmos, CERN, Sept 1-2 2011 A word on nomenclature Definition of a science alert:

More information

Star clusters before and after Gaia Ulrike Heiter

Star clusters before and after Gaia Ulrike Heiter Star clusters before and after Gaia Ulrike Heiter Uppsala University Outline Gaia mission overview Use of stellar clusters for calibration of stellar physical parameters Impact of Gaia data on cluster

More information

Standard candles in the Gaia perspective

Standard candles in the Gaia perspective Standard candles in the Gaia perspective Laurent Eyer, L. Palaversa, N. Mowlavi, P.Dubath Geneva Observatory and S.Leccia, G.Clementini, et al., T.Lebzelter et al., Gaia CU7 DPAC Naples, May 6 2011 Plan

More information

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz Modelling the Milky Way: challenges in scientific computing and data analysis Matthias Steinmetz Can we form disk galaxies? 3 Not really Formation of disks has been notoriously difficult Feedback? Resolution?

More information

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE Gaia News:Counting down to launch A. Vallenari INAF, Padova Astronomical Observatory on behalf of DPACE Outline Gaia Spacecraft status The Gaia sky Gaia open and globular clusters From data to science:

More information

Gaia: Mapping the Milky Way

Gaia: Mapping the Milky Way Gaia: Mapping the Milky Way (A very brief overview, and something about the Swedish participation) Lennart Lindegren Lund Observatory Department of Astronomy and Theoretical Physics Lund University 1 Gaia

More information

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran The Gaia Mission Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany ISYA 2016, Tehran What Gaia should ultimately achieve high accuracy positions, parallaxes, proper motions e.g.

More information

Gaia, the universe in 3D: an overview of the mission. Gaia, the universe in 3D: an overview of the mission. X. Luri, ICCUB/IEEC

Gaia, the universe in 3D: an overview of the mission. Gaia, the universe in 3D: an overview of the mission. X. Luri, ICCUB/IEEC Gaia, the universe in 3D: an overview of the mission i X. Luri, ICCUB/IEEC Gaia s context in ESA Outline of the talk The Gaia mission Scientific goals Spacecraft and instruments Data reduction: the DPAC

More information

Massive OB stars as seen by Gaia

Massive OB stars as seen by Gaia Massive OB stars as seen by Gaia Y.Frémat Royal Observatory of Belgium Y.Frémat, 22.06.2015 EWASS SP7 Massive OB stars as seen by Gaia 1 / 17 OB stars in the Gaia Universe Model Robin et al., 2012, A&A,

More information

Milky Way star clusters

Milky Way star clusters Using Γα ια for studying Milky Way star clusters Eugene Vasiliev Institute of Astronomy, Cambridge MODEST-, 26 June Overview of Gaia mission Scanning the entire sky every couple of weeks Astrometry for

More information

First Cycle Processing of Gaia data

First Cycle Processing of Gaia data Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8 12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-

More information

Astronomical imagers. ASTR320 Monday February 18, 2019

Astronomical imagers. ASTR320 Monday February 18, 2019 Astronomical imagers ASTR320 Monday February 18, 2019 Astronomical imaging Telescopes gather light and focus onto a focal plane, but don t make perfect images Use a camera to improve quality of images

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Gaia Status & Early Releases Plan

Gaia Status & Early Releases Plan Gaia Status & Early Releases Plan F. Mignard Univ. Nice Sophia-Antipolis & Observatory of the Côte de Azur Gaia launch: 20 November 2013 The big news @ 08:57:30 UTC 2 Gaia: a many-sided mission Driven

More information

Photometric systems for GAIA s Broad Band Photometer

Photometric systems for GAIA s Broad Band Photometer Photometric systems for GAIA s Broad Band Photometer L. Lindegren GAIA LL 45 (V.1 22 April 23) Abstract. Two photometric systems for the GAIA broad-band photometer (BBP) are proposed, assuming that silver

More information

The Gaia mission: status, problems, opportunities

The Gaia mission: status, problems, opportunities The Gaia mission: status, problems, opportunities M.G. Lattanzi INAF Osservatorio Astronomico di Torino For the Italian participation in the mission Overview Status Opportunities Problems Three experiments

More information

arxiv: v2 [astro-ph.im] 26 Jun 2018

arxiv: v2 [astro-ph.im] 26 Jun 2018 Astronomy & Astrophysics manuscript no. DR2Passbands c ESO 2018 June 27, 2018 Revised Gaia Data Release 2 passbands M. Weiler Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos

More information

The expected Gaia revolution in asteroid science: Photometry and Spectroscopy

The expected Gaia revolution in asteroid science: Photometry and Spectroscopy A. Cellino (INAF- Torino Observatory) P. Tanga, D. Hestroffer, K. Muinonen, A. Dell Oro, L. Galluccio The expected Gaia revolution in asteroid science: Photometry and Spectroscopy Although in situ exploration

More information

Gaia Data Release 1. Documentation release 1.1. European Space Agency and Gaia Data Processing and Analysis Consortium

Gaia Data Release 1. Documentation release 1.1. European Space Agency and Gaia Data Processing and Analysis Consortium Gaia Data Release 1 Documentation release 1.1 European Space Agency and Gaia Data Processing and Analysis Consortium 17 February 2017 Executive summary We present the first Gaia data release, Gaia DR1,

More information

Gaia: Astrometric performance and current status of the project

Gaia: Astrometric performance and current status of the project Relativity in Fundamental Astronomy Proceedings IAU Symposium No. 261, 2009 S. A. Klioner, P. K. Seidelman & M. H. Soffel, eds. c International Astronomical Union 2010 doi:10.1017/s1743921309990548 Gaia:

More information

Introduction to SDSS -instruments, survey strategy, etc

Introduction to SDSS -instruments, survey strategy, etc Introduction to SDSS -instruments, survey strategy, etc (materials from http://www.sdss.org/) Shan Huang 17 February 2010 Survey type Status Imaging and Spectroscopy Basic Facts SDSS-II completed, SDSS-III

More information

High-performance computing in Java: the data processing of Gaia. X. Luri & J. Torra ICCUB/IEEC

High-performance computing in Java: the data processing of Gaia. X. Luri & J. Torra ICCUB/IEEC High-performance computing in Java: the data processing of Gaia X. Luri & J. Torra ICCUB/IEEC SciComp XXL May. 2009 1/33 Outline of the talk The European Space Agency Gaia, the galaxy in 3D The Gaia data

More information

XMM-Newton Optical-UV Monitor: introduction and calibration status OM instrument and calibration

XMM-Newton Optical-UV Monitor: introduction and calibration status OM instrument and calibration XMM-Newton Optical-UV Monitor: introduction and calibration status OM instrument and calibration Antonio Talavera XMM-Newton Science Operation Centre, ESAC, ESA OM: Instrument Description 30 cm Ritchey-Chretien

More information

Newsletter n 3. Editorial by DPAC chair, François Mignard

Newsletter n 3. Editorial by DPAC chair, François Mignard N 3 JANUARY 22, 2009 INDEX DPAC news 2 Focus on partners 3 Science and technical issues 4 Around DPAC 6 The Playload module. Document EADS-ASTRIUM Editorial by DPAC chair, François Mignard The January

More information

Functional analysis (CU6)

Functional analysis (CU6) Functional analysis (CU6) CU:inputResults(1:n+1) C1 Auxiliary data: e.g. atomic data, C2 template, CC-mask C3 Archived processed spectroscopic data: CC-peaks, extr. spectra (> 6 months old) Mark Cropper

More information

Exoplanetary transits as seen by Gaia

Exoplanetary transits as seen by Gaia Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

GAIA: THE SATELLITE AND PAYLOAD. Oscar Pace European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200AG Noordwijk, The Netherlands

GAIA: THE SATELLITE AND PAYLOAD. Oscar Pace European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200AG Noordwijk, The Netherlands 23 GAIA: THE SATELLITE AND PAYLOAD Oscar Pace European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200AG Noordwijk, The Netherlands ABSTRACT This paper summarises the main features of the Gaia technical baseline

More information

ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy

ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy Mem. S.A.It. Vol. 83, 342 c SAIt 2012 Memorie della ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy R. Hudec 1,2, V. Šimon 1, L. Hudec 2, and V. Hudcová

More information

Optical TDE hunting with Gaia

Optical TDE hunting with Gaia Optical TDE hunting with Gaia Jerusalem TDE workshop, 2nd November 2015 Nadejda Blagorodnova ( ) & Gaia Science Alerts DPAC team TDE are nuclear transients In/close to the nucleus Tidal Disruption Events

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

GREAT. Kick-off meeting

GREAT. Kick-off meeting 1 Kick-off meeting Presentation of the DPAC ------- Outline Presentation primarily designed for non-dpac participants Formation of the DPAC Organisation and responsibilities Composition 2 Gaia objective

More information

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS Astr 598: Astronomy with SDSS Spring Quarter 4, University of Washington, Željko Ivezić Lecture : SDSS Sources at Other Wavelengths: From X rays to radio Large Surveys at Many Wavelengths SDSS: UV-IR five-band

More information

ELSA and Gaia: Four years of fruitful European collaboration

ELSA and Gaia: Four years of fruitful European collaboration ELSA and Gaia: Four years of fruitful European collaboration Lennart Lindegren Lund Observatory, Lund University, Lund 2010 June 7 Lindegren: Four years of fruitful European collaboration 1 European Leadership

More information

GAIA: SOLAR SYSTEM ASTROMETRY IN DR2

GAIA: SOLAR SYSTEM ASTROMETRY IN DR2 GAIA: SOLAR SYSTEM ASTROMETRY IN DR2 P. Tanga 1, F. Spoto 1,2 1 Observatoire de la Côte d Azur, Nice, France 2 IMCCE, Observatoire de Paris, France 2 Gaia is observing asteroids - Scanning the sky since

More information

Linking the ICRF and the future Gaia optical frame

Linking the ICRF and the future Gaia optical frame Linking the ICRF and the future Gaia optical frame G. Bourda,, A. Collioud Laboratoire d Astrophysique de Bordeaux R. Porcas Max Planck Institut für Radioastronomie S. Garrington Jodrell Bank Observatory

More information

CCD astrometry and UBV photometry of visual binaries

CCD astrometry and UBV photometry of visual binaries ASTRONOMY & ASTROPHYSICS JUNE I 1998, PAGE 299 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 130, 299 304 (1998) CCD astrometry and UBV photometry of visual binaries II. Visual double stars with mainly

More information

The Science of Gaia and Future Challenges

The Science of Gaia and Future Challenges The Science of Gaia and Future Challenges A Science Meeting to mark the retirement of Lennart Lindegren Lennart s Contribution to Science Michael Perryman, Lund 30 August 2017 150 BC 1600 1800 2000 Year

More information

Measuring the components of the binary Mira X Ophiuchi. David Boyd

Measuring the components of the binary Mira X Ophiuchi. David Boyd Measuring the components of the binary Mira X Ophiuchi David Boyd X Ophwas Variable Star of the Year in the 2014 BAA Handbook The article included this light curve from observations by John Toone It appears

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Detection of Faint Stars Near Gaia Objects

Detection of Faint Stars Near Gaia Objects Detection of Faint Stars Near Gaia Objects Shahin Jafarzadeh Lund Observatory Lund University 29-EXA34 Degree project of 6 higher education credits (for a degree of Master) April 29 Lund Observatory Box

More information

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018 Stellar distances and velocities ASTR320 Wednesday January 24, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Why are stellar distances important? Distances

More information

Gaia: unravelling the chemical and dynamical history of our Galaxy

Gaia: unravelling the chemical and dynamical history of our Galaxy Mem. S.A.It. Suppl. Vol. 19, 354 c SAIt 2012 Memorie della Supplementi Gaia: unravelling the chemical and dynamical history of our Galaxy E. Pancino Istituto Nazionale di Astrofisica Osservatorio Astronomico

More information

The Astrometry Satellite Gaia

The Astrometry Satellite Gaia 656 th WE-Haereus Seminar, The Astrometry Satellite Gaia Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg http://www.stefan-jordan.de Gaia s schedule 1993: First proposal

More information

arxiv: v2 [astro-ph.im] 5 Sep 2018

arxiv: v2 [astro-ph.im] 5 Sep 2018 Astronomy & Astrophysics manuscript no. ms c ESO 218 September 6, 218 A reanalysis of the Gaia Data Release 2 photometric sensitivity curves using HST/STIS spectrophotometry J. Maíz Apellániz 1 and M.

More information

Thoughts on future space astrometry missions

Thoughts on future space astrometry missions Thoughts on future space astrometry missions Anthony Brown Leiden Observatory brown@strw.leidenuniv.nl Sterrewacht Leiden With special thanks to Erik Høg Gaia Future Sub-µas astrometry Gaia2 Recommendations

More information

Investigation of high-energy sources in optical light by ESA Gaia

Investigation of high-energy sources in optical light by ESA Gaia Mem. S.A.It. Vol. 81, 476 c SAIt 2010 Memorie della Investigation of high-energy sources in optical light by ESA Gaia R. Hudec 1,2, V. Šimon 1, L. Hudec 1, and V. Hudcová 1 1 Astronomical Institute, Academy

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

The determination of asteroid physical properties from Gaia observations

The determination of asteroid physical properties from Gaia observations INAF --Osservatorio Astronomico di Torino Determination of asteroid physical properties from Gaia observations Alberto Cellino Pisa GREAT Workshop, May 4-6, 2011 The determination of asteroid physical

More information

arxiv: v1 [astro-ph.sr] 5 Jun 2018

arxiv: v1 [astro-ph.sr] 5 Jun 2018 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 7 June 2018 (MN LATEX style file v2.2) On the use of Gaia magnitudes and new tables of bolometric corrections arxiv:1806.01953v1 [astro-ph.sr] 5 Jun

More information

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs The Gaia-ESO Spectroscopic Survey Survey Co-PIs Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs Gaia-ESO survey context and motivations (conclusions and key words of several talks)

More information

Detection of Polarization Effects in Gaia Data

Detection of Polarization Effects in Gaia Data Detection of Polarization Effects in Gaia Data Frederic Raison ADA7 14-18/05/2012 Introduction Gaia is an astrometry mission using 2 telescopes. The idea is to use Gaia as a polarimeter (low precision

More information

arxiv: v1 [astro-ph.im] 9 Dec 2016

arxiv: v1 [astro-ph.im] 9 Dec 2016 Astronomy & Astrophysics manuscript no. 30064 c ESO 2016 December 12, 2016 arxiv:1612.02952v1 [astro-ph.im] 9 Dec 2016 Gaia data release 1 The Photometric Data F. van Leeuwen 1, D.W. Evans 1, F. De Angeli

More information

ODAS: Process description and collection of relevant mathematical algorithms

ODAS: Process description and collection of relevant mathematical algorithms ODAS: Process description and collection of relevant mathematical algorithms prepared by: S Jordan, U Bastian, W Löffler reference: issue: 1 revision: 1 date: 26-Jan-2009 status: Issued Abstract The aim

More information

A Calibration Method for Wide Field Multicolor. Photometric System 1

A Calibration Method for Wide Field Multicolor. Photometric System 1 A Calibration Method for Wide Field Multicolor Photometric System 1 Xu Zhou,Jiansheng Chen, Wen Xu, Mei Zhang... Beijing Astronomical Observatory,Chinese Academy of Sciences, Beijing 100080, China Beijing

More information

arxiv: v1 [astro-ph.im] 23 Apr 2014

arxiv: v1 [astro-ph.im] 23 Apr 2014 Astronomy & Astrophysics manuscript no. GOG33 c ESO 1 April, 1 arxiv:1v1 [astro-ph.im] 3 Apr 1 Overview and stellar statistics of the expected Gaia Catalogue using the Gaia Object Generator X. Luri 1,

More information

Kepler s Multiple Planet Systems

Kepler s Multiple Planet Systems Kepler s Multiple Planet Systems TITech & Kobe Univ. February 2018 Jack J. Lissauer NASA Ames Outline Solar System & Exoplanets Kepler Mission Kepler planets and planetery systems Principal Kepler findings

More information

Small Aperture Amateur Observational Capabilities/Tools (Imaging/Photometry/Spectroscopy)

Small Aperture Amateur Observational Capabilities/Tools (Imaging/Photometry/Spectroscopy) Small Aperture Amateur Observational Capabilities/Tools (Imaging/Photometry/Spectroscopy) Over several thousand years, astronomy continues to be popular subject among amateurs. Day by day, advancements

More information

Galactic Surveys Astrometry and photometry. Carlos Allende Prieto IAC

Galactic Surveys Astrometry and photometry. Carlos Allende Prieto IAC Galactic Surveys Astrometry and photometry Carlos Allende Prieto IAC Overview Astronometry: Hipparcos and Gaia Photometry: DSS, SDSS, 2MASS Fitting data to models Tuesday, August 27, 2013 Basic astronomical

More information

Universe. Tenth Edition. The Nature of the Stars. Parallax. CHAPTER 17 The Nature of Stars

Universe. Tenth Edition. The Nature of the Stars. Parallax. CHAPTER 17 The Nature of Stars Universe Tenth Edition The Nature of the Stars Roger A. Freedman, Robert M. Geller, William J. Kaufmann III CHAPTER 17 The Nature of Stars W. H. Freeman and Company Parallax Careful measurements of the

More information

Calibration Goals and Plans

Calibration Goals and Plans CHAPTER 13 Calibration Goals and Plans In This Chapter... Expected Calibration Accuracies / 195 Calibration Plans / 197 This chapter describes the expected accuracies which should be reached in the calibration

More information

Publ. Astron. Obs. Belgrade No. 86 (2009), TURKISH NATIONAL OBSERVATORY (TUG) VIEW OF CLUSTERS OF GALAXIES

Publ. Astron. Obs. Belgrade No. 86 (2009), TURKISH NATIONAL OBSERVATORY (TUG) VIEW OF CLUSTERS OF GALAXIES Publ. Astron. Obs. Belgrade No. 86 (2009), 125-130 Contributed paper TURKISH NATIONAL OBSERVATORY (TUG) VIEW OF CLUSTERS OF GALAXIES M. HUDAVERDI 1,2, E. N. ERCAN 2, M. BOZKURT 2, F. GÖK3 and E. AKTEKIN

More information

Globular Clusters: hot stellar populations and internal dynamics

Globular Clusters: hot stellar populations and internal dynamics Globular Clusters: hot stellar populations and internal dynamics Giornate dell Osservatorio, Bologna 18-19 February 2016 Emanuele Dalessandro Globular clusters: I. hot stellar populations OABO people involved:

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

Time-series Photometry of Earth Flyby Asteroid 2012 DA14

Time-series Photometry of Earth Flyby Asteroid 2012 DA14 Time-series Photometry of Earth Flyby Asteroid 2012 DA14 Tsuyoshi Terai Subaru Telescope Asteroid populations Main-belt asteroids Dynamical evolution Near-Earth asteroids 1 Asteroids Spectral classification

More information

Characterizing Stars

Characterizing Stars Characterizing Stars 1 Guiding Questions 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

More information

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances Guiding Questions Characterizing Stars 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

More information

The Accuracy of WFPC2 Photometric Zeropoints

The Accuracy of WFPC2 Photometric Zeropoints The Accuracy of WFPC2 Photometric Zeropoints Inge Heyer, Marin Richardson, Brad Whitmore, Lori Lubin July 23, 2004 ABSTRACT The accuracy of WFPC2 photometric zeropoints is examined using two methods. The

More information

Updates to the COS/NUV Dispersion Solution Zero-points

Updates to the COS/NUV Dispersion Solution Zero-points Instrument Science Report COS 017-0 Updates to the COS/NUV Dispersion Solution Zero-points Rachel Plesha 1, Paule Sonnentrucker 1,, Cristina Oliveira 1, Julia Roman-Duval 1 1 Space Telescope Science Institute,

More information

DETERMINATION OF STELLAR ROTATION WITH GAIA AND EFFECTS OF SPECTRAL MISMATCH. A. Gomboc 1,2, D. Katz 3

DETERMINATION OF STELLAR ROTATION WITH GAIA AND EFFECTS OF SPECTRAL MISMATCH. A. Gomboc 1,2, D. Katz 3 537 DETERMINATION OF STELLAR ROTATION WITH GAIA AND EFFECTS OF SPECTRAL MISMATCH A. Gomboc,2, D. Katz 3 University in Ljubljana, Jadranska 9, 00 Ljubljana, Slovenia 2 ARI, Liverpool John Moores University,

More information

WFC3/UVIS Photometric Transformations

WFC3/UVIS Photometric Transformations Instrument Science Report WFC3 2014-016 WFC3/UVIS Photometric Transformations Kailash Sahu, Susana Deustua and Elena Sabbi January 05, 2017 ABSTRACT We provide photometric transformation coefficients for

More information

Few Band Astrophysical Parameter Estimation - Priam: Photometric Estimation of Astrophysical Parameters

Few Band Astrophysical Parameter Estimation - Priam: Photometric Estimation of Astrophysical Parameters Few Band Astrophysical Parameter Estimation - Priam: Photometric Estimation of Astrophysical Parameters prepared by: reference: issue: 1 revision: date: 213-3-13 status: Issued Dae-Won Kim Abstract This

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Replacing ships by spacecrafts and eyes by their modern digital extension Charge- Coupled Devices (CCDs) the scientists that design, build, and use space missions follow in the footsteps

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

Simulations of the Gaia final catalogue: expectation of the distance estimation

Simulations of the Gaia final catalogue: expectation of the distance estimation Simulations of the Gaia final catalogue: expectation of the distance estimation E. Masana, Y. Isasi, R. Borrachero, X. Luri Universitat de Barcelona GAIA DPAC - CU2 Introduction Gaia DPAC (Data Processing

More information

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia Optical/NIR Spectroscopy A3130 John Wilson Univ of Virginia Topics: Photometry is low resolution spectroscopy Uses of spectroscopy in astronomy Data cubes and dimensionality challenge Spectrograph design

More information

Catalog Information and Recommendations

Catalog Information and Recommendations Catalog Information and Recommendations U.S. Naval Observatory, December, 2000 P.O.C. Sean Urban (seu@pyxis.usno.navy.mil) 1 Introduction The following is a list of widely used or well known catalogs for

More information

EUCLID Legacy with Spectroscopy

EUCLID Legacy with Spectroscopy EUCLID Legacy with Spectroscopy Gianni Zamorani INAF - Bologna Astronomical Observatory (on behalf of the E-NIS Team) Observing the Dark Universe with Euclid 17-18 November 2009 ESTEC, The Netherlands

More information

VISTA HEMISPHERE SURVEY DATA RELEASE 1

VISTA HEMISPHERE SURVEY DATA RELEASE 1 Release date (will be set by ESO) VISTA HEMISPHERE SURVEY DATA RELEASE 1 PROPOSAL ESO No.: 179.A-2010 PRINCIPAL INVESTIGATOR: Richard McMahon Authors: R. McMahon, M. Banerji, N. Lodieu for the VHS Collaboration

More information

Kepler: A Search for Terrestrial Planets

Kepler: A Search for Terrestrial Planets Kepler: A Search for Terrestrial Planets Stellar Classification Program Plan NASA Ames Research Center Moffett Field, CA. 94035 Warning! This printed copy may not be the latest released version. It is

More information

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre SPIRE Observing Strategies Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA Outline SPIRE quick overview Observing with SPIRE Astronomical Observation Templates (AOT)

More information

odelling to Mitigate the Threat

odelling to Mitigate the Threat Radiation damage on Gaia CCDs odelling to Mitigate the Threat Thibaut Prod homme Leiden Observatory Edinburgh - Following the photons Workshop - 12 Oct 2011 1. What is CCD Radiation Damage? 2. Modelling

More information

EXPOSURE TIME ESTIMATION

EXPOSURE TIME ESTIMATION ASTR 511/O Connell Lec 12 1 EXPOSURE TIME ESTIMATION An essential part of planning any observation is to estimate the total exposure time needed to satisfy your scientific goal. General considerations

More information

From Gaia frame to ICRF-3 3?

From Gaia frame to ICRF-3 3? From Gaia frame to ICRF-3 3? Univ. Nice Sophia-Antipolis & Observatory of the Côte de Azur 1 Outline Status of Gaia a QSOs with Gaia The Gaia-CRF From Gaia-CRF to ICRF-3 2 Gaia quick fact sheet Main goal

More information

arxiv: v1 [astro-ph.im] 25 Jul 2012

arxiv: v1 [astro-ph.im] 25 Jul 2012 Mon. Not. R. Astron. Soc. 000, 1 16 (2012) Printed 26 July 2012 (MN LATEX style file v2.2) The Gaia spectrophotometric standard stars survey. I. Preliminary results. arxiv:1207.6042v1 [astro-ph.im] 25

More information

(Present and) Future Surveys for Metal-Poor Stars

(Present and) Future Surveys for Metal-Poor Stars (Present and) Future Surveys for Metal-Poor Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics SDSS 1 Why the Fascination

More information

Measuring the Redshift of M104 The Sombrero Galaxy

Measuring the Redshift of M104 The Sombrero Galaxy Measuring the Redshift of M104 The Sombrero Galaxy Robert R. MacGregor 1 Rice University Written for Astronomy Laboratory 230 Department of Physics and Astronomy, Rice University May 3, 2004 2 Abstract

More information

Outline. ESA Gaia mission & science objectives. Astrometric & spectroscopic census of all stars in Galaxy to G=20 mag.

Outline. ESA Gaia mission & science objectives. Astrometric & spectroscopic census of all stars in Galaxy to G=20 mag. Atomic Data Requirements for Large Spectroscopic Surveys: ESA Gaia and ESO GES Alex Lobel Royal Observatory of Belgium Outline ESA Gaia mission & science objectives. Astrometric & spectroscopic census

More information

Astronomical image reduction using the Tractor

Astronomical image reduction using the Tractor the Tractor DECaLS Fin Astronomical image reduction using the Tractor Dustin Lang McWilliams Postdoc Fellow Carnegie Mellon University visiting University of Waterloo UW / 2015-03-31 1 Astronomical image

More information

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley 7. Telescopes: Portals of Discovery Parts of the Human Eye pupil allows light to enter the eye lens focuses light to create an image retina detects the light and generates signals which are sent to the

More information

The HST Set of Absolute Standards for the 0.12 µm to 2.5 µm Spectral Range

The HST Set of Absolute Standards for the 0.12 µm to 2.5 µm Spectral Range Instrument Science Report CAL/SCS-010 The HST Set of Absolute Standards for the 0.12 µm to 2.5 µm Spectral Range L. Colina, R. Bohlin, D. Calzetti, C. Skinner, S. Casertano October 3, 1996 ABSTRACT A proposal

More information