From Gaia frame to ICRF-3 3?

Size: px
Start display at page:

Download "From Gaia frame to ICRF-3 3?"

Transcription

1 From Gaia frame to ICRF-3 3? Univ. Nice Sophia-Antipolis & Observatory of the Côte de Azur 1

2 Outline Status of Gaia a QSOs with Gaia The Gaia-CRF From Gaia-CRF to ICRF-3 2

3 Gaia quick fact sheet Main goal : astrometry and photometric survey to V = 20 ~ 10 9 sources stars, QSOs, Solar system, galaxies Accuracy in astrometry : 25 V = 15 for parallax 10 µas V < 13 Regular scan of sky over 5 yrs each source observed about ~80 times internal autonomous detection system Launch in June 2013 from Kourou Current integration of the P/L and S/M advancing smoothly 3

4 Observation of QSOs QSOs will be observed like stars point like sources They will be detected t d in the Sky Mapper when G < 20 Sky coverage and astrometric performances will be the same as for stars of same magnitude no specific colour problems are expected They will be observed about 80 times distributed more or less regularly during the mission Astrometric and photometric processing will be standard global solution for astrometry epoch photometry at each transit 4

5 QSOs distribution with Gaia Based on the simulation used in the DPAC Universe model about 400,000 observable to G = 20 na s 2011, Vienn G<18 18< G < 19 19< G < 20 Slezak & Mignard,

6 Latest QSO compilation Catalogue Veron-Cety & Veron V13 (2010) Plots in galactic coordinates similar results with LQAC (Souchay et al., 2008) V < 20 - # 115,000 AGN QSO 6

7 How many new QSOs Density in local deep surveys used to compute the expected number of QSOs per bin of magnitude On subtracts the number in the current general catalogue assumption: QSOs have a uniform distribution on the celestial sphere b > 25 B # new QSOs < , , , , ,000 Bourda, Mignard, Andrei,

8 QSO magnitude distribution with Gaia Cumulated distribution over G magnitude based on simulation by Slezak & Mignard, 2007 unrealistic drop at V ~ 20 8

9 Astrometric Accuracy: QSOs 2011, Vienna 9

10 Accuracy of the frame : Simulation Assumptions : QSOs observed with the same accuracy as a normal star Additional noise included d for source jitter : 20 µas/yr - larger than σ pos for V < 16 QSOs have no peculiar transverse s motion Observed PM reveal the global rotation of the GAIA sphere μ cosδ = μ α δ ω sin δ cosα + ω sin δ sin α ω cosδ x = ω sin α + ω cosα x y y z Space and magnitude distribution from existing catalogues Inversion of the weighted normal matrix 10

11 Global rotation Pattern solved with three parameters (ω x, ω y, ω z ) na s 2011, Vienn 11

12 Main feature of the Gaia Frame ICRF directly in the visible today radio Between 20,000 et 50,000 primary sources 295 Inertiality < 0.5 muas/yr 20 muas/yr? 12

13 Transverse motions So far no systematic transverse motion detected QSOs have fixed comoving coordinates If V t ~ H 0 D µ ~ 10 µas/yr VLBI in 20 yrs with σ pos ~ 1 mas µ < 50 µas but sub-mas structure instabilities i (P. Charlot, 2003) Other sources : microlensing i P = 10-6 (Belokurov) only a handful matter ejection, superluminous motion Variable galactic aberration Macrolensing P = 10-2 (Mignard, 2003) long timescale Accelerated motion in the local group 13

14 Gaia-CRF 2011, Vienna 14

15 Terminological aspect The Gaia-CRF (*) will consist of : Defining sources the clean subset of QSOs used to fix the frame A larger set of secondary QSOs The Gaia-SRF (for stellar reference frame) About one billion stars with proper motions easy access thanks to its density will degrade with time (*) GCRF : too close to Geocentric Celestial Reference Frame 15

16 Gaia Stellar Reference Frame Degradation with time due to proper motion uncertainty na s 2011, Vienn 16

17 Gaia Astrometry Global astrometry with full sky coverage 1 billion stars 500, QSOs expected to G = 20 20,000 to G = 18 The solution is brought to ICRS paradigm QSOs have no global motion beyond the cosmic acceleration pattern The Gaia Celestial l Reference Frame (Gaia-CRF) will become a standard all the positions and proper motions will be referred to the Gaia-CRF solar system object astrometry will be given in this frame density will be large with 25,000 stars/deg 2 17

18 Gaia- CRF Gaia will provide simultaneously : a realisation of a primary frame with the bright QSOs a dense optical version to G =20, degrading di very slowly l But when published by the Gaia community this will just be a consistent t solution of the Gaia data processing will supersede immediately any other optical celestial frames many works will refer to the Gaia-CRF BUT... neither IAU or IERS are involved in this process 18

19 IAU Standards Astronomical community Gaia a catalogue a Gaia community users Gaia-CRF ICRF 19

20 Gaia-CRF ICRF-3 Gaia-CRF must be compatible with ICRF-2 within the uncertainty of the latter Rotation: done automatically with a much larger number of QSOs Orientation: must be done explicitly with an alignment procedure same pole, same origin G. Bourda & P. Charlot talk Assessment of the optical-radio offsets Then the final realisation must be perfectly documented An IERS or IAU WG involving Gaia DPAC and international external experts should be formed competence in radio and visible physics of QSOs Finally an IAU resolution should follow to turn the GCRF into ICRF-3 20

21 Will the Gaia-CRF have an Epoch? 2011, Vienna 21

22 QSO Proper Motion and Epoch The radio ICRF is not associated to an epoch defining QSOs have fixed celestial coordinates they are not epoch dependant the define axis direction 'for ever' time is no involved in the process A stellar reference frame is defined at a particular epoch defining stars coordinates come with their proper p motion the PMs are part of the fundamental catalogue each star comes with a particular PM and its uncertainty with N stars, there are 2N parameters needed the system degrades due to the limited uncertainty of the PMs accuracy in position and annual PM are similar 22

23 QSO Proper Motion and Epoch What about the Gaia-CRF QSOs have a systematic proper motion of ~ 4 muas/yr Here But these are not individual PM, but the result of a systematic pattern only 3 parameters are required to maintain the system the accuracy should be close to ~ 0.5 muas/yr Individual positions of the primary sources will have an accuracy of ~ 80 muas degradation will be very very slow Therefore : the Gaia-CRF will have an epoch attached to it but it has very different meaning as for a stellar reference frame How to avoid it: take the origin at the galactic centre! this is for the future 23

24 2011, Vienna 24 SF2A SF2A

25 Plot in equatorial coordinates amplitude ~ 4 µas/yr Secular Drift on QSOs na s 2011, Vienn galactic centre μ α μ δ cosδ Γ Γ x y = sin α + cosα c c Γ Γ x = sin δ cosα c c y sin δ sin α + Γ c z cosδ 25

Gaia Status & Early Releases Plan

Gaia Status & Early Releases Plan Gaia Status & Early Releases Plan F. Mignard Univ. Nice Sophia-Antipolis & Observatory of the Côte de Azur Gaia launch: 20 November 2013 The big news @ 08:57:30 UTC 2 Gaia: a many-sided mission Driven

More information

Towards an accurate alignment of the VLBI frame with the future Gaia optical frame

Towards an accurate alignment of the VLBI frame with the future Gaia optical frame Towards an accurate alignment of the VLBI frame with the future Gaia optical frame G. Bourda,, A. Collioud Laboratoire d Astrophysique de Bordeaux R. Porcas Max Planck Institut für Radioastronomie S. Garrington

More information

Celestial Reference Systems:

Celestial Reference Systems: Celestial Reference Systems: Stability and Alignment G. Bourda Laboratoire d Astrophysique de Bordeaux (LAB) Observatoire Aquitain des Sciences de l Univers (OASU) Université Bordeaux 1 Floirac FRANCE

More information

Linking the ICRF and the future Gaia optical frame

Linking the ICRF and the future Gaia optical frame Linking the ICRF and the future Gaia optical frame G. Bourda,, A. Collioud Laboratoire d Astrophysique de Bordeaux R. Porcas Max Planck Institut für Radioastronomie S. Garrington Jodrell Bank Observatory

More information

Astrometry in Gaia DR1

Astrometry in Gaia DR1 Astrometry in Gaia DR1 Lennart Lindegren on behalf of the AGIS team and the rest of DPAC Gaia DR1 Workshop, ESAC 2016 November 3 1 Outline of talk The standard astrometric model kinematic and astrometric

More information

The Three Dimensional Universe, Meudon - October, 2004

The Three Dimensional Universe, Meudon - October, 2004 GAIA : The science machine Scientific objectives and impacts ------- F. Mignard OCA/ Cassiopée 1 Summary Few figures about Gaia Gaia major assets What science with Gaia Few introductory highlights Conclusion

More information

Radio-optical outliers a case study with ICRF2 and SDSS

Radio-optical outliers a case study with ICRF2 and SDSS Radio-optical outliers a case study with ICRF2 and SDSS Sándor Frey FÖMI Satellite Geodetic Observatory & MTA Research Group for Physical Geodesy and Geodynamics (Budapest, Hungary) Gábor Orosz Department

More information

Detection of Polarization Effects in Gaia Data

Detection of Polarization Effects in Gaia Data Detection of Polarization Effects in Gaia Data Frederic Raison ADA7 14-18/05/2012 Introduction Gaia is an astrometry mission using 2 telescopes. The idea is to use Gaia as a polarimeter (low precision

More information

Gaia astrometric accuracy in the past

Gaia astrometric accuracy in the past Gaia astrometric accuracy in the past François Mignard To cite this version: François Mignard. Gaia astrometric accuracy in the past. IMCCE. International Workshop NAROO-GAIA A new reduction of old observations

More information

GAIA - RRFWG Nice, November 2003

GAIA - RRFWG Nice, November 2003 Relativity and Reference Frame Working Group 4th Meeting ----- F. Mignard 1 Attendants Alexandre Andrei Jos de Bruijne Maria Teresa Crosta Agnes Fienga Daniel Hestroffer Sergei A. Klioner Jean Kovalevsky

More information

ICRF-3: ROADMAP TO THE NEXT GENERATION ICRF

ICRF-3: ROADMAP TO THE NEXT GENERATION ICRF ICRF-3: ROADMAP TO THE NEXT GENERATION ICRF C.S. JACOBS 1, F. ARIAS 2, D. BOBOLTZ 3, J. BOEHM 4, S. BOLOTIN 5, G. BOURDA 6,7, P. CHARLOT 6,7, A. DE WITT 8, A. FEY 9, R. GAUME 9, D. GORDON 5, R. HEINKELMANN

More information

THE ICRF-3: STATUS, PLANS, AND PROGRESS ON THE NEXT GENERATION INTERNATIONAL CELESTIAL REFERENCE FRAME

THE ICRF-3: STATUS, PLANS, AND PROGRESS ON THE NEXT GENERATION INTERNATIONAL CELESTIAL REFERENCE FRAME THE ICRF-3: STATUS, PLANS, AND PROGRESS ON THE NEXT GENERATION INTERNATIONAL CELESTIAL REFERENCE FRAME Z. MALKIN 1, C.S. JACOBS 2, F. ARIAS 3, D. BOBOLTZ 4, J. BÖHM5, S. BOLOTIN 6, G. BOURDA 7,8, P. CHARLOT

More information

arxiv: v1 [astro-ph.im] 25 Nov 2015

arxiv: v1 [astro-ph.im] 25 Nov 2015 arxiv:1511.08035v1 [astro-ph.im] 25 Nov 2015 THE ICRF-3: STATUS, PLANS, AND PROGRESS ON THE NEXT GENERATION INTERNATIONAL CELESTIAL REFERENCE FRAME Z. MALKIN 1, C.S. JACOBS 2, F. ARIAS 3, D. BOBOLTZ 4,

More information

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE Gaia News:Counting down to launch A. Vallenari INAF, Padova Astronomical Observatory on behalf of DPACE Outline Gaia Spacecraft status The Gaia sky Gaia open and globular clusters From data to science:

More information

Global and local bias in the FK5 from the Hipparcos data

Global and local bias in the FK5 from the Hipparcos data Astron. Astrophys. 354, 732 739 (2) ASTRONOMY AND ASTROPHYSICS Global and local bias in the FK5 from the Hipparcos data F. Mignard and M. Frœschlé Observatoire de la Côte d Azur, CERGA, UMR CNRS 6527,

More information

2 Conventional Celestial Reference System and Frame

2 Conventional Celestial Reference System and Frame The celestial reference system is based on a kinematical definition, making the axis directions fixed with respect to the distant matter of the universe. The system is materialized by a celestial reference

More information

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran The Gaia Mission Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany ISYA 2016, Tehran What Gaia should ultimately achieve high accuracy positions, parallaxes, proper motions e.g.

More information

Connecting terrestrial to celestial reference frames

Connecting terrestrial to celestial reference frames Russian Academy of Sciences Central Astronomical Observatory at Pulkovo IAU XXVIII General Assembly, Joint Discussion 7, Beijing, China, August 28, 2012 Connecting terrestrial to celestial reference frames

More information

Hp

Hp 5 ASTROMETRIC PROPERTIES OF THE HIPPARCOS CATALOGUE F. Mignard Observatoire de la C^ote d'azur, CERGA, UMR CNRS 6527, Avenue Copernic, F63 Grasse, France ABSTRACT The main statistical astrometric properties

More information

The Influence of Galactic Aberration on Precession Parameters Determined from VLBI Observations

The Influence of Galactic Aberration on Precession Parameters Determined from VLBI Observations ISSN 163-7729, Astronomy Reports, 211, Vol. 55, No. 9, pp. 81 815. c Pleiades Publishing, Ltd., 211. Original Russian Text c Z.M. Malkin, 211, published in Astronomicheskii Zhurnal, 211, Vol. 88, No. 9,

More information

Gaia DR2 astrometry. IAU 30 GA Division A: Fundamental Astronomy Vienna, 2018 August 27.

Gaia DR2 astrometry. IAU 30 GA Division A: Fundamental Astronomy Vienna, 2018 August 27. Gaia DR2 astrometry L. Lindegren 1 J. Hernández 2 A. Bombrun 2 S. Klioner 3 U. Bastian 4 M. Ramos-Lerate 2 A. de Torres 2 H. Steidelmüller 3 C. Stephenson 2 D. Hobbs 1 U. Lammers 2 M. Biermann 4 1 Lund

More information

Milky Way star clusters

Milky Way star clusters Using Γα ια for studying Milky Way star clusters Eugene Vasiliev Institute of Astronomy, Cambridge MODEST-, 26 June Overview of Gaia mission Scanning the entire sky every couple of weeks Astrometry for

More information

Defining Sources Selection and Celestial Reference Frame Stability

Defining Sources Selection and Celestial Reference Frame Stability The 17th of March, 2016 at Ekudeni, South Africa 9th IVS General Meeting Defining Sources Selection and Celestial Reference Frame Stability GATTANO C.¹, LAMBERT S.¹ ¹ SYRTE, Observatoire de Paris, PSL

More information

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars Gaia Stereoscopic Census of our Galaxy http://www.cosmos.esa.int/web/gaia http://gaia.ac.uk one billion pixels for one billion stars one percent of the visible Milky Way Gerry Gilmore FRS, UK Gaia PI,

More information

USNO Astrometry. Ralph Gaume, U.S. Naval Observatory. Commission 8. August 29, IAU XXVIII General Assembly

USNO Astrometry. Ralph Gaume, U.S. Naval Observatory. Commission 8. August 29, IAU XXVIII General Assembly USNO Astrometry Ralph Gaume, U.S. Naval Observatory ralph.gaume@usno.navy.mil Commission 8 August 29, 2012 IAU XXVIII General Assembly Overview Discuss and present status of USNO astrometric catalogs and

More information

Quasometry, Its Use and Purpose

Quasometry, Its Use and Purpose Quasometry, Its Use and Purpose Valeri Makarov, Ciprian Berghea, David Boboltz, Christopher Dieck, Bryan Dorland, Rachel Dudik, Alan Fey, Ralph Gaume, Xuming Lei, Norbert Zacharias US Naval Observatory

More information

Simulations of the Gaia final catalogue: expectation of the distance estimation

Simulations of the Gaia final catalogue: expectation of the distance estimation Simulations of the Gaia final catalogue: expectation of the distance estimation E. Masana, Y. Isasi, R. Borrachero, X. Luri Universitat de Barcelona GAIA DPAC - CU2 Introduction Gaia DPAC (Data Processing

More information

Strengthening the ICRS optical link in the northern hemisphere

Strengthening the ICRS optical link in the northern hemisphere Strengthening the ICRS optical link in the northern hemisphere Popescu Petre 1, Nedelcu Alin 1, Badescu Octavian 1,2, Paraschiv Petre 1 1 Astronomical Institute of Romanian Academy 2 Technical University

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3B. The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Orbit in Time 3.1 ORBITAL POSITION AS A FUNCTION OF TIME 3.1.1 Kepler

More information

The overture to a new era in Galactic science: Gaia's first data release. Martin Altmann Centre for Astrophysics of the University of Heidelberg

The overture to a new era in Galactic science: Gaia's first data release. Martin Altmann Centre for Astrophysics of the University of Heidelberg The overture to a new era in Galactic science: Gaia's first data release Martin Altmann Centre for Astrophysics of the University of Heidelberg Bogota, Gaia facts The promise The optical plane Scan law

More information

Gaia Data Release 1: Datamodel description

Gaia Data Release 1: Datamodel description Gaia Data Release 1: Datamodel description Documentation release D.0 European Space Agency and GaiaData Processing and Analysis Consortium September 13, 2016 Contents 1 Main tables 3 1.1 gaia source...............................

More information

Thoughts on future space astrometry missions

Thoughts on future space astrometry missions Thoughts on future space astrometry missions Anthony Brown Leiden Observatory brown@strw.leidenuniv.nl Sterrewacht Leiden With special thanks to Erik Høg Gaia Future Sub-µas astrometry Gaia2 Recommendations

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3. The Orbit in Space Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation: Space We need means of describing orbits in three-dimensional space. Example: Earth s oblateness

More information

IERS DB Retreat, Paris, France, 23 May ICRF-3 Overview

IERS DB Retreat, Paris, France, 23 May ICRF-3 Overview IERS DB Retreat, Paris, France, 23 May 2013 ICRF-3 Overview Jacobs, Ma, Gaume 2013/05/24 Ralph Gaume USNO & Chopo Ma, GSFC (presenters) Prepared by Christopher S. Jacobs, (ICRF-3 WG chair) Jet Propulsion

More information

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018 Stellar distances and velocities ASTR320 Wednesday January 24, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Why are stellar distances important? Distances

More information

The Impact of Gaia on Our Knowledge of Stars and Their Planets

The Impact of Gaia on Our Knowledge of Stars and Their Planets The Impact of Gaia on Our Knowledge of Stars and Their Planets A. Sozzetti INAF Osservatorio Astrofisico di Torino Know thy star know thy planet conference pasadena, 11/10/2017 The impact of Gaia on our

More information

IAU 2006 NFA GLOSSARY

IAU 2006 NFA GLOSSARY IAU 2006 NFA GLOSSARY Prepared by the IAU Division I Working Group Nomenclature for Fundamental Astronomy'' (latest revision: 20 November 2007) Those definitions corresponding to the IAU 2000 resolutions

More information

DETECTION OF POLARIZATION EFFECTS IN GAIA DATA

DETECTION OF POLARIZATION EFFECTS IN GAIA DATA Title : will be set by the publisher Editors : will be set by the publisher Publications Series, Vol.?, 2012 DETECTION OF POLARIZATION EFFECTS IN GAIA DATA F. Raison 1 Abstract. The Gaia satellite will

More information

arxiv: v1 [astro-ph] 13 Aug 2007

arxiv: v1 [astro-ph] 13 Aug 2007 Astronomy & Astrophysics manuscript no. 8357 c ESO 2008 February 1, 2008 Validation of the new Hipparcos reduction Institute of Astronomy, Madingley Road, Cambridge, UK Floor van Leeuwen arxiv:0708.1752v1

More information

Gaia: Astrometric performance and current status of the project

Gaia: Astrometric performance and current status of the project Relativity in Fundamental Astronomy Proceedings IAU Symposium No. 261, 2009 S. A. Klioner, P. K. Seidelman & M. H. Soffel, eds. c International Astronomical Union 2010 doi:10.1017/s1743921309990548 Gaia:

More information

A Random Walk Through Astrometry

A Random Walk Through Astrometry A Random Walk Through Astrometry Astrometry: The Second Oldest Profession George H. Kaplan Astronomical Applications Department Astrometry Department U.S. Naval Observatory Random Topics to be Covered

More information

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS 1 ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS Jan Vondrák, Astronomical Institute Prague P PART 1: Reference systems and frames used in astronomy:! Historical outline,

More information

Tidal Disruption Events in OGLE and Gaia surveys

Tidal Disruption Events in OGLE and Gaia surveys Tidal Disruption Events in OGLE and Gaia surveys Łukasz Wyrzykowski (pron: Woo-cash Vi-zhi-kov-ski) Warsaw University Astronomical Observatory, Poland IAU Symposium, New Frontiers in BH Astrophysics, Lubljana

More information

Astronomical Techniques

Astronomical Techniques Astronomical Techniques Lecture 2 Yogesh Wadadekar ISYA 2016, Tehran ISYA 2016, Tehran 1 / 51 How sun moves? How do stars move in the sky? ISYA 2016, Tehran 2 / 51 Celestial sphere ISYA 2016, Tehran 3

More information

High-performance computing in Java: the data processing of Gaia. X. Luri & J. Torra ICCUB/IEEC

High-performance computing in Java: the data processing of Gaia. X. Luri & J. Torra ICCUB/IEEC High-performance computing in Java: the data processing of Gaia X. Luri & J. Torra ICCUB/IEEC SciComp XXL May. 2009 1/33 Outline of the talk The European Space Agency Gaia, the galaxy in 3D The Gaia data

More information

Science Alerts from GAIA. Simon Hodgkin Institute of Astronomy, Cambridge

Science Alerts from GAIA. Simon Hodgkin Institute of Astronomy, Cambridge Science Alerts from GAIA Simon Hodgkin Institute of Astronomy, Cambridge Simon Hodgkin, IoA, Cambridge, UK 1 Discover the Cosmos, CERN, Sept 1-2 2011 A word on nomenclature Definition of a science alert:

More information

Exoplanetary transits as seen by Gaia

Exoplanetary transits as seen by Gaia Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

FUNDAMENTAL ASTRONOMY

FUNDAMENTAL ASTRONOMY FUNDAMENTAL ASTRONOMY Magda Stavinschi Astronomical Institute of the Romanian Academy No indication of the distance to the objects The astrometric information is generally NOT the direction from which

More information

Space astrometry with the Joint Milliarcsecond Astrometry Pathfinder

Space astrometry with the Joint Milliarcsecond Astrometry Pathfinder Relativity in Fundamental Astronomy Proceedings IAU Symposium No. 261, 2009 S. A. Klioner, P. K. Seidelman & M. H. Soffel, eds. c International Astronomical Union 2010 doi:10.1017/s1743921309990640 Space

More information

VISTA HEMISPHERE SURVEY DATA RELEASE 1

VISTA HEMISPHERE SURVEY DATA RELEASE 1 Release date (will be set by ESO) VISTA HEMISPHERE SURVEY DATA RELEASE 1 PROPOSAL ESO No.: 179.A-2010 PRINCIPAL INVESTIGATOR: Richard McMahon Authors: R. McMahon, M. Banerji, N. Lodieu for the VHS Collaboration

More information

Astr As ome tr tr ome y I M. Shao

Astr As ome tr tr ome y I M. Shao Astrometry I M. Shao Outline Relative astrometry vs Global Astrometry What s the science objective? What s possible, what are fundamental limits? Instrument Description Error/noise sources Photon noise

More information

The Astrometry Satellite Gaia

The Astrometry Satellite Gaia 656 th WE-Haereus Seminar, The Astrometry Satellite Gaia Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg http://www.stefan-jordan.de Gaia s schedule 1993: First proposal

More information

arxiv: v2 [astro-ph.im] 17 Jun 2016

arxiv: v2 [astro-ph.im] 17 Jun 2016 Mon. Not. R. Astron. Soc., () Printed June 6 (MN LATEX style file v.) Using radio stars to link the Gaia and VLBI reference frames arxiv:63.867v [astro-ph.im] 7 Jun 6 Zinovy Malkin,,3 Pulkovo Observatory,

More information

Challenges and Perspectives for TRF and CRF Determination

Challenges and Perspectives for TRF and CRF Determination , IVS 2012 General Meeting Proceedings, p.309 313 http://ivscc.gsfc.nasa.gov/publications/gm2012/boehm.pdf Johannes Böhm 1, Zinovy Malkin 2, Sebastien Lambert 3, Chopo Ma 4 1) Vienna University of Technology

More information

Correspondence*: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Correspondence*: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia Tomaž 1, 1 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia Correspondence*: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

More information

First Cycle Processing of Gaia data

First Cycle Processing of Gaia data Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8 12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-

More information

Relativity & Reference Frame Working Group. 6th Meeting -----

Relativity & Reference Frame Working Group. 6th Meeting ----- Relativity & Reference Frame Working Group 6th Meeting ----- F. Mignard 1 Registered attendants A. Andrei G. Anglada B. Bucciarelli P. Charlot M. T. Crosta F. De Felice D. Hestroffer S. A. Klioner J. Kovalevsky

More information

Gaia s view of star clusters

Gaia s view of star clusters Gaia s view of star clusters @Jos_de_Bruijne European Space Agency 15 November 2017 @ESAGaia #GaiaMission Figure courtesy ESA/Gaia/DPAC Gaia s first sky map Figure courtesy ESA/Gaia/DPAC Gaia s first sky

More information

Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES]

Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES] Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES] M. Gai, A. Vecchiato [INAF-OATo] A. Fienga, F. Vakili, J.P. Rivet, D. Albanese [OCA] Framework: Development of High Precision Astrometric Techniques

More information

Astrometric Properties of a Stochastic Gravitational Wave Background

Astrometric Properties of a Stochastic Gravitational Wave Background Astrometric Properties of a Stochastic Gravitational Wave Background Éanna Flanagan, Cornell Conference on Cosmology since Einstein Hong Kong University of Science and Technology 31 May 2011 Laura Book,

More information

A collective effort of many people active in the CU4 of the GAIA DPAC

A collective effort of many people active in the CU4 of the GAIA DPAC A collective effort of many people active in the CU4 of the GAIA DPAC (D. Hestroffer, P. Tanga, J.M. Petit, J. Berthier, W. Thuillot, F. Mignard, M. Delbò,...) The impact of GAIA on Asteroid Science will

More information

Coordinate Systems fundamental circle secondary great circle a zero point

Coordinate Systems fundamental circle secondary great circle a zero point Astrometry Coordinate Systems There are different kinds of coordinate systems used in astronomy. The common ones use a coordinate grid projected onto the celestial sphere. These coordinate systems are

More information

Coordinate Systems fundamental circle secondary great circle a zero point

Coordinate Systems fundamental circle secondary great circle a zero point Astrometry Coordinate Systems There are different kinds of coordinate systems used in astronomy. The common ones use a coordinate grid projected onto the celestial sphere. These coordinate systems are

More information

Astrometric planet detectability with Gaia, a short AGISLab study

Astrometric planet detectability with Gaia, a short AGISLab study Astrometric planet detectability with Gaia, a short AGISLab study prepared by: affiliation : approved by: reference: issue: 1 revision: 0 B. Holl Lund Observatory date: 11-09-15 status: Issued Abstract

More information

Gaia Photometric Data Analysis Overview

Gaia Photometric Data Analysis Overview Gaia Photometric Data Analysis Overview Gaia photometric system Paola Marrese Sterrewacht Leiden marrese@strw.leidenuniv.nl Role of photometry in overall Gaia data analysis Photometric data analysis goals

More information

468 Six dierent tests were used to detect variables, with dierent sensitivities to light-curve features. The mathematical expression for the limiting

468 Six dierent tests were used to detect variables, with dierent sensitivities to light-curve features. The mathematical expression for the limiting 467 PHOTOMETRIC ARIABILITY IN THE HR-DIAGRAM L. Eyer, M. Grenon Geneva Observatory, CH-129 Sauverny, Switzerland ABSTRACT The Hipparcos satellite has detected systematically variable stars when the amplitudes

More information

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

Astronomical coordinate systems. ASTR320 Monday January 22, 2018 Astronomical coordinate systems ASTR320 Monday January 22, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Other news Munnerlyn lab is hiring student engineers

More information

Rio survey of optical astrometric positions for 300 ICRF2 sources and the current optical/radio frame link status before Gaia

Rio survey of optical astrometric positions for 300 ICRF2 sources and the current optical/radio frame link status before Gaia MNRAS 430, 2797 2814 (2013) doi:10.1093/mnras/stt081 Rio survey of optical astrometric positions for 300 ICRF2 sources and the current optical/radio frame link status before Gaia M. Assafin, 1 R. Vieira-Martins,

More information

Lick Northern Proper Motion Program. III. Lick NPM2 Catalog

Lick Northern Proper Motion Program. III. Lick NPM2 Catalog Lick Northern Proper Motion Program. III. Lick NPM2 Catalog Robert B. Hanson, Arnold R. Klemola, and Burton F. Jones University of California Observatories/Lick Observatory, University of California, Santa

More information

Challenges and perspectives for CRF and TRF determination

Challenges and perspectives for CRF and TRF determination Challenges and perspectives for CRF and TRF determination J. Böhm, Z. Malkin, S. Lambert, C. Ma with contributions by H. Spicakova, L. Plank, and H. Schuh Consistency TRF EOP CRF ITRF2008 from VLBI/GNSS/SLR/DORIS

More information

Selecting stable extragalactic compact radio sources from the permanent astrogeodetic VLBI program. M. Feissel-Vernier

Selecting stable extragalactic compact radio sources from the permanent astrogeodetic VLBI program. M. Feissel-Vernier A&A 43, 15 11 (23) DOI: 1.151/4-6361:23348 c ESO 23 Astronomy & Astrophysics Selecting stable extragalactic compact radio sources from the permanent astrogeodetic VLBI program M. Feissel-Vernier Observatoire

More information

PoS(IX EVN Symposium)056

PoS(IX EVN Symposium)056 A VLBI survey of weak extragalactic radio sources to align the ICRF and the future Gaia celestial reference frame and P. Charlot Laboratoire d Astrophysique de Bordeaux, Université de Bordeaux, CNRS UMR

More information

Structure of nuclei of extragalactic radio sources and the link with GAIA

Structure of nuclei of extragalactic radio sources and the link with GAIA Structure of nuclei of extragalactic radio sources and the link with GAIA J Roland, IAP & S Lambert, SYRTE I General properties of extragalactic radio sources Radio galaxies : associated with elliptical

More information

A compilation of known QSOs for the Gaia mission

A compilation of known QSOs for the Gaia mission Research in Astron. Astrophys. 2012 Vol. X No. XX, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics A compilation of known QSOs for the Gaia mission

More information

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky A&A 392, 341 351 (2002) DOI: 10.1051/0004-6361:20020931 c ESO 2002 Astronomy & Astrophysics Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy P. K. Seidelmann

More information

Optical positions of compact extragalactic radio sources with respect to the Hipparcos Catalogue

Optical positions of compact extragalactic radio sources with respect to the Hipparcos Catalogue ASTRONOMY & ASTROPHYSICS AUGUST 1998, PAGE 259 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 131, 259 263 (1998) Optical positions of compact extragalactic radio sources with respect to the Hipparcos

More information

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS M. SĘKOWSKI Institute of Geodesy and Cartography ul. Modzelewskiego 27, Warsaw,

More information

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars Characterization of the exoplanet host stars Exoplanets Properties of the host stars Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic

More information

Tristan Cantat-Gaudin

Tristan Cantat-Gaudin Open Clusters in the Milky Way with Gaia ICCUB Winter Meeting 1-2 Feb 2018, Barcelona Tristan Cantat-Gaudin Carme Jordi, Antonella Vallenari, Laia Casamiquela, and Gaia people in Barcelona and around the

More information

Transient Astronomy with the Gaia Satellite

Transient Astronomy with the Gaia Satellite Transient Astronomy with the Gaia Satellite Simon Hodgkin, Lukasz Wyrzykowski, Ross Burgon, Sergey Koposov, Nadejda Blagorodnova, Floor van Leeuwen, Vasily Belokurov, Laurent Eyer, Timo Prusti, Nic Walton

More information

Morphology of QSOs the gridpoints of the Gaia Celestial Reference Frame

Morphology of QSOs the gridpoints of the Gaia Celestial Reference Frame Morphology of QSOs the gridpoints of the Gaia Celestial Reference Frame Alexandre H. Andrei 1,2,3,4, Sonia Anton 5, François Taris 3, Sébastien Bouquillon 3, Jean Souchay 3, Roberto Vieira Martins 1, Júlio

More information

Celestial Coordinate Systems

Celestial Coordinate Systems Celestial Coordinate Systems Horizon Coordinates h - altitude: +-90 deg A - azimuth (0-360 deg, from N through E, on the horizon) z - zenith distance; 90 deg - h (refraction, airmass) Kaler Equatorial

More information

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2368 Bright Quasar 3C 273 Thierry J-L Courvoisier From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics

More information

Star clusters before and after Gaia Ulrike Heiter

Star clusters before and after Gaia Ulrike Heiter Star clusters before and after Gaia Ulrike Heiter Uppsala University Outline Gaia mission overview Use of stellar clusters for calibration of stellar physical parameters Impact of Gaia data on cluster

More information

Local Volume, Milky Way, Stars, Planets, Solar System: L3 Requirements

Local Volume, Milky Way, Stars, Planets, Solar System: L3 Requirements Local Volume, Milky Way, Stars, Planets, Solar System: L3 Requirements Anthony Brown Sterrewacht Leiden brown@strw.leidenuniv.nl Sterrewacht Leiden LSST@Europe2 2016.06.21-1/8 LSST data product levels

More information

A Comparison of Radio and Optical Astrometric Reduction Algorithms

A Comparison of Radio and Optical Astrometric Reduction Algorithms A Comparison of Radio and Optical Astrometric Reduction Algorithms G. H. Kaplan U.S. Naval Observatory ghk@newcomb.usno.navy.mil Abstract This paper examines the correspondence between two approaches to

More information

Gaia: a new vision of our Galaxy and our neighbours

Gaia: a new vision of our Galaxy and our neighbours Mem. S.A.It. Vol. 85, 560 c SAIt 2014 Memorie della Gaia: a new vision of our Galaxy and our neighbours Annie C. Robin 1, C. Reylé 1, X. Luri 2, and the Gaia DPAC 1 Institut Utinam, CNRS-UMR6213, OSU THETA,

More information

The Gaia astrometric measurement model: error budget and calibration issues.

The Gaia astrometric measurement model: error budget and calibration issues. Università degli Studi di Siena Facoltà di Scienze M.F.N. Tesi di Dottorato in Fisica sperimentale PhD. Thesis in Experimental Physics The Gaia astrometric measurement model: error budget and calibration

More information

SkyMapper and the Southern Sky Survey

SkyMapper and the Southern Sky Survey SkyMapper and the Southern Sky Survey Stefan Keller Mt. Stromlo Observatory Brian Schmidt, Mike Bessell and Patrick Tisserand SkyMapper 1.35m telescope with a 5.7 sq. degree field of view located at Siding

More information

The celestial reference system and its role in the epoch of global geodetic technologies

The celestial reference system and its role in the epoch of global geodetic technologies Reports on Geodesy, vol. 92, no. 1, 2012 The celestial reference system and its role in the epoch of global geodetic technologies Jerzy B. Rogowski 1, Aleksander Brzeziński 1,2 1 Warsaw University of Technology,

More information

On the definition and use of the ecliptic in modern astronomy

On the definition and use of the ecliptic in modern astronomy On the definition and use of the ecliptic in modern astronomy Nicole Capitaine (1), Michael Soffel (2) (1) : Observatoire de Paris / SYRTE (2) : Lohrmann Observatory, Dresden Technical University Introduction

More information

Very Long Baseline Interferometry (VLBI) Wei Dou Tutor: Jianfeng Zhou

Very Long Baseline Interferometry (VLBI) Wei Dou Tutor: Jianfeng Zhou Very Long Baseline Interferometry (VLBI) Wei Dou Tutor: Jianfeng Zhou 2017 03-16 Content Introduction to interferometry and VLBI VLBA (Very Long Baseline Array) Why VLBI In optics, airy disk is a point

More information

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object Coordinate Systems for Astronomy or: How to get your telescope to observe the right object Figure 1: Basic definitions for the Earth Definitions - Poles, Equator, Meridians, Parallels The rotation of the

More information

Catalog Information and Recommendations

Catalog Information and Recommendations Catalog Information and Recommendations U.S. Naval Observatory, December, 2000 P.O.C. Sean Urban (seu@pyxis.usno.navy.mil) 1 Introduction The following is a list of widely used or well known catalogs for

More information

The VLBI contribution to precession (present and future)

The VLBI contribution to precession (present and future) The VLBI contribution to precession (present and future) N.Capitaine (1) and P. Wallace (2) (1) Observatoire de Paris/Syrte (2) RAL, HMNAO Precession-nutation parameters Classical: equinox-based fixed

More information

Astronomy 7A Midterm #1 September 29, 2016

Astronomy 7A Midterm #1 September 29, 2016 Astronomy 7A Midterm #1 September 29, 2016 Name: Section: There are 2 problems and 11 subproblems. Write your answers on these sheets showing all of your work. It is better to show some work without an

More information

Planets Around M-dwarfs Astrometric Detection and Orbit Characterization

Planets Around M-dwarfs Astrometric Detection and Orbit Characterization Planets Around M-dwarfs Page of 7 Planets Around M-dwarfs Astrometric Detection and Orbit Characterization N. M. Law (nlaw@astro.caltech.edu), S. R. Kulkarni, R. G. Dekany, C. Baranec California Institute

More information

Detection of Faint Stars Near Gaia Objects

Detection of Faint Stars Near Gaia Objects Detection of Faint Stars Near Gaia Objects Shahin Jafarzadeh Lund Observatory Lund University 29-EXA34 Degree project of 6 higher education credits (for a degree of Master) April 29 Lund Observatory Box

More information

Selection of stars to calibrate Gaia

Selection of stars to calibrate Gaia Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8 12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-

More information

PoS(11th EVN Symposium)104

PoS(11th EVN Symposium)104 Alert system for the VLBI database of ICRF2 sources. Preparatory case study. Aalto University Metsähovi Radio Observatory, Kylmälä, Finland E-mail: elizaveta.rastorgueva@aalto.fi Nataliya Zubko Finnish

More information