Lesson1: Peak proving

Size: px
Start display at page:

Download "Lesson1: Peak proving"

Transcription

1 Lesson1: Peak proving A par2cle detector claim detec2on of GLE; They confirm it by sta2s2cal analysis, see below. Their analysis is incorrect. Read their conclusions look on the plots and answer ques2ons in the end of this sec2on.

2 First cosmic- ray measurements by the SciCRT solar neutron experiment in Mexico The SciBar Cosmic Ray Telescope (SciCRT) is a new mul2- purpose cosmic- ray detector. Its main aim is the measurement of solar neutrons to inves2gate the ion accelera2on process during solar flares. We installed SciCRT at Ins2tuto Nacional de Astrofisica, O ṕ2ca y Electr ónica (INAOE) in eastern Mexico. We had two cosmic- ray observa2on campaigns at the place in November 2012 and February 2013 using 5/8 of the complete detector. The detector was transferred to the top of Mt. Sierra Negra, 4,600 m above sea level, in April The results obtained at INAOE, and the first results of the experimented opera2on at the mountain are presented here. The coun2ng rates of experimental data and Monte Carlo simula2on (MC) are (±0.1) Hz and (±3.6) Hz, respec2vely. Changed to ±0.1 and ±4.8 is it real improvement? The percentages of hadronic shower events in the data and MC are 0.15 (±0.02)% and 0.16 (±0.03)%, pec2vely. The corresponding percentages of electromagne2c shower events are 0.16 (±0.02)% and 0.18(±0.03)%. Data and MC calculauons are in reasonable agreement. The effec2ve area and assumed 2me profile of the SciCRT are calculated using MC σ = σ = 399.3

3 CorrecUons by the SciCRT solar neutron experiment in Mexico At the previous version, the error of the coun2ng rate of the MC had only a sta2s2c error. The new one adds the ambiguity of determina2on of MIP peak (about 13%).The coun2ng rate of MC is changed from (±3.6) Hz to 395.2( }4.8) Hz. The data and the MC does not agree by 3 standard devia2ons, which indicates there are other systema2cs which we do not know now. We changed the sentense in the abstract.

4 Tupi detector Niteroi, Brazil, 220.9S, 430.2W, 3 m above sea level The Tupi telescopes were placed inside a building, under two flagstones of concrete (150g/cm2). The flagstones increased the detec2on muon energy threshold up to GeV required to pass the two flagstones. The Tupi telescopes had an effec2ve field of view 037 sr.

5 GOES 13 Proto (cm 2 s sr M Tupi muon counting Rate Rate (/5min) Flux measured by Typi detector UTC (hour) Vertical Time series of the 5- min muon coun2ng rate observed by the ver2cal Tupi muon telescope; es2mate roughly variance from the picture! : Observation of the May 17, 2012 solar flare. The x-ray prompt e

6 Sta2s2cal Analysis 5 minute TS

7 Sta2s2cal Analysis: 1 minute TS

8 Physical Inference on Peak existence Number of trials Number of trials Standard deviation 4.3. Confidence analysis In order to see with more accuracy the background fluctua2on, we have examined the 2me profiles up to four hour before and aner the GOES X- ray peak (M5.1- class- flare). The results from this confidence analysis are shown windows (bopom panel). From this analysis, it is possible to iden2fy that the significance of the Tupi signals (red arrows) associated with SEP from M5.1- class solar flare are 26% (top panel) and 8.8% (bopom panel), and they are out of the Gaussian distribu2on (solid line) due to the background fluctua2ons.

9 Homework for lesson 1 What is GLE? Consider corrected data from SciBar Cosmic Ray Telescope (SciCRT), can they claim now that The data and the MC do not show a big discrepancy.? Find mistakes in sta2s2cal analysis of confirming detec2on of GLE by Typi; Es2mate variance of Tupi detector and perform correct sta2s2cal analysis of presence of peak in 1 and 5 minute 2me series of Typi muon detector; Es2mate rela2ve significance of peaks in 1 and 5 min. TS if peak dura2on is larger than 5 minutes.

10 Condi2onal probabili2es; electron and gamma ray flux recovering Consider TGE of 17 March 2014, find detectors demonstra2ng large enhancements; Compare STAND1, AMMM and CUBE detectors; Consider 100 and 010 coincidences of STAND1 and 7 and 8 scin2llators of CUBE with and without veto.

11 Thunderstorm ground enhancement detected on Aragats in March 17.

12 Cube detector evidence

13 Homework for lesson 2 Why in % enhancement of AMMM is much smaller than STAND1, however z score (number of sigmas) is much larger? Es2mate electron/gamma ray ra2o by STAND 100 and 010 coincidences, by CUBE 7 with and without veto, by CUBE 8 with and without veto. What will happen with electron and gamma ray fluxes if we change efficiency to es2mate electrons of 1 cm scin2llator? Say it is 97% and not 99%. What is strange with electron gamma ray fluxes es2mated by CUBE 8 with and without veto? Can you explain it?

14 Correla2on analysis 1 cm thick upper scin2llator of Cube demonstrate strong variability; Stand1 upper same type scin2llator in the same 2me is much more stable; Cube 7 and 8 20 cm thick scin2llators are also stable; Scaper plots of measured Cube1 flux with different meteorological parameters demonstrate weak and moderate correla2on.

15 1 cm thick plas2c scin2llators ' Temperature Cube up 1 cm thick STAND up 1 cm thick

16 Mul2ple correla2ons

17 Cube1 flux correla2ons with meteorological parameters

18 Homework for lesson 3 Explain correla2on paperns of Cube1 and give explana2on of flux variability: is it genuine CR deple2on? Is it due Temperature, pressure, humidity varia2ons? Find in 2me series another strong varia2on of Cube1 measurements and make analogical analysis; do your inference confirmed? Can you find another variable correlated beper with Cube1 flux? What you can say about the reason of Cube1 flux variance?

19 Lesson 4 Energy spectra Natural radioac2vity Atomic power plant monitoring; Beta- decay; PET annihila2on; Nuclear medicine; Par2cle physics give birth to industry and medicine; Count rate energy spectra Differen2al and integral energy spectra Energy spectra of Galac2c CR Energy spectra of Solar CR Knee region Power law universal dependence Bas2lle event 14 July 2000 L3 CERN experiment Neutron Monitor network es2mate

20 Natural Radioac2vity

21 Radioac2ve safety

22 Preven2on and Control Radia2on Sensor Network

23 Beta- minus Decay

24 Electron- positron annihila2on

25 Annihila2on - "total destruc2on" or "complete oblitera2on" Introduc2on to Feinman diagrams follow the link: hpps://

26

27 PET annihila2on

28

29 Bremstrahlung radia2on

30 Knee physics source and mechanisms of hadron accelerauon in Galaxy

31 Light and Heavy Cosmic- Ray Mass Group Energy Spectra as Measured by the MAKET- ANI Detector, The Astrophysical Journal, 603:L29- L32, 2004 March hpp:// iopscience.iop.org/ /603/1/L29/ fulltext/

32 BasUlle Ground Level Enhancement

33 Neutron Monitor network protons/(cm 2.s.sr.MeV) (a) 10:45 (b) 11:00 (c) Stochastic Shock Neutron Monitor GOES 8 Protons Energy(MeV) Energy (MeV) 11: Energy (MeV) Energy spectral fits to combined satellite and ground based observa2ons. Five- minute proton data (solid circles) from GOES 8 EPS/HEPAD par2cle detectors; energy range is ~100 to 700 MeV. The neutron monitor derived data (open circles) range from ~400 to 4000 MeV and are spaced evenly on a logarithmic scale;. The value of the e- folding energy at 10:50 UT (2.8 GV in terms of rigidity) is consistent with the maximum proton rigidity of ~3 GV observed for this event. The spectral slope () at 10:35 UT is At 13:25 UT is ±0.1. The uncertainty in the 10: change of slope () at 10:35 is small, while at 13:25 UT the uncertainty in is es2mated at ± 0.2. The resul2ng uncertainty in the calculated flux at 1 GV is less than 10%.

34 TGE simula2on: RREA or MOS?

35 L3+C detector system located at CERN, near Geneva (6.02 E, N) at an alu- tude of 450 m above sea level and about 30 m underground, providing an average energy threshold of around 20 GeV for veru- cally incident muons. sin(θ).cos(φ) azimuth sin(θ).sin(φ) N The direc2onal acceptance of L3+C. The contour lines indicate direc2ons having an equal event rate. The star marks show direc2ons of the Sun for each hour with t0 deno2ng the flare 2me. The square indicates the sky cell No. 37. L3 axis t 0 E Solar proton flux (cm -2 sr -1 s -1 ) proton beam flux Theoretical upper limits Proton energy (GeV) The solar flare induced proton flux upper limit obtained by this work compared with other measurements and theore2cal upper limit I = 2*10-3

36 Home work for lesson 4 Par2cle physics in 21 century new applica2ons? Find examples of important energy spectra Find examples of industrial/medical applica2ons of par2cle beams Inverse beta decay what is it? Weak interac2on more details of beta decay Why beta decay par2cle have energy spectrum and not fixed energy? What determines the maximal energy of beta par2cle? Mechanisms of nuclei accelera2on in Galaxy Inves2gate ASEC data on July (Bas2lle) GLE Diff energy spectra of solar protons on 20 January 2005 was dn/de =4*10^5*E^- 5 1/m^2sec GeV. Calculate how many par2cles was above 1 GeV, 10 GeV, 20 GeV and 100 GeV. Es2mate difference between solar proton flux es2mate by L3 experiment at CERN and NM network; what is reason of huge difference?

37 An electron and a positron annihilate at rest to form two equal energy photons. Find the energy, frequency, and wavelength of the two resulung photons. Pu}ng angular momentum conserva2on aside, each photon carries exactly 1/2 the total energy released by the electron- positron annihila2on. So, first the total energy released. This is given by using E = mc^2 and since the electron and positron have the same mass, E = 2*m*c^2 - - > the rest mass on an electron is MeV (million electron volts) or 8.18x10^- 14 J so the total energy is: E = 1.64x10^- 13 J Now one photon has the energy of 8.18x10^- 14 J and using the formula E = hf where h = Planck's constant and f is the photon frequency, you find f = E/h = 1.24x10^20 Hz Since wavelength wl, and f are related by c = f*wl where c = speed of light we can find the wavelength: wl = c/f = 2.43x10^- 12 m

Cosmic Ray Electrons with CTA. R.D. Parsons

Cosmic Ray Electrons with CTA. R.D. Parsons Cosmic Ray Electrons with CTA R.D. Parsons Cosmic Ray Electrons In addi:on to the well known hadronic component of cosmic rays there is a more poorly understood electronic component Has a lower flux than

More information

Gamma-ray satellites Fermi Gamma-ray Space Telescope

Gamma-ray satellites Fermi Gamma-ray Space Telescope Space Instrumenta.on (ELEC-E4220) Gamma-ray satellites Fermi Gamma-ray Space Telescope Talvikki HovaBa University of Turku Outline Introduc.on Gamma-ray detec.on techniques Photoelectric effect GBM instrument

More information

On the possibility to forecast severe radiation storms by data from surface and space-born facilities

On the possibility to forecast severe radiation storms by data from surface and space-born facilities On the possibility to forecast severe radiation storms by data from surface and space-born facilities Ashot Chilingarian Cosmic Ray Division, Yerevan Physics Institute, Armenia Aragats Space-Environmental

More information

VHE cosmic rays: experimental

VHE cosmic rays: experimental VHE cosmic rays: experimental Cosmic Rays History 1912: First discovered 1927: First seen in cloud chambers 1962: First 10 20 ev cosmic ray seen Low energy cosmic rays from Sun Solar wind (mainly protons)

More information

Ashot Chilingarian Artem Alikhanyan National Laboratory (Yerevan Physics Institute)

Ashot Chilingarian Artem Alikhanyan National Laboratory (Yerevan Physics Institute) Thunderstorm Ground Enhancements (TGEs) effects and physical model Ashot Chilingarian Artem Alikhanyan National Laboratory (Yerevan Physics Institute) chili@aragats.am There are at least 6 physical effects

More information

Gravity and the Universe

Gravity and the Universe Gravity and the Universe Test general rela7vity via: Solar System / lab tests Binary pulsars Black hole mergers (future) Cosmology evolu7on of the Universe Gravita7onal 7me dila7on observable directly

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014 Par$cle and Neutrino Physics Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014 1 SNOWMASS on the Mississippi Community study 2013 for the high energy community 10 year plan

More information

ATLAS Searches for TeV- scale gravity with mul9- body final states

ATLAS Searches for TeV- scale gravity with mul9- body final states ATLAS Searches for TeV- scale gravity with mul9- body final states Vicki Moeller On Behalf of the ATLAS Collabora9on NR/HEP Workshop 01/09/2011 Vicki Moeller Cambridge 01/09/2011 1 TeV- Scale Gravity Scenario:

More information

Par$cles. Ma#er is made of atoms. Atoms are made of leptons and quarks. Leptons. Quarks. atom nucleus nucleon quark m m m m

Par$cles. Ma#er is made of atoms. Atoms are made of leptons and quarks. Leptons. Quarks. atom nucleus nucleon quark m m m m Par$cles Ma#er is made of atoms atom nucleus nucleon quark 10-10 m 10-14 m 10-15 m 10-18 m Atoms are made of leptons and quarks Leptons ν e e Quarks u d What Have We Learned? Rela?vis?c Quantum Mechanics

More information

INTAS Solar and Galactic Cosmic Ray Acceleration and Modulation

INTAS Solar and Galactic Cosmic Ray Acceleration and Modulation INTAS 8777 Solar and Galactic Cosmic Ray Acceleration and Modulation University of Greifswald (Germany) University of Bern (Switzerland) University of Tel Aviv (Israel) Yerevan Physics Institute (Armenia)

More information

Special Topics in Physics (Experiment) PHYS 8361 Tuesday +Thursday 12:30 pm 1:50 pm Hyer Hall G 021

Special Topics in Physics (Experiment) PHYS 8361 Tuesday +Thursday 12:30 pm 1:50 pm Hyer Hall G 021 Special Topics in Physics (Experiment) PHYS 8361 Tuesday +Thursday 12:30 pm 1:50 pm Hyer Hall G 021 Course Objec

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Analysis of solar gamma rays and solar neutrons detected on March 7 th and September 25 th of 2011 by Ground Level Neutron Telescopes, SEDA-FIB and FERMI-LAT Y. Muraki 1), J. F. Valdés-Galicia 2), L. X.

More information

Air showers in IceCube. Cosmic rays Neutrinos Gamma rays

Air showers in IceCube. Cosmic rays Neutrinos Gamma rays Air showers in IceCube Cosmic rays Neutrinos Gamma rays Cosmic rays Cosmic accelerators produce rela9vis9c protons and nuclei (cosmic rays) CR sources (such as SNR, AGN, GRB) are likely neutrino sources

More information

A.Chilingarian,Yerevan Physics Institute

A.Chilingarian,Yerevan Physics Institute Particle fluxes from thunderclouds: measurements and myths. A.Chilingarian,Yerevan Physics Institute 1 2 3 Energy losses and energy gain: E = RB/RREA process = 2.83kV/cm (sea level threshold) 0,6 1.7kV/cm

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

QCD, diffrac,on and forward physics at the LHC

QCD, diffrac,on and forward physics at the LHC QCD, diffrac,on and forward physics at the LHC Andrew Pilkington IPPP Durham and Manchester Presented at Diffrac.on 2010, Otranto, Italy, September 2010 Overview 1) Introduc,on to LHC in 2010 2) Review

More information

The H.E.S.S. Standard Analysis Technique

The H.E.S.S. Standard Analysis Technique The H.E.S.S. Standard Analysis Technique Wystan Benbow for the H.E.S.S. Collaboration Max Planck Institut für Kernphysik Postfach 103980 D-69029 Heidelberg, Germany The High Energy Stereoscopic System

More information

Particle accelerators

Particle accelerators Particle accelerators Charged particles can be accelerated by an electric field. Colliders produce head-on collisions which are much more energetic than hitting a fixed target. The center of mass energy

More information

Ultra- High Energy neutrinos at the Pierre Auger Observatory

Ultra- High Energy neutrinos at the Pierre Auger Observatory Ultra- High Energy neutrinos at the Pierre Auger Observatory Jaime Alvarez- Muñiz Univ. San?ago de Compostela, Spain for the Pierre Auger Collabora?on Very High Energy Par?cle Astronomy Kashiwa, Japan,

More information

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Cosmic Rays Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Nobel Prize in 1936 Origin of high energy cosmic rays is still not completely understood

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Neutrino induced muons

Neutrino induced muons Neutrino induced muons The straight part of the depth intensity curve at about 10-13 is that of atmospheric neutrino induced muons in vertical and horizontal direction. Types of detected neutrino events:

More information

SM and jet measurements at the LHC

SM and jet measurements at the LHC SM and jet measurements at the LHC Andy Pilkington IPPP and Manchester Presented at the Young Experiment and Theory Ins7tute, Durham, January 2011 Part I jet characteris.cs 1) Introduc?on to ATLAS and

More information

Neutrinos. Why measure them? Why are they difficult to observe?

Neutrinos. Why measure them? Why are they difficult to observe? Outline What is a neutrino? Why do we want to study them? Building a detector to detect the undetectable What does a neutrino detector see? How do you seperate a neutrino signal from the background? Neutrinos

More information

The Sun and the Solar System in Gamma Rays

The Sun and the Solar System in Gamma Rays The Sun and the Solar System in Gamma Rays R. Desiante1 on behalf of the Fermi-LAT collaboration SciNeGHE 2016 1 INFN Torino Outline Introduction The Fermi Gamma-Ray Space Telescope The active Sun as seen

More information

Nothing in life is to be feared. It is only to be understood. -Marie Curie. Segre Chart (Table of Nuclides)

Nothing in life is to be feared. It is only to be understood. -Marie Curie. Segre Chart (Table of Nuclides) Nothing in life is to be feared. It is only to be understood. -Marie Curie Segre Chart (Table of Nuclides) Z N 1 Segre Chart (Table of Nuclides) Radioac8ve Decay Antoine Henri Becquerel Marie Curie, née

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS 1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS WITH TAM, Pak Hin (Sun Yat-sen University/ICRR) GAMMA-RAY BURST OBSERVATIONS WITH CTA LESSONS LEARNT FROM FERMI/LAT TAM, Pak Hin (Sun Yat-sen University/ICRR,

More information

IceCube: Ultra-high Energy Neutrinos

IceCube: Ultra-high Energy Neutrinos IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University for the IceCube collaboration Neutrino2012 at Kyoto June 8 th 2012 1 Ultra-high Energy Neutrinos: PeV and above

More information

Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation

Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation Andreas Zoglauer University of California at Berkeley, Space Sciences Laboratory, Berkeley, USA Georg Weidenspointner

More information

PARTICLE PHYSICS :Higher Level Long Questions

PARTICLE PHYSICS :Higher Level Long Questions PARTICLE PHYSICS :Higher Level Long Questions Particle Accelerators (including Cockcroft and Walton experiment) 2013 Question 10 (a) In 1932 J.D. Cockroft and E.T.S. Walton accelerated protons to energies

More information

Simulation of the charging process of the LISA test masses due to solar particles.

Simulation of the charging process of the LISA test masses due to solar particles. Simulation of the charging process of the LISA test masses due to solar particles. 5 th International Lisa Symposium 14 July 2004 Helios Vocca INFN Pg Solar Energetic Particles (SEPs( SEPs) SEPs are particles

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

STUDY OF EXTENSIVE AIR SHOWERS IN THE EARTH S ATMOSPHERE

STUDY OF EXTENSIVE AIR SHOWERS IN THE EARTH S ATMOSPHERE STUDY OF EXTENSIVE AIR SHOWERS IN THE EARTH S ATMOSPHERE I. BACIOIU * Institute of Space Science, P.O. Box MG-23, RO-077125 Bucharest-Magurele, Romania, E-mail: iuliana.bacioiu@spacescience.ro Abstract.

More information

C. Guillermo Giménez de Castro (a.k.a. Guigue)

C. Guillermo Giménez de Castro (a.k.a. Guigue) A Panorama on High Energy Solar Physics. Observa8ons, Instrumenta8on and Theory at THz frequencies. C. Guillermo Giménez de Castro (a.k.a. Guigue) guigue@craam.mackenzie.br http://www.guigue.gcastro.net

More information

Particle fluxes from thunderclouds and Lightning initiation: Applied aspects of CR research. Ashot Chilingarian Yerevan Physics Institute

Particle fluxes from thunderclouds and Lightning initiation: Applied aspects of CR research. Ashot Chilingarian Yerevan Physics Institute Particle fluxes from thunderclouds and Lightning initiation: Applied aspects of CR research Ashot Chilingarian Yerevan Physics Institute Oganesson is a transactinide chemical element with symbol Og and

More information

Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC

Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC Chang Dong Rho University of Rochester TeVPA 2018 Berlin, Germany 08/28/2018 Overview 2 Microquasars as sources of TeV gamma

More information

The Gamma-ray Albedo of the Moon

The Gamma-ray Albedo of the Moon [albedo] the proportion of the incident light that is reflected by a surface The Gamma-ray Albedo of the Moon Igor V. Moskalenko & Troy A. Porter Astrophys. J. 670, 1467-1472 (2007) Masaki Mori ICRR CANGAROO

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Probabilis)c image reconstruc)on, foreground removal, and power spectrum inference from radio interferometers

Probabilis)c image reconstruc)on, foreground removal, and power spectrum inference from radio interferometers Probabilis)c image reconstruc)on, foreground removal, and power spectrum inference from radio interferometers Ben Wandelt IAP, ILP, UPMC, CNRS Sorbonne University Theore>cal interest in 21cm cosmology

More information

Neutrino Oscilla8ons

Neutrino Oscilla8ons Neutrino Oscilla8ons Kathleen Tatem Columbia University Neutrino oscilla8on experiments may be seeing signs of a new fundamental par8cle, the sterile neutrino! 1 Outline Neutrinos Proper8es Sources Neutrino

More information

Forbush event detected by CARPET on 2012 March

Forbush event detected by CARPET on 2012 March Forbush event detected by CARPET on 2012 March Edith Tueros Cuadros Universidade Presbiteriana Mackenzie, Centro de Rádio-Astronomia e Astrofísica Mackenzie - CRAAM, São Paulo, Brasil. Emilia Correia Instituto

More information

Linear Regression and Correla/on. Correla/on and Regression Analysis. Three Ques/ons 9/14/14. Chapter 13. Dr. Richard Jerz

Linear Regression and Correla/on. Correla/on and Regression Analysis. Three Ques/ons 9/14/14. Chapter 13. Dr. Richard Jerz Linear Regression and Correla/on Chapter 13 Dr. Richard Jerz 1 Correla/on and Regression Analysis Correla/on Analysis is the study of the rela/onship between variables. It is also defined as group of techniques

More information

Linear Regression and Correla/on

Linear Regression and Correla/on Linear Regression and Correla/on Chapter 13 Dr. Richard Jerz 1 Correla/on and Regression Analysis Correla/on Analysis is the study of the rela/onship between variables. It is also defined as group of techniques

More information

Heavy flavor produc.on and spectroscopy at ATLAS. For the ATLAS collabora.on

Heavy flavor produc.on and spectroscopy at ATLAS. For the ATLAS collabora.on Heavy flavor produc.on and spectroscopy at ATLAS Brad Abbo8 University of Oklahoma For the ATLAS collabora.on 1 Introduc.on Charmonium/Open Charm Produc2on Measurement of the differen.al cross- sec.ons

More information

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos 6-8 February 2017 Hotel do Mar Sesimbra Hands on Neutrinos Hands on Neutrinos 1 I. BRIEF HISTORY OF NEUTRINOs The neutrinowas first postulated by Wolfgang Pauli in 1930 to explain how β particles emitted

More information

Age, Evolu+on, and Size of the Cosmos Ma?hew Szydagis

Age, Evolu+on, and Size of the Cosmos Ma?hew Szydagis Age, Evolu+on, and Size of the Cosmos 11.04.2016 Ma?hew Szydagis 1 Let There Be a Big Bang! Let s start at the start (13.82 billion years ago). But how do we know the age of the universe to such high precision

More information

Radioac'vity and Radioac've Decay. Isotopes too!

Radioac'vity and Radioac've Decay. Isotopes too! Radioac'vity and Radioac've Decay Isotopes too! Warmup If you ve got 1.62 x 10 26 atoms of Carbon, what is that weight in grams? What assump'ons about atomic mass are you making in your calcula'on? Write

More information

High Energy Particle Production by Space Plasmas

High Energy Particle Production by Space Plasmas Plasmas in Astrophysics and in Laboratory, 20 21 June, 2011 High Energy Particle Production by Space Plasmas A.A.Petrukhin National Research Nuclear University MEPhI C o n t e n t s 1. Introduction 2.

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics Dr. Dan Protopopescu Kelvin Building, room 524 Dan.Protopopescu@glasgow.ac.uk 1 Topics covered in this course I. Radia'on II. Atomic nuclei III. Radioac'vity and radioac've

More information

Latest results and perspectives of the KASCADE-Grande EAS facility

Latest results and perspectives of the KASCADE-Grande EAS facility Latest results and perspectives of the KASCADE-Grande EAS facility 29/6-2/7/2010, Nantes, France Andreas Haungs 1 Motivation KASCADE-Grande Knee EeV PeV g-eg? Radio?! KASCADE 10 15-10 17 ev: Origin of

More information

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer Cosmic Rays: A Way to Introduce Modern Physics Concepts Steve Schnetzer Rutgers CR Workshop May 19, 2007 Concepts Astrophysics Particle Physics Radiation Relativity (time dilation) Solar Physics Particle

More information

Thermonuclear Reactions in the Sun

Thermonuclear Reactions in the Sun Thermonuclear Reactions in the Sun No Need for Confinement! The enormous self-gravity of the sun holds it together. There is no way the fuel can escape (or the sun can blow itself apart). So the nuclear

More information

φ) = 1 2 [( µφ) 2 m 2 φ 2 ] V(φ)

φ) = 1 2 [( µφ) 2 m 2 φ 2 ] V(φ) Status of the theory (Langacker nota3on) Perturba)ve field theory is characterized by weak coupling (finite higher order correc)ons) Lagrangian of a field theory contains interac)on ver)ces L(φ, µ φ) =

More information

Radia%ve B decays at LHCb

Radia%ve B decays at LHCb Radia%ve B decays at LHCb XLII Interna7onal Mee7ng on Fundamental Physics Benasque, January 28 th, 2014 Vicente J Rives Molina Vicente.rives@cern.ch Radia7ve decays: theory Radia7ve decays are FCNC processes:

More information

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Carlos Argüelles in collaboration with Gwen de Wasseige, Anatoli Fedynitch, and Ben Jones Based on JCAP07

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

GEANT4. A pla+orm for the simula6on of the passage of par6cles through ma:er. FYS- KJM5920. Gry M. Tveten,

GEANT4. A pla+orm for the simula6on of the passage of par6cles through ma:er. FYS- KJM5920. Gry M. Tveten, GEANT4 A pla+orm for the simula6on of the passage of par6cles through ma:er GEANT4 Download from geant4.cern.ch Read installa6on instruc6ons for your OS carefully GEANT4 is not a program, but rather

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information

Space Weather Radia.on Effects on GEO COMSAT Solid State Power Amplifiers

Space Weather Radia.on Effects on GEO COMSAT Solid State Power Amplifiers Space Weather Radia.on Effects on GEO COMSAT Solid State Power Amplifiers SPENVIS Workshop Whitney Lohmeyer and Kerri Cahoy MIT May 23, 2013 Mass: >6100 kg Cost: $580 mil Military COMSAT aker Environmental

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center! > News < Anti-matter, dark matter measurement By measuring the cosmic rays (Mainly electron, positron, proton, anti-proton and light nuclei) AMS-02 will be launched onboard the Shuttle Endeavour On May

More information

Windows on the Cosmos

Windows on the Cosmos Windows on the Cosmos Three types of information carriers about what s out there arrive on Earth: Electromagnetic Radiation Visible light, UV, IR => telescopes (Earth/Space) Radio waves => Antennae ( Dishes

More information

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis: http://area51.berkeley.edu/manuscripts Goals! Perform an all-sky search

More information

Outline. Introduction. How the diagnostic works Modeling. What is a carbon diagnostic? What is it for? Why model? Process Results Future Work

Outline. Introduction. How the diagnostic works Modeling. What is a carbon diagnostic? What is it for? Why model? Process Results Future Work Introduction Outline What is a carbon diagnostic? What is it for? How the diagnostic works Modeling Why model? Process Results Future Work Inertial Confinement Fusion (ICF) OMEGA/LLE 60 lasers, 40 kj of

More information

Kirill Prokofiev (NYU)

Kirill Prokofiev (NYU) Measurements of spin and parity of the new boson in ATLAS Kirill Prokofiev (NYU) Outline Present spin results Short term plans Long term plans page 2 Introduc>on ATLAS and CMS have observed a new Higgs-

More information

GRB detection at ground level using Water Cerenkov Tanks

GRB detection at ground level using Water Cerenkov Tanks GRB detection at ground level using Water Cerenkov Tanks Hugo Rivera May 21, 2009 Outline 1 Gamma Ray Bursts Discovery BATSE Beppo-SAX SWIFT 2 Water Cherenkov Tanks Single Particle Technique WCD calibration

More information

High Energy Emission. Brenda Dingus, LANL HAWC

High Energy Emission. Brenda Dingus, LANL HAWC High Energy Emission from GRBs Brenda Dingus, LANL HAWC What are GRBs? Cosmological distance Typical observed z>1 Energy released is up to few times the rest mass of Sun (if isotropic) in a few seconds

More information

Finish up our overview of small and large

Finish up our overview of small and large Finish up our overview of small and large Lecture 5 Limits of our knowledge Clicker practice quiz Some terminology... "Elementary particles" = objects that make up atoms (n,p,e) or are produced when atoms

More information

BIG BANG SUMMARY NOTES

BIG BANG SUMMARY NOTES BIG BANG SUMMARY NOTES BIG BANG THEORY Studies of red-shifts of distant galaxies show that the universe is expanding. This and other observations has led to the Big Bang Theory The Big Bang Theory claims

More information

Observations of the Crab Nebula with Early HAWC Data

Observations of the Crab Nebula with Early HAWC Data Observations of the Crab Nebula with Early HAWC Data a for the HAWC Collaboration b a Department of Physics, Pennsylvania State University, 16802 University Park, PA, USA b For a complete author list,

More information

Fluxes of Galactic Cosmic Rays

Fluxes of Galactic Cosmic Rays Fluxes of Galactic Cosmic Rays sr s m - GeV Flux solar Modulation: Φ = 550 MV proton helium positron electron antiproton photon galdef 50080/60080 (γ) Status of Cosmic Ray Measurements: good agreement

More information

LHC results on open charm, double charm and X(3872) produc<on

LHC results on open charm, double charm and X(3872) produc<on LHC results on open charm, double charm and X(3872) produc

More information

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Y.Asaoka for the CALET Collaboration RISE, Waseda University 2016/12/15 CTA-Japan Workshop The extreme

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

Lecture 14 Cosmic Rays

Lecture 14 Cosmic Rays Lecture 14 Cosmic Rays 1. Introduction and history 2. Locally observed properties 3. Interactions 4. Demodulation and ionization rate 5. Midplane interstellar pressure General Reference MS Longair, High

More information

Beam Dump Experiments with Photon and Electron Beams

Beam Dump Experiments with Photon and Electron Beams Beam Dump Experiments with Photon and Electron Beams Electron beams BDX at Jefferson Lab Signal and backgrounds Muon flux measurements Status Elton S. Smith, Jefferson Lab On behalf of the BDX Collaboration

More information

A mul&scale autocorrela&on func&on for anisotropy studies

A mul&scale autocorrela&on func&on for anisotropy studies A mul&scale autocorrela&on func&on for anisotropy studies Mario Scuderi 1, M. De Domenico, H Lyberis and A. Insolia 1 Department of Physics and Astronomy & INFN Catania University ITALY DAA2011 Erice,

More information

Secondary particles generated in propagation neutrinos gamma rays

Secondary particles generated in propagation neutrinos gamma rays th INT, Seattle, 20 Feb 2008 Ultra High Energy Extragalactic Cosmic Rays: Propagation Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Energy loss processes protons

More information

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration Measurement of the cosmic ray positron spectrum with the Fermi LAT using the Earth s magnetic field Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration International Cosmic Ray

More information

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Jingke Xu Princeton University June 7 th, 2013 1 Evidences for Dark Matter Rotation Curve Gravitational Lensing CMB Power Spectrum

More information

Inves&ga&on of atomic processes in laser produced plasmas for the short wavelength light sources

Inves&ga&on of atomic processes in laser produced plasmas for the short wavelength light sources Inves&ga&on of atomic processes in laser produced plasmas for the short wavelength light sources Akira Sasaki Quantum Beam Science Directorate Japan Atomic Energy Agency Introduc&on EUV source at λ=6.5nm

More information

The KASCADE-Grande Experiment

The KASCADE-Grande Experiment The KASCADE-Grande Experiment O. Sima 1 for the KASCADE-Grande Collaboration 2 1 University of Bucharest, Romania 2 https://web.ikp.kit.edu/kascade/ CSSP14 Sinaia 2014 Overview 1. KASCADE-Grande experimental

More information

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories RuoYu Shang Nicholas Sherer Fei Sun Bryce Thurston Measurement of the Depth of Maximumof Extensive Air Showers above 10 18 ev,"phys. Rev. Letters104(2010)

More information

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter F. Pilo for the

More information

The LHCf data hadronic interactions and UHECR showers. Paolo Lipari LHCf meeting Catania, 6th july 2011

The LHCf data hadronic interactions and UHECR showers. Paolo Lipari LHCf meeting Catania, 6th july 2011 The LHCf data hadronic interactions and UHECR showers Paolo Lipari LHCf meeting Catania, 6th july 2011 ~50 years of UHECR Problems of determination of: Energy Mass A Hadronic interaction Modeling Measure

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

Detection of TeV Gamma-Rays from Extended Sources with Milagro

Detection of TeV Gamma-Rays from Extended Sources with Milagro Detection of TeV Gamma-Rays from Extended Sources with Milagro P. M. Saz Parkinson for the Milagro Collaboration Santa Cruz Institute for Particle Physics, University of California, 1156 High Street, Santa

More information

We start with a reminder of a few basic concepts in probability. Let x be a discrete random variable with some probability function p(x).

We start with a reminder of a few basic concepts in probability. Let x be a discrete random variable with some probability function p(x). 1 Probability We start with a reminder of a few basic concepts in probability. 1.1 discrete random variables Let x be a discrete random variable with some probability function p(x). 1. The Expectation

More information

Measurement of the CR e+/e- ratio with ground-based instruments

Measurement of the CR e+/e- ratio with ground-based instruments Measurement of the CR e+/e- ratio with ground-based instruments Pierre Colin Max-Planck-Institut für Physik CR Moon shadow MPP retreat - 21 January 2014 Cosmic ray electrons Observation: Above the atmosphere:

More information

John Ellison University of California, Riverside. Quarknet 2008 at UCR

John Ellison University of California, Riverside. Quarknet 2008 at UCR Cosmic Rays John Ellison University of California, Riverside Quarknet 2008 at UCR 1 What are Cosmic Rays? Particles accelerated in astrophysical sources incident on Earth s atmosphere Possible sources

More information

A model of the Earth's gamma-ray emission for GLAST derived from EGRET data. Dirk Petry (UMBC, NASA/GSFC) DC2 Meeting GSFC June 27-29, 2005

A model of the Earth's gamma-ray emission for GLAST derived from EGRET data. Dirk Petry (UMBC, NASA/GSFC) DC2 Meeting GSFC June 27-29, 2005 A model of the Earth's gamma-ray emission for GLAST derived from EGRET data (UMBC, NASA/GSFC) DC2 Meeting GSFC June 27-29, 2005 1 Gamma-ray emission from the Earth's atmosphere Incoming cosmic rays Cosmic

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

The new Siderius Nuncius: Astronomy without light

The new Siderius Nuncius: Astronomy without light The new Siderius Nuncius: Astronomy without light K. Ragan McGill University STARS 09-Feb-2010 1609-2009 four centuries of telescopes McGill STARS Feb. '10 1 Conclusions Optical astronomy has made dramatic

More information

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment Raffaello D Alessandro 1 Department of Physics Università di Firenze and INFN-Firenze I-50019 Sesto

More information

Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should:

Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should: Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should: include the names of the interactions identify the groups of particles that

More information