Milky Way star clusters

Size: px
Start display at page:

Download "Milky Way star clusters"

Transcription

1 Using Γα ια for studying Milky Way star clusters Eugene Vasiliev Institute of Astronomy, Cambridge MODEST-, 26 June

2 Overview of Gaia mission Scanning the entire sky every couple of weeks Astrometry for sources down to 21 mag Broad-band photometry/low-res spectra G BP RP RVS Radial velocity down to 1 mag (end-of-mission) [Source: ESA]

3 Overview of Data Release 2 astrometry Based on 22 months of data collection Total number of sources: Sources with full astrometry (parallax ϖ, proper motions µ α, µ δ ): Colours (G BP, G RP ): Radial velocities: RV colours Effective temperature: 6 Stellar parameters (R, L ): 77 6 Extinction and reddening: 88 6 Variable sources: 6 Number per.1 mag bin Teff vrad Variable Gaia-CRF2 ICRF3 prototype SSO Gaia DR1 Gaia DR Mean [Brown+ ]

4 Photometry G-band uncertainty [mag] G magnitude at D= Kpc Age= Gyr, [Fe/H]=-2 Age=1 Gyr, [Fe/H]= G magnitude at D=1 Kpc R-band uncertainty [mag] GBP GRP [Evans+ ]

5 Astrometry parallax uncertainty [mas] G magnitude at D= Kpc 13 1 Age= Gyr, [Fe/H]= GBP GRP Age=1 Gyr, [Fe/H]= G magnitude at D=1 Kpc Standard uncertainty in parallax (¾$) [mas] Semi major axis of error ellipse in p:m: (¾pm;max) [mas yr 1 ] 2 1 : :2 :1 : :2 :1 : G magnitude 2 1 : :2 :1 : :2 :1 systematic error proper motion uncertainty [mas/yr] systematic error 1 mas/yr = 4.7 km/s (D/1 Kpc) : G magnitude [Lindegren+ ]

6 Spectroscopy G magnitude at D= Kpc Age= Gyr, [Fe/H]=-2 Age=1 Gyr, [Fe/H]= G magnitude at D=1 Kpc RV measurements only for stars with T eff [3 69] K and G RVS radial velocity uncertainty [km/s] GBP GRP systematic error [Katz+ ]

7 Correlations and systematic errors µ α correlations between parallax and PM (ω Cen region) µ δ µ α µ δ mean parallax and PM (Large Magellanic Cloud region) µα µδ

8 Limitations No special processing for binary stars (but a poor astrometric solution is marked clearly) Colour photometry has lower spatial resolution (a quality control flag is provided) Poor completeness at faint magnitudes in crowded regions Need to apply various filters to clean up sample (but do it wisely, e.g., don t just cut off negative parallaxes [see Luri+ for a discussion]) [Arenou+ ]

9 Dynamics of Milky Way globular clusters Internal: rotation, velocity dispersion and anisotropy profiles: Rotation signatures from radial velocities [e.g., Fabricius+, Kamann+ 17] now complemented by proper motion (PM) data [HST: Bellini+, Watkins+ 1; Gaia: Bianchini+ ] Velocity anisotropy determined directly from PM Velocity dispersion profile in the outskirts, potential escapers [e.g., Claydon+ 17] External: 3d center-of-mass velocity data: galactic orbits [e.g., Helmi+ ], tidal effects possible correlations in phase-space distribution (cluster pairs) dynamical tracers of Milky Way potential

10 Example: NGC 139 (ω Cen) All stars Sky map PM map µδ [mas/yr] N= Color - magnitude diagram Magnitude vs. distance from center 1 1 µα [mas/yr] Magnitude vs. PM error BP-RP [mag] R [deg] δµα [mas/yr]

11 Example: NGC 139 (ω Cen) Stars with full astrometry (ϖ, µ α, µ δ ) Sky map PM map µδ [mas/yr] N= Color - magnitude diagram Magnitude vs. distance from center 1 1 µα [mas/yr] Magnitude vs. PM error BP-RP [mag] R [deg] δµα [mas/yr]

12 Example: NGC 139 (ω Cen) Parallax cut: ϖ ϖ < 3 δϖ, ϖ =.1 mas Sky map µδ [mas/yr] PM map N= Color - magnitude diagram Magnitude vs. distance from center 1 1 µα [mas/yr] Magnitude vs. PM error BP-RP [mag] R [deg] δµα [mas/yr]

13 Example: NGC 139 (ω Cen) Cut on astrometric quality: astrometric excess noise < 1 mas Sky map PM map µδ [mas/yr] N= Color - magnitude diagram Magnitude vs. distance from center 1 1 µα [mas/yr] Magnitude vs. PM error BP-RP [mag] R [deg] δµα [mas/yr]

14 Example: NGC 139 (ω Cen) Cut on photometric quality: phot bp rp excess factor < (G BP G RP ) 2 Sky map µδ [mas/yr] PM map N= Color - magnitude diagram Magnitude vs. distance from center 1 1 µα [mas/yr] Magnitude vs. PM error BP-RP [mag] R [deg] δµα [mas/yr]

15 Example: NGC 139 (ω Cen) CMD cut Sky map PM map µδ [mas/yr] N= Color - magnitude diagram Magnitude vs. distance from center 1 1 µα [mas/yr] Magnitude vs. PM error BP-RP [mag] R [deg] δµα [mas/yr]

16 Example: NGC 139 (ω Cen) Cut on proper motions: (µ α µ α, ) 2 + (µ δ µ δ, ) 2 < µ 2, µ α, = 3.2 mas/yr, µ δ, = 6.7 mas/yr, µ = 2 mas/yr Sky map µδ [mas/yr] PM map N= Color - magnitude diagram Magnitude vs. distance from center 1 1 µα [mas/yr] Magnitude vs. PM error BP-RP [mag] R [deg] δµα [mas/yr]

17 Inferring the internal velocity dispersion Gaussian mixture modelling of PM distribution without applying hard cuts and taking into account individual errors (Extreme Deconvolution, Bovy+ 11) G< G< 3 G<: data with errors G<: deconvolved G<: bootstrapped G<: data with errors G<: deconvolved G<: bootstrapped µδ [mas/yr] 4 6 # of stars µα [mas/yr] µα [mas/yr] NGC 672,.3 < R <

18 Results: radial profile of velocity dispersion and rotation ω Cen (D=.2 Kpc).8 R [pc] 3 4 µt.7.6 σr σt σmodel [Zocchi+ ] vlos [Baumgardt&Hilker ] 1 µ [mas/yr].4.3 v [km/s] R [deg]

19 Effects of various quality cuts.4.3 σµ [mas/yr].2.1 All filters All filters + G< No phot_bp_rp_excess_factor cut No error deconvolution No error deconvolution, G< R [deg]

20 Proper motions for [almost all] Milky Way globular clusters 4 NGC_4_47Tuc NGC_139_oCen NGC_666_M_22 6 NGC_61_M_4 NGC_6397 NGC_672 NGC_94_M_ NGC_6_M_13 NGC_288 NGC_272_M_3 NGC_778_M_1 NGC_689_M_ NGC_641 NGC_6266_M_62 NGC_6341_M_92 NGC_362 NGC_789_M_2 NGC_624_M_ NGC_62_M_ NGC_31 NGC_6273_M_19 NGC_6388 NGC_6626_M_28 NGC_4833 NGC_6723 NGC_6441 NGC_1 NGC_4372 NGC_799_M_3 NGC_693_M_8 NGC_286 HST (Sohn+ ) Gaia (Helmi+ ) Gaia (new) 8 NGC_644 NGC_6838_M_71 NGC_986 NGC_6637_M_69 NGC_642_M_ NGC_24_M_3 NGC_6362 NGC_6333_M_9 NGC_194_M_79 NGC_6624 NGC_6681_M_7 NGC_49_M_68 NGC_632 NGC_6171_M7 NGC_63 NGC_927 NGC_67 NGC_288 NGC_634 NGC_622 NGC_6779_M_6 NGC_6293 NGC_684 NGC_636 NGC_61 NGC_63 NGC_669 NGC_6496 NGC_897 NGC_6864_M_7 NGC_662 NGC_671_M_4 Total magnitude NGC_6366 NGC_676 NGC_64 NGC_6638 NGC_6139 NGC_6642 NGC_63 NGC_644 NGC_64_Djorg NGC_6717_Pal9 NGC_68 NGC_639 NGC_2298 NGC_6287 NGC_641 NGC_628 NGC_6342 NGC_946 Pal_11 Djorg_2_ESO46- NGC_623 NGC_643 Lynga_7_BH4 NGC_617 IC_76_Pal_7 NGC_632 NGC_63 BH_261_AL_3 Pal_8 NGC_6284 NGC_6934 NGC_466 NGC_61 NGC_6981_M_72 NGC_3 IC_4499 NGC_47 Rup_6 NGC_6426 NGC_634 NGC_6229 NGC_824 NGC_694 NGC_76 NGC_2419 E_3 NGC_626 NGC_638_Ton1 NGC_7492 Pal_6 HP_1_BH_229 Terzan_ _ESO42 Ton2_Pismis26 NGC_6749 Pal_ Pal_ ESO-SC6_ESO28 Terzan_7 Arp_2 Terzan_8 Pal_ Pal_1 IC_7 Pal_2 Pyxis Djorg_1 Pal_13 Terzan_6_HP_ Terzan 11 Terzan_2_HP_3 BH_176 Pal_1 Pal_3 Pal_4 Pal_ Eridanus Terzan_ Whiting_1 Terzan_ Terzan_1_HP_2 Terzan_9 Terzan_4_HP_4 AM_1 1 2 Distance, Kpc

21 Phase-space distribution of Milky Way globular clusters Lz/Lcirc E/ (km/s)^2 NGC_4_47Tuc NGC_288 NGC_362 Whiting_1 NGC_61 Pal_1 AM_1 Eridanus Pal_2 NGC_1 NGC_194_M_79 NGC_2298 NGC_2419 Pyxis NGC_288 Pal_3 NGC_31 Pal_4 NGC_47 NGC_4372 Rup_6 NGC_49_M_68 NGC_4833 NGC_24_M_3 NGC_3 NGC_139_oCen NGC_272_M_3 NGC_286 NGC_466 NGC_634 NGC_694 IC_4499 NGC_824 Pal_ NGC_897 NGC_94_M_ NGC_927 NGC_946 NGC_986 Lynga_7_BH4 Pal_ NGC_693_M_8 NGC_61_M_4 NGC_61 NGC_64 NGC_6139 Terzan_3 NGC_6171_M7 NGC_6_M_13 NGC_6229 NGC_62_M_ NGC_623 NGC_624_M_ NGC_626 Pal_1 NGC_6266_M_62 NGC_6273_M_19 NGC_6284 NGC_6287 NGC_6293 NGC_634 NGC_63 NGC_6341_M_92 NGC_632 NGC_6333_M_9 NGC_6342 NGC_636 NGC_63 NGC_632 IC_7 Terzan_2_HP_3 NGC_6366 Terzan_4_HP_4 HP_1_BH_229 NGC_6362 NGC_638_Ton1 Terzan_1_HP_2 Ton2_Pismis26 NGC_6388 NGC_642_M_ NGC_641 NGC_6397 Pal_6 NGC_6426 Terzan 11 NGC_644 NGC_6441 Terzan_6_HP_ NGC_643 NGC_6496 Terzan_9 NGC_617 NGC_622 NGC_63 NGC_628 NGC_639 NGC_64_Djorg NGC_644 NGC_641 NGC_63 NGC_68 IC_76_Pal_7 Terzan_ NGC_669 NGC_684 NGC_6624 NGC_6626_M_28 NGC_6638 NGC_6637_M_69 NGC_6642 NGC_662 NGC_666_M_22 Pal_8 NGC_6681_M_7 NGC_67 NGC_671_M_4 NGC_6717_Pal9 NGC_6723 NGC_6749 NGC_672 NGC_676 NGC_6779_M_6 Terzan_7 Pal_ Arp_2 NGC_689_M_ Terzan_8 Pal_11 NGC_6838_M_71 NGC_6864_M_7 NGC_6934 NGC_6981_M_72 NGC_76 NGC_778_M_1 NGC_789_M_2 NGC_799_M_3 Pal_ Pal_13 NGC_7492 HST (Sohn+ ) Gaia (Helmi+ ) Gaia (new) (L/Lcirc)^ Rcirc (Kpc) NGC_4_47Tuc NGC_288 NGC_362 Whiting_1 NGC_61 Pal_1 AM_1 Eridanus Pal_2 NGC_1 NGC_194_M_79 NGC_2298 NGC_2419 Pyxis NGC_288 Pal_3 NGC_31 Pal_4 NGC_47 NGC_4372 Rup_6 NGC_49_M_68 NGC_4833 NGC_24_M_3 NGC_3 NGC_139_oCen NGC_272_M_3 NGC_286 NGC_466 NGC_634 NGC_694 IC_4499 NGC_824 Pal_ NGC_897 NGC_94_M_ NGC_927 NGC_946 NGC_986 Lynga_7_BH4 Pal_ NGC_693_M_8 NGC_61_M_4 NGC_61 NGC_64 NGC_6139 Terzan_3 NGC_6171_M7 NGC_6_M_13 NGC_6229 NGC_62_M_ NGC_623 NGC_624_M_ NGC_626 Pal_1 NGC_6266_M_62 NGC_6273_M_19 NGC_6284 NGC_6287 NGC_6293 NGC_634 NGC_63 NGC_6341_M_92 NGC_632 NGC_6333_M_9 NGC_6342 NGC_636 NGC_63 NGC_632 IC_7 Terzan_2_HP_3 NGC_6366 Terzan_4_HP_4 HP_1_BH_229 NGC_6362 NGC_638_Ton1 Terzan_1_HP_2 Ton2_Pismis26 NGC_6388 NGC_642_M_ NGC_641 NGC_6397 Pal_6 NGC_6426 Terzan 11 NGC_644 NGC_6441 Terzan_6_HP_ NGC_643 NGC_6496 Terzan_9 NGC_617 NGC_622 NGC_63 NGC_628 NGC_639 NGC_64_Djorg NGC_644 NGC_641 NGC_63 NGC_68 IC_76_Pal_7 Terzan_ NGC_669 NGC_684 NGC_6624 NGC_6626_M_28 NGC_6638 NGC_6637_M_69 NGC_6642 NGC_662 NGC_666_M_22 Pal_8 NGC_6681_M_7 NGC_67 NGC_671_M_4 NGC_6717_Pal9 NGC_6723 NGC_6749 NGC_672 NGC_676 NGC_6779_M_6 Terzan_7 Pal_ Arp_2 NGC_689_M_ Terzan_8 Pal_11 NGC_6838_M_71 NGC_6864_M_7 NGC_6934 NGC_6981_M_72 NGC_76 NGC_778_M_1 NGC_789_M_2 NGC_799_M_3 Pal_ Pal_13 NGC_7492

22 Complementary instruments and surveys Astrometry (mainly proper motions): Gaia: down to G = 21, but only in the outer parts; central regions severely limited by crowding. + Provides absolute proper motions in the global reference frame (subject to systematic uncertainty of mas/yr). Hubble (HSTPROMO: Bellini+, Watkins+ 1, Sohn+ ): + performs well even in crowded regions; + precision comparable or better than Gaia (baseline 1 yr); + goes down to 26 mag in outer regions; much smaller FoV (3 ); PMs are relative (don t provide mean motion and rotation), unless enough background galaxies are used to anchor them. Ground-based: superseded by Gaia for all practical purposes.

23 Complementary instruments and surveys Radial velocities: Gaia: down to G 13 (improved by 3 mag towards the end of mission), but for the entire sky (8 9% compleness except dense regions). Ground-based: several magnitudes deeper, but more limited spatial coverage. Chemistry, stellar parameters: Gaia: T eff, R, L, log g down to G 17 in DR2 based on parallax and broad-band photometry only (G, BP, RP); will be improved in future data releases with low-res spectroscopy from BP/RP. Ground-based spectroscopy: produces much more information. Photometry: Gaia cross-matches with several other surveys (2MASS, SDSS, PanSTARRS, RAVE) is provided in DR2.

24 Future data releases DR3 (late ), DR4 (end 22): binary stars; BP/RP and RVS spectra; improved calibration, PSF modelling, etc.; better treatment of crowded regions; extended spectroscopic templates for hotter/cooler stars; variable star classification and lightcurves; epoch astrometry ( 3 observations for each star). Mission extension from nominal years up to years: parallax error T 1/2, PM error T 3/2!

25 Summary Gaia is awesome by itself, and complementary to other surveys Internal dynamics of globular clusters (velocity dispersion profiles, anisotropy, rotation, tidal boundary) Motion of globular clusters in the Galaxy

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran The Gaia Mission Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany ISYA 2016, Tehran What Gaia should ultimately achieve high accuracy positions, parallaxes, proper motions e.g.

More information

Building the cosmic distance scale: from Hipparcos to Gaia

Building the cosmic distance scale: from Hipparcos to Gaia The Fundamental Distance Scale: state of the art and the Gaia perspectives 3-6 May 2011 Building the cosmic distance scale: from Hipparcos to Gaia Catherine TURON and Xavier LURI 1 ESA / ESO-H. Heyer Fundamental

More information

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE Gaia News:Counting down to launch A. Vallenari INAF, Padova Astronomical Observatory on behalf of DPACE Outline Gaia Spacecraft status The Gaia sky Gaia open and globular clusters From data to science:

More information

Astrometry in Gaia DR1

Astrometry in Gaia DR1 Astrometry in Gaia DR1 Lennart Lindegren on behalf of the AGIS team and the rest of DPAC Gaia DR1 Workshop, ESAC 2016 November 3 1 Outline of talk The standard astrometric model kinematic and astrometric

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

Gaia s view of star clusters

Gaia s view of star clusters Gaia s view of star clusters @Jos_de_Bruijne European Space Agency 15 November 2017 @ESAGaia #GaiaMission Figure courtesy ESA/Gaia/DPAC Gaia s first sky map Figure courtesy ESA/Gaia/DPAC Gaia s first sky

More information

The Three Dimensional Universe, Meudon - October, 2004

The Three Dimensional Universe, Meudon - October, 2004 GAIA : The science machine Scientific objectives and impacts ------- F. Mignard OCA/ Cassiopée 1 Summary Few figures about Gaia Gaia major assets What science with Gaia Few introductory highlights Conclusion

More information

Star clusters before and after Gaia Ulrike Heiter

Star clusters before and after Gaia Ulrike Heiter Star clusters before and after Gaia Ulrike Heiter Uppsala University Outline Gaia mission overview Use of stellar clusters for calibration of stellar physical parameters Impact of Gaia data on cluster

More information

Tristan Cantat-Gaudin

Tristan Cantat-Gaudin Open Clusters in the Milky Way with Gaia ICCUB Winter Meeting 1-2 Feb 2018, Barcelona Tristan Cantat-Gaudin Carme Jordi, Antonella Vallenari, Laia Casamiquela, and Gaia people in Barcelona and around the

More information

arxiv: v3 [astro-ph.ga] 20 Sep 2018

arxiv: v3 [astro-ph.ga] 20 Sep 2018 Preprint 1 September 1 Compiled using MNRAS LATEX style file v3. Internal dynamics of the Large Magellanic Cloud from Gaia DR Eugene Vasiliev 1, 1 Institute of Astronomy, Madingley road, Cambridge, CB3

More information

Thoughts on future space astrometry missions

Thoughts on future space astrometry missions Thoughts on future space astrometry missions Anthony Brown Leiden Observatory brown@strw.leidenuniv.nl Sterrewacht Leiden With special thanks to Erik Høg Gaia Future Sub-µas astrometry Gaia2 Recommendations

More information

The Astrometry Satellite Gaia

The Astrometry Satellite Gaia 656 th WE-Haereus Seminar, The Astrometry Satellite Gaia Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg http://www.stefan-jordan.de Gaia s schedule 1993: First proposal

More information

Gaia Status & Early Releases Plan

Gaia Status & Early Releases Plan Gaia Status & Early Releases Plan F. Mignard Univ. Nice Sophia-Antipolis & Observatory of the Côte de Azur Gaia launch: 20 November 2013 The big news @ 08:57:30 UTC 2 Gaia: a many-sided mission Driven

More information

Gaia DR2 astrometry. IAU 30 GA Division A: Fundamental Astronomy Vienna, 2018 August 27.

Gaia DR2 astrometry. IAU 30 GA Division A: Fundamental Astronomy Vienna, 2018 August 27. Gaia DR2 astrometry L. Lindegren 1 J. Hernández 2 A. Bombrun 2 S. Klioner 3 U. Bastian 4 M. Ramos-Lerate 2 A. de Torres 2 H. Steidelmüller 3 C. Stephenson 2 D. Hobbs 1 U. Lammers 2 M. Biermann 4 1 Lund

More information

"The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18

The Gaia distances Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 "The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 "The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 Estimating distances from parallaxes

More information

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars Characterization of the exoplanet host stars Exoplanets Properties of the host stars Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic

More information

GDR1 photometry. CU5/DPCI team

GDR1 photometry. CU5/DPCI team GDR1 photometry CU5/DPCI team What is, or isn't included GDR1 only provides G mean flux and error Derived mean magnitude, all entries Zero point used is in Vega system Zero point for AB system also available

More information

Astr As ome tr tr ome y I M. Shao

Astr As ome tr tr ome y I M. Shao Astrometry I M. Shao Outline Relative astrometry vs Global Astrometry What s the science objective? What s possible, what are fundamental limits? Instrument Description Error/noise sources Photon noise

More information

Massive OB stars as seen by Gaia

Massive OB stars as seen by Gaia Massive OB stars as seen by Gaia Y.Frémat Royal Observatory of Belgium Y.Frémat, 22.06.2015 EWASS SP7 Massive OB stars as seen by Gaia 1 / 17 OB stars in the Gaia Universe Model Robin et al., 2012, A&A,

More information

Transient Astronomy with the Gaia Satellite

Transient Astronomy with the Gaia Satellite Transient Astronomy with the Gaia Satellite Simon Hodgkin, Lukasz Wyrzykowski, Ross Burgon, Sergey Koposov, Nadejda Blagorodnova, Floor van Leeuwen, Vasily Belokurov, Laurent Eyer, Timo Prusti, Nic Walton

More information

Gaia-LSST Synergy. A. Vallenari. INAF, Padova

Gaia-LSST Synergy. A. Vallenari. INAF, Padova Gaia-LSST Synergy A. Vallenari INAF, Padova The Galaxy view Unveiling the complex history of the MW assembly and internal evolution is still one of the main interest of astrophysics However the specific

More information

Radial Velocity Surveys. Matthias Steinmetz (AIP)

Radial Velocity Surveys. Matthias Steinmetz (AIP) Radial Velocity Surveys Matthias Steinmetz (AIP) The Galactic case for RV surveys Information on how galaxies form is locked in n the phase-space (position,velocities) Information is locked in stars (abundances)

More information

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018 Stellar distances and velocities ASTR320 Wednesday January 24, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Why are stellar distances important? Distances

More information

The overture to a new era in Galactic science: Gaia's first data release. Martin Altmann Centre for Astrophysics of the University of Heidelberg

The overture to a new era in Galactic science: Gaia's first data release. Martin Altmann Centre for Astrophysics of the University of Heidelberg The overture to a new era in Galactic science: Gaia's first data release Martin Altmann Centre for Astrophysics of the University of Heidelberg Bogota, Gaia facts The promise The optical plane Scan law

More information

From Gaia frame to ICRF-3 3?

From Gaia frame to ICRF-3 3? From Gaia frame to ICRF-3 3? Univ. Nice Sophia-Antipolis & Observatory of the Côte de Azur 1 Outline Status of Gaia a QSOs with Gaia The Gaia-CRF From Gaia-CRF to ICRF-3 2 Gaia quick fact sheet Main goal

More information

Probing GCs in the GC region with GLAO

Probing GCs in the GC region with GLAO Probing GCs in the GC region with GLAO Masashi Chiba (Tohoku University) AO beginner! Life is good! Subaru/GLAO in Galactic Archaeology Resolved stars provide important information on galaxy formation

More information

(Present and) Future Surveys for Metal-Poor Stars

(Present and) Future Surveys for Metal-Poor Stars (Present and) Future Surveys for Metal-Poor Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics SDSS 1 Why the Fascination

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

SkyMapper and the Southern Sky Survey

SkyMapper and the Southern Sky Survey SkyMapper and the Southern Sky Survey Stefan Keller Mt. Stromlo Observatory Brian Schmidt, Mike Bessell and Patrick Tisserand SkyMapper 1.35m telescope with a 5.7 sq. degree field of view located at Siding

More information

THE GALACTIC BULGE AS SEEN BY GAIA

THE GALACTIC BULGE AS SEEN BY GAIA 143 THE GALACTIC BULGE AS SEEN BY GAIA C. Reylé 1, A.C. Robin 1, M. Schultheis 1, S. Picaud 2 1 Observatoire de Besançon, CNRS UMR 6091, BP 1615, 25010 Besançon cedex, France 2 IAG/USP Departamento de

More information

The Plato Input Catalog (PIC)

The Plato Input Catalog (PIC) The Plato Input Catalog (PIC) Giampaolo Piotto and the WP130000 group Dipartimento di Fisica e Astronomia Universita di Padova Because of the huge size of PLATO field (~2124 sq deg) and the consequent

More information

Gaia Photometric Data Analysis Overview

Gaia Photometric Data Analysis Overview Gaia Photometric Data Analysis Overview Gaia photometric system Paola Marrese Sterrewacht Leiden marrese@strw.leidenuniv.nl Role of photometry in overall Gaia data analysis Photometric data analysis goals

More information

Gaia Data Release 1: Datamodel description

Gaia Data Release 1: Datamodel description Gaia Data Release 1: Datamodel description Documentation release D.0 European Space Agency and GaiaData Processing and Analysis Consortium September 13, 2016 Contents 1 Main tables 3 1.1 gaia source...............................

More information

A wide brown dwarf binary around a planet-host star

A wide brown dwarf binary around a planet-host star A wide brown dwarf binary around a planet-host star Nicolas Lodieu (1, 2, 3) (1) Instituto de Astrofisica de Canarias (IAC, Tenerife) (2) Universidad de La Laguna (ULL, Tenerife) (3) Ramon y Cajal fellow

More information

Science Results Enabled by SDSS Astrometric Observations

Science Results Enabled by SDSS Astrometric Observations Science Results Enabled by SDSS Astrometric Observations Željko Ivezić 1, Mario Jurić 2, Nick Bond 2, Jeff Munn 3, Robert Lupton 2, et al. 1 University of Washington 2 Princeton University 3 USNO Flagstaff

More information

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

Milky Way S&G Ch 2. Milky Way in near 1 IR   H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/ Why study the MW? its "easy" to study: big, bright, close Allows detailed studies of stellar kinematics, stellar evolution. star formation, direct detection of dark matter?? Milky Way S&G Ch 2 Problems

More information

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

Classical Methods for Determining Stellar Masses, Temperatures, and Radii Classical Methods for Determining Stellar Masses, Temperatures, and Radii Willie Torres Harvard-Smithsonian Center for Astrophysics 2010 Sagan Exoplanet Summer Workshop 1 Outline Basic properties of stars

More information

Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia

Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia J. Andersen 1,2, B. Nordström 1,2 1 Dark Cosmology Centre, The Niels Bohr Institute, University of Copenhagen, Denmark 2 Stellar Astrophysics

More information

Globular Clusters: hot stellar populations and internal dynamics

Globular Clusters: hot stellar populations and internal dynamics Globular Clusters: hot stellar populations and internal dynamics Giornate dell Osservatorio, Bologna 18-19 February 2016 Emanuele Dalessandro Globular clusters: I. hot stellar populations OABO people involved:

More information

DETERMINATION OF STELLAR ROTATION WITH GAIA AND EFFECTS OF SPECTRAL MISMATCH. A. Gomboc 1,2, D. Katz 3

DETERMINATION OF STELLAR ROTATION WITH GAIA AND EFFECTS OF SPECTRAL MISMATCH. A. Gomboc 1,2, D. Katz 3 537 DETERMINATION OF STELLAR ROTATION WITH GAIA AND EFFECTS OF SPECTRAL MISMATCH A. Gomboc,2, D. Katz 3 University in Ljubljana, Jadranska 9, 00 Ljubljana, Slovenia 2 ARI, Liverpool John Moores University,

More information

Introduction to SDSS -instruments, survey strategy, etc

Introduction to SDSS -instruments, survey strategy, etc Introduction to SDSS -instruments, survey strategy, etc (materials from http://www.sdss.org/) Shan Huang 17 February 2010 Survey type Status Imaging and Spectroscopy Basic Facts SDSS-II completed, SDSS-III

More information

Searching for signs of IMBH astrometric microlensing in M 22

Searching for signs of IMBH astrometric microlensing in M 22 Searching for signs of IMBH astrometric microlensing in M 22 Noé Kains (STScI) with Jay Anderson, Annalisa Calamida, Kailash Sahu Stefano Casertano, Dan Bramich Intermediate-mass black holes (IMBH) Supermassive

More information

Asterseismology and Gaia

Asterseismology and Gaia Asterseismology and Gaia Asteroseismology can deliver accurate stellar radii and masses Huber et al 2017 compare results on distances from Gaia and asteroseismology for 2200 Kepler stars Asteroseismology

More information

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Chengqun Yang Contents 1 Stellar Halo

More information

Using globular clusters to test gravity in the weak acceleration regime

Using globular clusters to test gravity in the weak acceleration regime Using globular clusters to test gravity in the weak acceleration regime Riccardo Scarpa 1, Gianni Marconi 2, Roberto Gilmozzi 2, and Giovanni Carraro 3 1 Instituto de Astrofísica de Canarias, Spain 2 European

More information

in formation Stars in motion Jessica R. Lu Institute for Astronomy University of Hawaii

in formation Stars in motion Jessica R. Lu Institute for Astronomy University of Hawaii Stars in formation in motion Jessica R. Lu Institute for Astronomy University of Hawaii Stars in formation in motion 105 Msun 104 Msun 103 Msun Frontiers in star formation include massive young clusters

More information

Gaia: algorithms for the external calibration

Gaia: algorithms for the external calibration Gaia: algorithms for the external calibration Montegriffo P., Cacciari C., Ragaini S. Edinburgh (Royal Observatory) Cambridge (Institute of Astronomy) (CU5 leadership) Leiden (Observatory) Bologna (INAF-OABO)

More information

Synergy between MOSAIC, MICADO, and MUSE:

Synergy between MOSAIC, MICADO, and MUSE: Synergy between MOSAIC, MICADO, and MUSE: resolved stellar populations in nearby galaxies Martin M. Roth (P.I.) Andreas Kelz Leibniz-Institute for Astrophysics Potsdam (AIP) University of Potsdam Toledo,

More information

Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies

Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies Faintest galaxies are distributed ~ uniformly over the sky except for the Galactic plane (zone of avoidance) Brighter

More information

PROPER MOTIONS OF MILKY WAY ULTRA-FAINT SATELLITES WITH Gaia DR2 DES DR1

PROPER MOTIONS OF MILKY WAY ULTRA-FAINT SATELLITES WITH Gaia DR2 DES DR1 Draft version June 8, 2018 Preprint typeset using L A TEX style emulateapj v. 12/16/11 PROPER MOTIONS OF MILKY WAY ULTRA-FAINT SATELLITES WITH Gaia DR2 DES DR1 Andrew B. Pace 1,4 and Ting S. Li 2,3 1 George

More information

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey KIAA-CambridgeJoint Workshop on Near-Field Cosmology and Galactic Archeology ZHAO Gang National Astronomical Observatories, Chinese Academy of Sciences Dec 1-5, 2008 Beijing Outline LAMOST stellar spectroscopic

More information

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee Determination of [α/fe] and its Application to SEGUE F/G Stars Young Sun Lee Research Group Meeting on June 16, 2010 Outline Introduction Why [α/fe]? Determination of [α/fe] Validation of estimate of [α/fe]

More information

Galactic archaeology with the RAdial Velocity Experiment

Galactic archaeology with the RAdial Velocity Experiment Galactic archaeology with the RAdial Velocity Experiment Georges Kordopatis & RAVE collaboration Leibniz-Institute for Astrophysics, Potsdam Multi-Object Spectroscopy in the next decade: Big questions,

More information

The Impact of Gaia on Our Knowledge of Stars and Their Planets

The Impact of Gaia on Our Knowledge of Stars and Their Planets The Impact of Gaia on Our Knowledge of Stars and Their Planets A. Sozzetti INAF Osservatorio Astrofisico di Torino Know thy star know thy planet conference pasadena, 11/10/2017 The impact of Gaia on our

More information

Exoplanetary transits as seen by Gaia

Exoplanetary transits as seen by Gaia Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

Lecture 12. November 20, 2018 Lab 6

Lecture 12. November 20, 2018 Lab 6 Lecture 12 November 20, 2018 Lab 6 News Lab 4 Handed back next week (I hope). Lab 6 (Color-Magnitude Diagram) Observing completed; you have been assigned data if you were not able to observe. Due: instrumental

More information

Using ground based data as a precursor for Gaia-based proper motions of satellites

Using ground based data as a precursor for Gaia-based proper motions of satellites Using ground based data as a precursor for Gaia-based proper motions of satellites 102 Streams T. K. Fritz, N. Kallivayalil, J. Bovy, S.Linden, P. Zivick, R. Beaton, M. Lokken, T. Sohn, D. Angell, M. Boylan-Kolchin,

More information

Simulations of the Gaia final catalogue: expectation of the distance estimation

Simulations of the Gaia final catalogue: expectation of the distance estimation Simulations of the Gaia final catalogue: expectation of the distance estimation E. Masana, Y. Isasi, R. Borrachero, X. Luri Universitat de Barcelona GAIA DPAC - CU2 Introduction Gaia DPAC (Data Processing

More information

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars Gaia Stereoscopic Census of our Galaxy http://www.cosmos.esa.int/web/gaia http://gaia.ac.uk one billion pixels for one billion stars one percent of the visible Milky Way Gerry Gilmore FRS, UK Gaia PI,

More information

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator)

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) The Gaia-ESO Survey http://www.gaia-eso.eu Public spectroscopic

More information

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars

Gaia. Stereoscopic Census of our Galaxy.     one billion pixels for one billion stars Gaia Stereoscopic Census of our Galaxy http://www.cosmos.esa.int/web/gaia http://gaia.ac.uk one billion pixels for one billion stars one percent of the visible Milky Way Gerry Gilmore, UK Gaia PI, on behalf

More information

Searching for Needles in the Sloan Digital Haystack

Searching for Needles in the Sloan Digital Haystack Searching for Needles in the Sloan Digital Haystack Robert Lupton Željko Ivezić Jim Gunn Jill Knapp Michael Strauss University of Chicago, Fermilab, Institute for Advanced Study, Japanese Participation

More information

WEAVE Galactic Surveys

WEAVE Galactic Surveys WEAVE Galactic Surveys A. Vallenari INAF, Padova On behalf of the Science Team Overview WEAVE Surveys Milky Way Surveys WEAVE Characteristics Project structure Primary Science Surveys There are six primary

More information

Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model

Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model Speaker: Supervisor: Kseniia Sysoliatina (ARI) Prof. Dr. Andreas Just Gaia DR2 workshop Heidelberg, Outline (1) Comparison

More information

Mario Juric Institute for Advanced Study, Princeton

Mario Juric Institute for Advanced Study, Princeton Mapping Galactic density, metallicity and kinematics. Mario Juric Institute for Advanced Study, Princeton with Zeljko Ivezic, Nick Bond, Branimir Sesar, Robert Lupton and the SDSS Collaboration Dissecting

More information

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug Halo Tidal Star Streams with DECAM Brian Yanny Fermilab DECam Community Workshop NOAO Tucson Aug 19 2011 M31 (Andromeda) Our Local Group neighbors: Spiral galaxies similar to The Milky Way 150 kpc M33

More information

The Great Debate: The Size of the Universe (1920)

The Great Debate: The Size of the Universe (1920) The Great Debate: The Size of the Universe (1920) Heber Curtis Our Galaxy is rather small, with Sun near the center. 30,000 LY diameter. Universe composed of many separate galaxies Spiral nebulae = island

More information

From theory to observations

From theory to observations Stellar Objects: From theory to observations 1 From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, give the prediction of the

More information

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann Geneva Observatory The First Years Of ESO, Garching, 4.9.212 high-precision astrometry is powerful yields complete information,

More information

M31 Color Mag Diagram Brown et al 592:L17-L20!

M31 Color Mag Diagram Brown et al 592:L17-L20! The physical origin of the form of the IMF is not well understood Use the stellar mass-luminosity relation and present day stellar luminosity function together with a model of how the star formation rate

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs The Gaia-ESO Spectroscopic Survey Survey Co-PIs Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs Gaia-ESO survey context and motivations (conclusions and key words of several talks)

More information

Gaia Data Processing - Overview and Status

Gaia Data Processing - Overview and Status Gaia Data Processing - Overview and Status Anthony Brown Leiden Observatory, Leiden University brown@strw.leidenuniv.nl Teamwork to deliver the promise of Gaia 10+ years of effort 450 scientists and engineers

More information

The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia

The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia Michael Hayden Alejandra Recio-Blanco, Patrick de Laverny, Sarunas Mikolaitis, Guillaume Guiglion, Anastasia Titarenko Observatoire

More information

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk Today in Astronomy 142:! The local standard of rest the Milky Way, continued! Rotation curves and the! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk distribution

More information

for Astrometry in the 21st Century William van Altena

for Astrometry in the 21st Century William van Altena The Opportunities and Challenges for Astrometry in the 21st Century William van Altena Yale University, New Haven, CT USA (With slides from Elliott Horch, Dana Casetti-Dinescu and Daniel Harbeck) ADeLA

More information

MASS FUNCTION OF STELLAR REMNANTS IN THE MILKY WAY

MASS FUNCTION OF STELLAR REMNANTS IN THE MILKY WAY MASS FUNCTION OF STELLAR REMNANTS IN THE MILKY WAY (pron: Woocash Vizhikovsky) Warsaw University Astronomical Observatory Wednesday Seminar, IoA Cambridge, 8 July 2015 COLLABORATORS Krzysztof Rybicki (PhD

More information

Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population

Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population Boris Gänsicke & Roberto Raddi Richard Ashley Jay Farihi Nicola Gentile Fusillo Mark Hollands Paula Izquierdo

More information

Pre-observations and models

Pre-observations and models Pre-observations and models Carine Babusiaux Observatoire de Paris - GEPI GREAT-ITN, IAC, September 2012 The questions 1) Can the observing program tackle the scientific problem? 2) What is the best configuration

More information

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang Contents 1

More information

Cosmologia locale: origine e storia della Via Lattea

Cosmologia locale: origine e storia della Via Lattea Cosmologia locale: origine e storia della Via Lattea Mario G. Lattanzi (OATo) & Michele Bellazzini (OABo) Roma, 14 feb 2013 L Italia in Gaia, INAF Hq Collaborators Anna Curir Alessandro Spagna Francesca

More information

The Pan-STARRS1 view of the Hyades cluster

The Pan-STARRS1 view of the Hyades cluster The Pan-STARRS1 view of the Hyades cluster Bertrand Goldman (MPIA), S. Röser, E. Schilbach (ARI), C. Olczak (MPIA/ARI), Th.Henning (MPIA), E.A. Magnier (IfA / Hawaii), and the PanSTARRS1 Science Consortium

More information

The Stellar Low-Mass IMF: SDSS Observations of 15 Million M Dwarfs

The Stellar Low-Mass IMF: SDSS Observations of 15 Million M Dwarfs The Stellar Low-Mass IMF: SDSS Observations of 15 Million M Dwarfs John Bochanski (Penn State) Origins of Stellar Masses October 21st, 2010 Suzanne Hawley (UW), Kevin Covey (Cornell), Andrew West (BU),

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy

ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy Mem. S.A.It. Vol. 83, 342 c SAIt 2012 Memorie della ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy R. Hudec 1,2, V. Šimon 1, L. Hudec 2, and V. Hudcová

More information

Stellar Stream map of the Milky Way Halo : Application of STREAMFINDER onto ESA/Gaia DR2

Stellar Stream map of the Milky Way Halo : Application of STREAMFINDER onto ESA/Gaia DR2 Stellar Stream map of the Milky Way Halo : Application of STREAMFINDER onto ESA/Gaia DR2 w/ Rodrigo A. Ibata and Nicolas F. Martin @kmalhan07 Khyati Malhan PhD Student Supervisor: Dr. Rodrigo Ibata Stellar

More information

Gaia: Mapping the Milky Way

Gaia: Mapping the Milky Way Gaia: Mapping the Milky Way (A very brief overview, and something about the Swedish participation) Lennart Lindegren Lund Observatory Department of Astronomy and Theoretical Physics Lund University 1 Gaia

More information

Stellar populations in the Milky Way halo

Stellar populations in the Milky Way halo Stellar populations in the Milky Way halo Paula Jofre Pfeil Max Planck Institute for Astrophysics (Achim Weiss, Ben Panter, Camilla Hansen) Introduction Todayʼs Universe Scenario: Dark matter haloes connected

More information

Luminosity Functions of Planetary Nebulae & Globular Clusters. By Azmain Nisak ASTR 8400

Luminosity Functions of Planetary Nebulae & Globular Clusters. By Azmain Nisak ASTR 8400 Luminosity Functions of Planetary Nebulae & Globular Clusters By Azmain Nisak ASTR 8400 Calculating Distance! m = apparent magnitude! M = absolute magnitude! r = distance in pc GLOBULAR CLUSTERS AS DISTANCE

More information

CROWDED FIELDS IN THE MILKY WAY AND BEYOND. C. Babusiaux 1,2

CROWDED FIELDS IN THE MILKY WAY AND BEYOND. C. Babusiaux 1,2 637 CROWDED FIELDS IN THE MILKY WAY AND BEYOND C. Babusiaux 1,2 1 Institut d Astronomie et d Astrophysique, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium 2 Observatoire de Paris, GEPI / CNRS

More information

Functional analysis (CU6)

Functional analysis (CU6) Functional analysis (CU6) CU:inputResults(1:n+1) C1 Auxiliary data: e.g. atomic data, C2 template, CC-mask C3 Archived processed spectroscopic data: CC-peaks, extr. spectra (> 6 months old) Mark Cropper

More information

The Dynamics of the Galaxies in the Local Group. Roeland van der Marel (STScI)

The Dynamics of the Galaxies in the Local Group. Roeland van der Marel (STScI) The Dynamics of the Galaxies in the Local Group Roeland van der Marel (STScI) Main collaborators: Jay Anderson, Gurtina Besla, Nitya Kallivayalil, Tony Sohn 2 [R. Powell] 3 [R. Powell] 4 Why Study the

More information

SkyMapper and the Southern Sky Survey

SkyMapper and the Southern Sky Survey and the Southern Sky Survey, Brian Schmidt and Mike Bessell Slide 1 What is? 1.35m telescope with a 5.7 sq. degree field of view To reside at Siding Spring Observatory, NSW To conduct the Southern Sky

More information

The Star Clusters of the Magellanic Clouds

The Star Clusters of the Magellanic Clouds The Dance of Stars MODEST-14 The Star Clusters of the Magellanic Clouds Eva K. Grebel Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg Star Clusters in the Magellanic Clouds!

More information

Hubble Science Briefing: 25 Years of Seeing Stars with the Hubble Space Telescope. March 5, 2015 Dr. Rachel Osten Dr. Alex Fullerton Dr.

Hubble Science Briefing: 25 Years of Seeing Stars with the Hubble Space Telescope. March 5, 2015 Dr. Rachel Osten Dr. Alex Fullerton Dr. Hubble Science Briefing: 25 Years of Seeing Stars with the Hubble Space Telescope March 5, 2015 Dr. Rachel Osten Dr. Alex Fullerton Dr. Jay Anderson Hubble s Insight into the Lives of Stars Comes From:

More information

Testing the COBE/IRAS All-Sky Reddening Map Using the Galactic Globular Clusters

Testing the COBE/IRAS All-Sky Reddening Map Using the Galactic Globular Clusters Testing the COBE/IRAS All-Sky Reddening Map Using the Galactic Globular Clusters K. Z. Stanek 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS20, Cambridge, MA 02138 e-mail: kstanek@cfa.harvard.edu

More information

Exploring the stellar population of nearby and high redshift galaxies with ELTs. Marco Gullieuszik INAF - Padova Observatory

Exploring the stellar population of nearby and high redshift galaxies with ELTs. Marco Gullieuszik INAF - Padova Observatory Exploring the stellar population of nearby and high redshift galaxies with ELTs INAF - Padova Observatory The team R. Falomo L. Greggio M. Uslenghi INAF Osservatorio Astronomico di Padova INAF Osservatorio

More information

Globular Clusters. This list contains 135 of the brightest and largest globular clusters from the Astroleague's observing program/list.

Globular Clusters. This list contains 135 of the brightest and largest globular clusters from the Astroleague's observing program/list. Globular Clusters A globular cluster is a spherical collection of stars that orbit a galactic core as a satellite. Globular clusters are very tightly bound by gravity, giving them their spherical shapes

More information

The structure and internal kinematics of globular clusters: tides and gravity

The structure and internal kinematics of globular clusters: tides and gravity The structure and internal kinematics of globular clusters: tides and gravity Antonio Sollima Antonio.sollima@oapd.inaf.it Collaborators : C. Nipoti (Univ. Bo), D. Martinez-Delgado (MPIA), M. Bellazzini

More information

Chapter 7: From theory to observations

Chapter 7: From theory to observations Chapter 7: From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, predict the evolution of the stellar bolometric luminosity, effective

More information