Gun-Barrel Vibrations of Rapid-Fire Medium Caliber Guns Prof Tom Dawson U. S. Naval Academy April 23, 2008

Size: px
Start display at page:

Download "Gun-Barrel Vibrations of Rapid-Fire Medium Caliber Guns Prof Tom Dawson U. S. Naval Academy April 23, 2008"

Transcription

1 43RD ANNUAL ARMAMENT SYSTEMS: GUN & MISSILE SYSTEMS CONFERENCE Gun-Barrel Vibrations of Rapid-Fire Medium Caliber Guns Prof Tom Dawson U. S. Naval Academy April 23, 2008 with support from NAVSEA Naval Gunnery Project Office and Naval Surface Warfare Center Dahlgren

2 I. Background

3 Barrel Vibrations Barrel vibrations can affect accuracy of both slow firing and rapid firing guns by causing positive or negative muzzle jump during projectile launch. Vibrations can arise from gravity-caused barrel droop or barrel curvature from manufacturing or both. Possible enhanced effect with rapid-fire guns where vibrations from one round continue to exist and can be reinforced by subsequent rounds.

4 Present Interest in rapid-fire medium-caliber gun mounts and the effects of barrel vibrations on their accuracy. Motivation generated by evaluation and selection of gun mounts for the new Littoral Combat Ships and for other similar Navy needs

5 Early Navy Work Near-muzzle barrel vibrations of 3-in/70 Gun Mount during travel of projectile through the barrel -Single Firings

6 Dahlgren Report of 1951 B. M. Gurley & S.E. Hedden Novel use of optical reflections and Fastax camera to measure rotations (slopes) of barrel section near muzzle during projectile launch

7 and Early Record of Barrel Vibrations Section Rotation Δφ = φ 1 φ 2 φ 2 φ 1

8 Early Army Work Dispersion of machine-gun fire as influenced by firing rate. Increased dispersion measured when firing rate near fundamental barrel vibration frequency - or twice that frequency. Basis for design criterion that: barrel frequency in cycles/sec should generally be 4 (or more) times the firing rate in rounds/sec.

9 1955 Report on Barrel Vibrations D. E. Wente R. L. Schoenberger B. E. Quinn First study of dynamic amplification of barrel vibrations from tuned firing rates

10 Dynamic Amplification of Barrel (from 1955 Army Report) Dispersion R Avg Circle Barrel curvature from manufacture

11 Previous Numerical Work on Barrel Vibrations Numerical studies were carried out at the Army s Watervliet Arsenal during 1970 s (and onward) with attention restricted to barrel vibrations before projectile exit: No multiple firings.

12 II. Computer Model

13 Lumped-Mass Model & Mechanic 16 mass model mass m n P n-1 Pn V s & M s depend on v s at n-1, n, n+1 & projectile load P (if between n-1 and n+1) If P between n-1 and n P n-1 = F Otherwise 0 If P between n and n+1 P n = F Otherwise 0

14 Projectile Forces on Barrel Centrifugal Forces Simple Example Actual Case Friction Forces Typical Coeff of Friction μ 0.20 to 0.30

15 III. Generic 3in /60 Gun Mount (Firing 14 lb Projectiles)

16 Generic Barrel 5 Rigid Barrel (No attachments) 10 Flexible Assumed Fixed vibration frequencies ω 1 = 62.0 rad/sec = 9.87 cycles/sec ω 2 = 387 rad/sec = 61.6 cycles/sec etc Flexible Length Inside Dia = 3 in Outside Dia = 4 in Flexible section divided into 16 lumped masses. Accuracy checked by increasing number to 32 and then to 48 as shown in the following

17 Assumed Projectile Velocity in Barrel S VELOCITY (F/S) ft From Leduc Formula assuming 50% of muzzle velocity achieved at first 15% of barrel length V Muzzle (15 ft) as = S + b DISTANCE ALONG BARREL S (ft)

18 Demonstration of Adequacy of Lumped-Mass Model - Idealized Case- Negligible Friction between Spinning Projectile and Barrel

19 Convergence with number of mass elements Displacemnet (in) Mass Model 16 Mass Model 48 Mass Model Friction Coeff μ = 0 Projectile Location at X=5 VERTICAL DISPLACEMENTS (Relative to static values) Distance X Distance X along Barrel (ft)

20 Adequacy of Computer Solution VT P Vertical Deflection (in) Computer Program From Analytical (Exact) Theory Instantaneous Projectile Position at VT=5' Simplified Case Constant Projectile Force P=2000 lbs Constant Projectile Velocity V= 2500 ft/sec Friction Coeff μ = Distance along Barrel (ft)

21 Detailed Results -Actual Case- First-Round Barrel Response Free Vibrations following First Round Response Characteristics after Multiple Rounds

22 First-Round Barrel Response

23 Muzzle Deflections vs. Time 0.02 Vertical Displacement (in) Muzzle Deflections (relative to static values) First Round F H F V Friction μ =0.2 Friction μ = 0.3 f= μ F H Time (msec)

24 Dynamic Section Rotation Comparison with 1951 Dahlgren Data Relative Section Rotation (rad) Data Round D Optical Measurements B. M. Gurley & S. E. Hedden NPG Report 804 Dahlgren (1951) Theory (μ = 0.2) Time (msec) Theory (μ = 0) (solid line) Time Normalized to Generic 3" / 60 Rotations as Measured

25 Free Vibrations following First Round

26 Free Vibration of Muzzle (note check of analytical solution & damping value) Muzzle Vibration about Static Position after First-Round Projectile Exit Displacement (in) Free-Vibration Analytical Solution Computer Solution Time (msec) Moderate Damping K = 0.03

27 Response Characteristics after Multiple Rounds

28 Dynamic Amplification Relative Displacement (in) Muzzle Deflection after 4 Round Burst Relative to Static Values Firing Rate (rds/min) 113 Damping K = 0.03 Friction Coefficient ''/60 Generic

29 Barrel Deflections (note continuing input of energy Actual Deflections Firing Rate 113 rds/min Deflection (in) Moderate Damping K = 0.03 Friction Factor μ = 0.30 Begin Round 5 Begin Round 3 Begin Round Initial Static Droop Distance along Barrel (ft)

30 IV. Application to USN Mark 75 (80 rds/min)

31 Mark 75 3"/62 (80 rds/ min) USS Curts FFG 38

32 Barrel Details Mark 75 (3in/62) Gun Mount Muzzle Break 10 ft (effective) Barrel & Water Jacket Bore Evacuator & Lock Nut

33 Mark 75 - Idealized Barrel Description Barrel (with attachments) Rigid Flexible 97 lbs 56 lbs Gas Evac & Lock Nut & ½ Al Cover Muzzle Break & ½ Al Cover Modal Frequencies ω 1 = 41 rad/sec (6.5 cycles/sec) ω 2 = 276 rad/sec (44 cycles/sec) etc Flexible Length Inside Dia = 3 in Outside Dia = 4 in Leduc formula for projectile velocity

34 Variable Firing Rates Normal (Bell-Shaped) Distribution 0.12 Probabiliy Density (1/rds/min) Average 80 rds/min Std Dev = 4 rds/min 68 % ±4 rds/min 95 % ±8 rds/min Normal Distribution Differrence between Firing Rate & Average Firing Rate (rds/min)

35 Dispersion: Theory vs. Measurement Round Bursts Target Target Distance Distance 1500' 1500' 8 6 Moderate Damping Damping (K =0.03) (K =0.03) Friction Coeff (μ = 0.20) (μ = 0.20) Std Dev R(Theory) = 2.91 R(Data) = 2.93 R = 2.93' =2mrad R = 2.93' =2 mrad USN.Mark 75 3 / 62 Gun Mount.firing.14 lb Projectiles -8 Two Bursts -Theory Two Bursts- Dahlgren Data Two Burst Dahlgren Data Mean Firing Rate 80 rds/min Std Dev 4 rds/min Freq Ratio =

36 V. Application to Study of Oto Melara 76 mm/62 SR (120 rds/min)

37 Oto Melara 76mm/62 SR (Super Rapid Gun Mount

38 Mark 75 vs 76mm SR Mark 75 Mark 75 ( 1970) SR( 2000) Firing Out of Battery In Battery Avg Firing rate 80 rds/min 120 rds/min Accuracy (10-rd burst) 1.9 mrad 0.30 mrad* *Reported on web page 76mm SR with standard shield

39 Extracted From Web Page: Italian 76mm/62 (3 ) The SR is an improved faster-firing version of the Mark 75. Accuracy improved partly by reducing the weights of the moving parts. Claims are that these changes have reduced the radial-error standard deviation values to less than 0.3 mrad for 10-round burst

40 Examination with Theory What if firing rate of Mark 75 is increased 50% to 120 rds/min? See table. Dispersion increased from about 1.9 mrad at 80 rds/sec to about 6.5 mrad at 120 rd/min (for 10-Rd Bursts) Mark 75 (modified) Firing Rate Radial Dispersion* (rds/min) (Std Dev in mrad) mrad mrad * 10 Rd Bursts (avg of 4)

41 What if weights of gas evacuator & muzzle break are then reduced by 50%? (Avg of data from generic and Mark 75) Dispersion reduced from about 6.5 mrad to about 4.5 mrad (for 10-rd bursts) Conclusion: Cannot achieve reported accuracy for 120 mm SR with only a reduction of add-on weights of Mark 75 when modified for 120 rds/min

42 What if increased damping of barrel vibrations? See graph below. Dispersion (dashed line) reduced from about 4.5 mrad to about 0.5 mrad for 200% increase in damping. Std Dev of Radial Dispersion (mrad) present Mark 75 Mark 75 (Avg 120 rds/min) Average Curve for (50% reduction in add-on weights) Generic 3''/60 (Avg 120 rds/min) 10 Round Bursts Avg of 4 Bursts (circles) Damping Coefficient

43 VI. Concluding Remarks

44 Barrel Vibrations Work Analysis can explore performance aspects of rapid fire guns not possible with limited testing. Can be of value in assessing factors for Navy needs when considering cost, accuracy, sensitivity to firing rate, inherent damping of vibrations, age effects, etc. Barrel vibrations can affect gun effectiveness and barrel wear. Longer term implications of work are improved fire control & accuracy and improved maintainability regarding barrel wear

A Radical Method for Calculating Muzzle Motion From Proximity Sensor Data

A Radical Method for Calculating Muzzle Motion From Proximity Sensor Data A Radical Method for Calculating Muzzle Motion From Proximity Sensor Data by Ilmars Celmins ARL-TR-6575 September 2013 Approved for public release; distribution is unlimited. NOTICES Disclaimers The findings

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Machine Gun Sight (MGS)

Machine Gun Sight (MGS) Machine Gun Sight (MGS) Crew Served Weapon Sight (Model: MGS-XXX) 2016 Company Proprietary The Machine Gun Sight (MGS) Tested with 20,000+ rounds Background IT&T successfully introduced red-dot sights

More information

Physics I Exam 1 Fall 2014 (version A)

Physics I Exam 1 Fall 2014 (version A) 95.141 Physics I Exam 1 Fall 014 (version A) Section Number Section instructor Last/First Name (print) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

Oin Figure 2. The peak gun launch pressure is 43,000 psi, which results in MAR

Oin Figure 2. The peak gun launch pressure is 43,000 psi, which results in MAR 'N GUN LAUNCH DYNAMICS OF THE NAVY S-INCH GUIDED PROJECTILE George Fotieo Martin Marietta Aerospace Orlando, Florida ABSTRACT,The design and qualification of the Navy 5-inch guided projectile components

More information

Multiple Choice -- TEST III

Multiple Choice -- TEST III Multiple Choice Test III--Classical Mechanics Multiple Choice -- TEST III 1) n atomic particle whose mass is 210 atomic mass units collides with a stationary atomic particle B whose mass is 12 atomic mass

More information

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension. (1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are

More information

Q: Does velocity make tips melt or is it just a matter of exposure to aerodynamic friction over time?

Q: Does velocity make tips melt or is it just a matter of exposure to aerodynamic friction over time? ELD-X, ELD Match and Heat Shield Frequently Asked Questions Q: Does velocity make tips melt or is it just a matter of exposure to aerodynamic friction over time? A: It is a function of the softening point

More information

Shooting Errors Simulations Initiated by Barrel Jumping of 40 mm Turret Guns

Shooting Errors Simulations Initiated by Barrel Jumping of 40 mm Turret Guns PROBLEMS OF MECHATRONICS ARMAMENT, AVIATION, SAFETY ENGINEERING ISSN 081-5891 5, 4 (18), 014, 1-3 Shooting Errors Simulations Initiated by Barrel Jumping of 40 mm Turret Guns Aleksandar KARI 1*, Olivera

More information

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1 Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

average speed instantaneous origin resultant average velocity position particle model scalar

average speed instantaneous origin resultant average velocity position particle model scalar REPRESENTING MOTION Vocabulary Review Write the term that correctly completes the statement. Use each term once. average speed instantaneous origin resultant average velocity position particle model scalar

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Jonathan Fraser METEOR Project P07102 Environmental Test Stand Project Manager/Lead Engineer Detail Design Review Report

Jonathan Fraser METEOR Project P07102 Environmental Test Stand Project Manager/Lead Engineer Detail Design Review Report Jonathan Fraser METEOR Project P07102 Environmental Test Stand Project Manager/Lead Engineer Detail Design Review Report The project, P07102 Environmental Test Stand, is specifically involved in the design,

More information

King of Battle: The Cannon David C. Arney, Charles Clark

King of Battle: The Cannon David C. Arney, Charles Clark King of Battle: The Cannon David C. Arney, Charles Clar Introduction In this section, we discuss some of the basic considerations in firing artillery rounds: the motion of the projectile and the recoil

More information

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1. Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiple-choice

More information

PHYS 100 Mid-Term #1

PHYS 100 Mid-Term #1 D.W. Poppy Secondary School Physics 12 PHYS 100 Mid-Term #1 Name: Directions: Fill in the scantron form with the following information: 1. ID number (student number) 2. Name at top of form 3. Name bubbled

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels

Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels MS Thesis Jon DeLong Department of Mechanical Engineering Clemson University OUTLINE Merger of ceramics into the conventional steel

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

UIC Physics 105. Midterm 1 Practice Exam. Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE

UIC Physics 105. Midterm 1 Practice Exam. Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE UIC Physics 5 Midterm 1 Practice Exam Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE Multiple Choice Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 40 Total 0 Page 1 of 11 MULTIPLE

More information

Centripetal Acceleration & Projectile Motion. 4th 6wks

Centripetal Acceleration & Projectile Motion. 4th 6wks Centripetal Acceleration & Projectile Motion 4th 6wks Centripetal Force and Acceleration Centripetal Acceleration (A C ) is the acceleration of an object towards the center of a curved or circular path.

More information

b) Use your result from part (a) to find the slope of the tangent line to the parametric 2 4

b) Use your result from part (a) to find the slope of the tangent line to the parametric 2 4 AP Calculus BC Lesson 11. Parametric and Vector Calculus dy dy 1. By the chain rule = a) Solve the chain rule equation above for dy b) Use your result from part (a) to find the slope of the tangent line

More information

Prob. 1 SDOF Structure subjected to Ground Shaking

Prob. 1 SDOF Structure subjected to Ground Shaking Prob. 1 SDOF Structure subjected to Ground Shaking What is the maximum relative displacement and the amplitude of the total displacement of a SDOF structure subjected to ground shaking? magnitude of ground

More information

Stochastic study of 60-mm gun-projectile responses

Stochastic study of 60-mm gun-projectile responses Computational Ballistics III 77 Stochastic study of 60-mm gun-projectile responses M. Chen Army Research Laboratory, USA Abstract Gun propulsion modeling has been under development for many decades. Starting

More information

Mechanical Engineering Division June 1, 2010

Mechanical Engineering Division June 1, 2010 Mechanical Engineering Division June 1, 2010 Mr. Jimmy H. Allen Leading Edge Group, Inc. 33 Lynn Batts Lane, Suite #4204 San Antonio, TX 78218 Subject: SwRI Final Report Project 18122.07.003.50cal and

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

Chapter 6 Review Answer Key

Chapter 6 Review Answer Key Chapter 6 Review Answer Key Understanding Vocabulary 1. displacement 2. trajectory 3. projectile 4. parabola 5. range 6. revolves 7. rotates 8. angular speed 9. centripetal force 10. law of universal gravitation

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

SOLUTION T 1 + U 1-2 = T C(31.5)(2.5)A10 6 B(0.2)D = 1 2 (7)(v 2) 2. v 2 = 2121 m>s = 2.12 km>s. Ans. (approx.

SOLUTION T 1 + U 1-2 = T C(31.5)(2.5)A10 6 B(0.2)D = 1 2 (7)(v 2) 2. v 2 = 2121 m>s = 2.12 km>s. Ans. (approx. 4 5. When a 7-kg projectile is fired from a cannon barrel that has a length of 2 m, the explosive force exerted on the projectile, while it is in the barrel, varies in the manner shown. Determine the approximate

More information

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

Normal Force. W = mg cos(θ) Normal force F N = mg cos(θ) F N

Normal Force. W = mg cos(θ) Normal force F N = mg cos(θ) F N Normal Force W = mg cos(θ) Normal force F N = mg cos(θ) Note there is no weight force parallel/down the include. The car is not pressing on anything causing a force in that direction. If there were a person

More information

Projectile balloting attributable to gun tube curvature

Projectile balloting attributable to gun tube curvature Shock and Vibration 17 (2010) 39 53 39 DOI 10.3233/SAV-2010-0496 IOS Press Projectile balloting attributable to gun tube curvature Michael M. Chen US Army Research Laboratory, AMSRD-ARL-WM-BC, Aberdeen

More information

T1 T e c h n i c a l S e c t i o n

T1 T e c h n i c a l S e c t i o n 1.5 Principles of Noise Reduction A good vibration isolation system is reducing vibration transmission through structures and thus, radiation of these vibration into air, thereby reducing noise. There

More information

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV Mohansing R. Pardeshi 1, Dr. (Prof.) P. K. Sharma 2, Prof. Amit Singh 1 M.tech Research Scholar, 2 Guide & Head, 3 Co-guide & Assistant

More information

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits?

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits? Name Period Date Honor Physics Final Exam Review Circuits You should be able to: Calculate the total (net) resistance of a circuit. Calculate current in individual resistors and the total circuit current.

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/inzler PHYSICS DEPATMENT PHY 2053 Final Exam April 27, 2013 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Mechanics TUTORIAL 1 You will find tutorials on each topic. The fully worked out answers are available. The idea is

More information

Level 3 Physics, 2018

Level 3 Physics, 2018 91524 915240 3SUPERVISOR S Level 3 Physics, 2018 91524 Demonstrate understanding of mechanical systems 2.00 p.m. Tuesday 20 November 2018 Credits: Six Achievement Achievement with Merit Achievement with

More information

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran Response Spectrum Analysis Shock and Seismic FEMAP & NX Nastran Table of Contents 1. INTRODUCTION... 3 2. THE ACCELEROGRAM... 4 3. CREATING A RESPONSE SPECTRUM... 5 4. NX NASTRAN METHOD... 8 5. RESPONSE

More information

Science 20 Physics Review

Science 20 Physics Review Science 20 Physics Review Name 1. Which velocity-time graph below best represents the motion of an object sliding down a frictionless slope? a. b. c. d. Numerical response 1 The roadrunner is moving at

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Preliminary Examination - Dynamics

Preliminary Examination - Dynamics Name: University of California, Berkeley Fall Semester, 2018 Problem 1 (30% weight) Preliminary Examination - Dynamics An undamped SDOF system with mass m and stiffness k is initially at rest and is then

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Web Resources for Physics 1 Physics Classroom http://www.khanacademy.org/science/physics http://ocw.mit.edu/courses/physics/ Quantities in Motion Any motion involves three

More information

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 8 Balancing Lecture - 1 Introduce To Rigid Rotor Balancing Till

More information

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318 Introduction to Mechanics, Heat, and Sound /FIC 318 Lecture III Motion in two dimensions projectile motion The Laws of Motion Forces, Newton s first law Inertia, Newton s second law Newton s third law

More information

2.9 Motion in Two Dimensions

2.9 Motion in Two Dimensions 2 KINEMATICS 2.9 Motion in Two Dimensions Name: 2.9 Motion in Two Dimensions 2.9.1 Velocity An object is moving around an oval track. Sketch the trajectory of the object on a large sheet of paper. Make

More information

Ms. Peralta s IM3 HW 5.4. HW 5.4 Solving Quadratic Equations. Solve the following exercises. Use factoring and/or the quadratic formula.

Ms. Peralta s IM3 HW 5.4. HW 5.4 Solving Quadratic Equations. Solve the following exercises. Use factoring and/or the quadratic formula. HW 5.4 HW 5.4 Solving Quadratic Equations Name: Solve the following exercises. Use factoring and/or the quadratic formula. 1. 2. 3. 4. HW 5.4 5. 6. 4x 2 20x + 25 = 36 7. 8. HW 5.4 9. 10. 11. 75x 2 30x

More information

Results from Air Force Investigation into 20mm Case Neck Separation

Results from Air Force Investigation into 20mm Case Neck Separation Results from Air Force Investigation into 20mm Case Neck Separation NDIA Joint Armaments Conference 14-17 May 2012 Patrick Gray 780 TS/OGMTG Eglin AFB, FL 1 Presentation Outline 20mm Case Neck Separation

More information

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load.

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load. Technical data Load Rating & Life Under normal conditions, the linear rail system can be damaged by metal fatigue as the result of repeated stress. The repeated stress causes flaking of the raceways and

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 WORK, POWER AND ENERGY TRANSFER IN DYNAMIC ENGINEERING SYSTEMS TUTORIAL 1 - LINEAR MOTION Be able to determine

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

Projectile and Circular Motion Review Packet

Projectile and Circular Motion Review Packet Conceptual Physics Projectile and Circular Motion Review Packet Mr. Zimmerman Textbook Reference: pp. 33-42, 122-135 Key Terms (fill in definitions) projectile - any object that moves through the air or

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Vector Geometry Final Exam Review

Vector Geometry Final Exam Review Vector Geometry Final Exam Review Problem 1. Find the center and the radius for the sphere x + 4x 3 + y + z 4y 3 that the center and the radius of a sphere z 7 = 0. Note: Recall x + ax + y + by + z = d

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Spring-Loop-the-Loop Problem Set 8 A small block of mass m is pushed against a spring with spring constant k and held in place

More information

Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module - 12 Signature analysis and preventive maintenance Lecture - 3 Field balancing

More information

MODELING BIOMECHANICAL INTERACTION HUMAN - SMALL ARMS

MODELING BIOMECHANICAL INTERACTION HUMAN - SMALL ARMS MODELING BIOMECHANICAL INTERACTION HUMAN - SMALL ARMS Ľubomír UHERÍK* Faculty of Special Technology, Alexander Dubček University of Trenčín, Pri Parku 19, 911 05, Trenčín, Slovakia *Corresponding author

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics C 17 * Sections C11-C18, C20 2016-2017 1 Required Background 1. INTRODUCTION CLASS 1 The definition of the derivative, Derivative

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

To conduct the experiment, each person in your group should be given a role:

To conduct the experiment, each person in your group should be given a role: Varying Motion NAME In this activity, your group of 3 will collect data based on one person s motion. From this data, you will create graphs comparing displacement, velocity, and acceleration to time.

More information

REPORT NO. 202 TEST OF CALIBER 0.50 BARRELS HAVING REDU CED HEIGHT OF LANDS BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

REPORT NO. 202 TEST OF CALIBER 0.50 BARRELS HAVING REDU CED HEIGHT OF LANDS BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND I i I REPORT NO. 202 TEST OF CALIBER 0.50 BARRELS HAVING REDU CED HEIGHT OF LANDS by? J. R. lane September 1940 I This document has been approved for public release and sal~ its distribution is unlimited.

More information

Designing Mechanical Systems for Suddenly Applied Loads

Designing Mechanical Systems for Suddenly Applied Loads Designing Mechanical Systems for Suddenly Applied Loads Abstract Integrated Systems Research May, 3 The design of structural systems primarily involves a decision process dealing with three parameters:

More information

Rotational Dynamics, Moment of Inertia and Angular Momentum

Rotational Dynamics, Moment of Inertia and Angular Momentum Rotational Dynamics, Moment of Inertia and Angular Momentum Now that we have examined rotational kinematics and torque we will look at applying the concepts of angular motion to Newton s first and second

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

Use of Microspoilers for Control of Finned Projectiles

Use of Microspoilers for Control of Finned Projectiles JOURNAL OF SPACECRAFT AND ROCKETS Vol., No. 6, November December Use of Microspoilers for Control of Finned Projectiles Downloaded by GEORGIA INST OF TECHNOLOGY on February 7, 3 http//arc.aiaa.org DOI.5/.6

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90 meters are run with the same velocity

More information

UNIT-I (FORCE ANALYSIS)

UNIT-I (FORCE ANALYSIS) DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEACH AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME2302 DYNAMICS OF MACHINERY III YEAR/ V SEMESTER UNIT-I (FORCE ANALYSIS) PART-A (2 marks)

More information

A Study of Firing Sidewise from an Airplane

A Study of Firing Sidewise from an Airplane Applied Mathematical Sciences, Vol. 4, 2010, no. 1, 1-12 A Study of Firing Sidewise from an Airplane Dimitrios N. Gkritzapis, Dionissios P. Margaris Fluid Mechanics Laboratory (FML) Mechanical Engineering

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

University of California at Berkeley Structural Engineering Mechanics & Materials Department of Civil & Environmental Engineering Spring 2012 Student name : Doctoral Preliminary Examination in Dynamics

More information

Research Program Vibrations ENERGIFORSK Vibration Group

Research Program Vibrations ENERGIFORSK Vibration Group Vorlesungen Mechatronik im Wintersemester Research Program Vibrations ENERGIFORSK Vibration Group DIAM A Matrix Tool for Turbine and Generator Vibrations Detection, Investigation, Analysis, Mitigation

More information

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D)

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D) Exam Name 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity 2) An athlete participates in an interplanetary discus throw competition during an

More information

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola KINEMATICS OF A PARTICLE Prepared by Engr. John Paul Timola Particle has a mass but negligible size and shape. bodies of finite size, such as rockets, projectiles, or vehicles. objects can be considered

More information

Final Exam April 26, 2016

Final Exam April 26, 2016 PHYS 050 Spring 016 Name: Final Exam April 6, 016 INSTRUCTIONS: a) No books or notes are permitted. b) You may use a calculator. c) You must solve all problems beginning with the equations on the Information

More information

Class 11 GURU GOBIND SINGH PUBLIC SCHOOL PHYSICS CHAPTER 1: UNITS & MEASUREMENT

Class 11 GURU GOBIND SINGH PUBLIC SCHOOL PHYSICS CHAPTER 1: UNITS & MEASUREMENT CHAPTER 1: UNITS & MEASUREMENT 1. Assuming that the mass (m) of the largest stone that can be moved by a flowing river depends only upon the velocity, the density ρ of water and the acceleration due to

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

SECOND MIDTERM -- REVIEW PROBLEMS

SECOND MIDTERM -- REVIEW PROBLEMS Physics 10 Spring 009 George A. WIllaims SECOND MIDTERM -- REVIEW PROBLEMS A solution set is available on the course web page in pdf format. A data sheet is provided. No solutions for the following problems:

More information

ADVANCES in MATHEMATICAL and COMPUTATIONAL METHODS

ADVANCES in MATHEMATICAL and COMPUTATIONAL METHODS ADVANCES in MATHEMATICAL and COMPUTATIONAL METHODS Requirements on the accuracy of determination of target position and movement parameters LUDEK JEDLICKA Department of Weapons and Ammunition University

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

COMMITMENT. &SOLUTIONS Act like someone s life depends on what we do. UNPARALLELED

COMMITMENT. &SOLUTIONS Act like someone s life depends on what we do. UNPARALLELED Characterization of Machine Gun Barrel Temperature and Stress Conditions Through Correlation of Testing and Numerical Methods Presented at: NDIA Armament Systems Forum Indianapolis, IN May 2018 UNPARALLELED

More information

3.4 Solutions.notebook March 24, Horizontal Tangents

3.4 Solutions.notebook March 24, Horizontal Tangents Note Fix From 3.3 Horizontal Tangents Just for fun, sketch y = sin x and then sketch its derivative! What do you notice? More on this later 3.4 Velocity and Other Rates of Change A typical graph of the

More information

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system. PSI AP Physics I Work and Energy Chapter Questions 1. Define a system, the environment and the system boundary. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

More information

:. It. I AD?0097j_l. May J. R. Lane. s rn:: o ~.. :-, c:;c;:r-.. LEL, A:i:'G, ;ro.

:. It. I AD?0097j_l. May J. R. Lane. s rn:: o ~.. :-, c:;c;:r-.. LEL, A:i:'G, ;ro. rbrl 104 c,3a.: :. It I AD?0097j_l.,,. by J. R. Lane May 1938 r~o:-:-2 :"-r~ s rn:: o ~.. :-, c:;c;:r-.. LEL, A:i:'G, ;ro. OJ U.S. ARMY'. 2lOOIS!his ~o~ument ~as been approved for public release and lilt!

More information

Multiple Choice -- TEST I

Multiple Choice -- TEST I Multiple Choice Test I--Classical Mechanics Multiple Choice -- TEST I 1) The position function for an oscillating body is x = 20 sin (6t - /2) At t = 0, the magnitude of the body's acceleration is: a)

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Final Exam Review Topics/Problems

Final Exam Review Topics/Problems Final Exam Review Topics/Problems Units/Sig Figs Look at conversions Review sig figs Motion and Forces Newton s Laws X(t), v(t), a(t) graphs: look at F, displacement, accel, average velocity Boat problems/vector

More information

1 of 6 10/21/2009 6:33 PM

1 of 6 10/21/2009 6:33 PM 1 of 6 10/21/2009 6:33 PM Chapter 10 Homework Due: 9:00am on Thursday, October 22, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment

More information

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple Mass-Spring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free

More information

THE TWENTY-SECOND ANNUAL SLAPT PHYSICS CONTEST SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE APRIL 21, 2007 MECHANICS TEST. g = 9.

THE TWENTY-SECOND ANNUAL SLAPT PHYSICS CONTEST SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE APRIL 21, 2007 MECHANICS TEST. g = 9. THE TWENTY-SECOND ANNUAL SLAPT PHYSICS CONTEST SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE APRIL 21, 27 MECHANICS TEST g = 9.8 m/s/s Please answer the following questions on the supplied answer sheet. You

More information

EF 151 Final Exam, Fall, 2010 Page 1 of 9. EF 151 Final Exam, Fall, 2010 Page 2 of 9

EF 151 Final Exam, Fall, 2010 Page 1 of 9. EF 151 Final Exam, Fall, 2010 Page 2 of 9 EF 151 Final Exam, Fall, 2010 Page 1 of 9 EF 151 Final Exam, Fall, 2010 Page 2 of 9 Instructions Do not open the exam until instructed to do so. Name, section, and netid will be written on the 1 st page

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2008

AAPT UNITED STATES PHYSICS TEAM AIP 2008 8 F = ma Exam AAPT UNITED STATES PHYSICS TEAM AIP 8 8 F = ma Contest 5 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = N/kg throughout this contest. You may

More information