The E'~+-x'Z+ system of GeS in emission

Size: px
Start display at page:

Download "The E'~+-x'Z+ system of GeS in emission"

Transcription

1 The E'~+-x'Z+ system of GeS in emission WALTER J. BALFOUR' AND BELVAI J. SHETTY' Departmerzt of Chemistry, University of Victoria, Victoria, BC V8W 3P6, Cnrzada Received March 1 1, 1993 This pc~per is cleclicoted to Professor Gerald W. King on the occasiorz of his 65th birthday WALTER J. BALFOUK and BELVAI J. SHETTY. Can. J. Chem. 71, 1622 (1993). A new group of bands has been observed in emission in the nm region under conditions that generate known systems of GeS. It has been deduced from the appearance and position of the bands, and from their intensity distribution, that these bands constitute the long-wavelength component of the E'C+-X'C+ system of GeS, which gives rise to strong absorption and emission in the ultraviolet. E-X Franck-Condon factors have been estimated. WALTER J. BALFOUR et BELVAI J. SHETTY. Can. J. Chem. 71, 1622 (1993). Optrant dans des conditions qui genkrent des systkmes connus de GeS, on a observt un nouveau groupe de bandes dans la rtgion d'tmission allant de 500 a 600 nm. On dtduit de la presence et de la position des bandes, ainsi que de la distribution de leur intensite, que ces bandes constituent la composante j. grande longueur d'onde du systkme E 'C-X'~~ du GeS qui donne lieu i une forte absorption et emission dans I'UV. On a evalut les facteurs E-X de Franck-Condon. [Traduit par la rtdaction] Introduction ( nm) bands, and the E-X ultraviolet bands, we have In recent years, considerable spectroscopic data have been a new group of bands between 500 and 600 nm. Our gathered on the E'C+-X'C+ system of the isovalent diatom- conjecture that these new bands form the long-wavelength ics SiO (I, 2), SiS (3, 4), and SiSe and SiTe (5, 6). One of component of the E-X system has been confirmed by a the common features of these studies is the observation that combined vibrational analysis of the ultraviolet and visible bands belonging to the E-X system fall in two distinct spec- bands and associated Franck-Condon calculations. tral regions,-one in the ultraviolet and the other in the visi- Experimental details ble. The bands in the visible region appear only in emission. The spectrum of the germanium monosulfide molecule was These observations are a direct result of the substantial change excited in a microwave discharge (2450 MHz, 100 W) using a 5 cm in geometry that occurs upon excitation from the x'c' state long sealed quartz tube (10 mm diameter) containing milligram to the E'C+ state: the ultraviolet bands constitute one arm of quantities of pure elemental germanium (in slight stoichiometric the Condon parabola, the visible bands the other. excess) and sulfur, along with neon gas at a pressure of 2-4 Torr The corresponding germanium compounds can also be (1 Torr = Pa). To maintain a steady vapour pressure of GeS expected to exhibit similar spectroscopic properties. How- in the discharge column the sealed tube was heated with an elecever, to date the bands belonging to the E-X system of ger- trical wire furnace wound around a quartz tube supporting the sealed manium compounds have been reported only in the ultraviolet tube. Further experimental details and advantages of the method region. Of these, the GeS molecule has been the subject of can be found in a previous publication (5). The E-X bands of GeS interest of many researchers. Two ultraviolet band systems in the ultraviolet ( nm) region were photographed in the first order of a 3.4-m Ebert grating spectrograph with a groves of GeS, ~ln-x'c+ and E'Z+-x'C+, are known and have mm-' grating blazed at 750 nm. The bands in the visible ( been vibrationally analysed (7, 8). The rotational analysis of nm) region were photographed in the first order of a 1.5-m Bairdthese band systems is made difficult because of the overlap- Atomic grating spectrograph. The band-heads were measured ping of bands due to significant natural abundances of the against the iron lines excited in a Fe-Ne hollow cathode lamp. isotopomers "G~~'S, '*G~~'s, 73~e3'~, "G~~*s, and 76~e3'~. More recently Magat et al. (9) have achieved the rotational analysis of a few bands belonging to the A-X system by making use of the accurate ground state rotational constants available from microwave spectral studies (10, 1 I). In Drummond and Barrow's absorption study of the E-X system (8) a ur-0 progression was observed extending to u' = 36. However, the vibrational constants they reported were derived from a data set restricted to u' Linton (12) observed two new transitions, b3nl-x'c+ ( nm) and a3c+-x'c' ( nm), in experiments that were completely free from the previously known AT-x'C+ and E'C+x'C' band systems: a chemiluminescent flame produced by the reaction of Ge with OCS. We have examined the GeS spectrum in emission between 200 and 650 nm and, in addition to the known A-X '~uthor to whom correspondence may be addressed. 'on leave ( ) from: Spectroscopy Division, Bhabha Atomic Research Centre, Bombay , India. Results and discussion In the Dresent studies of GeS in emission we have observed extensive band structure throughout the visible and ultraviolet, including the A'n-xlC+ and E'C+-X'C+ systems, but not the bands found by Linton (12) in chemiluminescence. Our spectra, in the ultraviolet down to 220 nm, include bands reported by Drummond and Barrow (8) up to u = 21 of the E-state. Their observations extend somewhat further towards the convergence limit near 214 nm. Some 30 bands in the nm region have been observed that have not previously been reported. Their occurrence together with known GeS bands, and the complete absence of any identifiable impurity spectra, suggested that the new bands also belong to GeS. They are red-degraded and have a similar appearance to the E-X bands in the ultraviolet. We have considered the probability that these new visible bands constitute part of the E-X system and find that they can indeed be integrated in a satisfactory way. The detailed vibrational analysis of the ultraviolet and the

2 BALFOUR AND SHETTY 1623 TABLE 1. Observed band-heads in the E'Zf-x'C+ system of GeS TABLE 1 (co~zcl~ided) in both the ultraviolet and the visible spectral re,' OIO~S Band hair V W Band hair V,;,, Band hair ',ac Band hair VV,, (71'-~") (nrn) (cn1c') (ul-u") (nrn) (crn') (-I") (nm) (cin') (vf-v") (nm) (cin-') (0) Bands in the ultraviolet (b) Bands in the visible visible bands has revealed that while the former arise from transitional between vibrational levels 0 5 v -i 21 in the E'C+ state and 0 5 v 5 8 in the x'c+ state, the latter involve transitions from 33 5 v 5 40 in the E'C+ state to 60 5 v 5 68 in the x'c' state of GeS. A least-squares fit, combining all of our observed band-heads in the ultraviolet and visible region, yielded the following constants: TL = (1.37), ol = (19), ofxl = 1.377(8), = (26) and o:xz = 1.800(4) (cm-i). Values in parentheses are standard deviations. These constants from the global fit of E-X bands may be compared with those obtained from measurements of the first few vibrational intervals in the ground state from rotational analysis of A-X bands (9) and infrared emission spectra (13), where the v = 1 to v = 0 interval was found to be cm-i. The constants above give cm-i, in excellent agreement. The standard deviation of the fit (4.8 cm-i) is well within the experimental uncertainties in band-head positions. Unlike the bands in the A-X system, the bands in the E-X system do not show sharp, well-defined heads. A major source of the uncertainty in the measured band-heads comes from overlapping, unresolved, isotopic structure. For the same reason no isotopic information useful to the assigning of specific vibrational quantum numbers is evident. Band-heads and their vibrational assignments are listed in Table 1. We have used Franck-Condon calculations (14) to verify the above interpretation of the visible GeS bands. The vibrational constants necessary to compute the Rydberg-Klein- Rees (RKR) potential energy curves were taken from the present study. Equilibrium rotational data (B, and a,) for the ground electronic state are available from microwave studies (10, 1 I), but similar data for the E-state have not been measured. Initially we estimated BS and a: parameters by assuming percentage changes upon excitation to be the same for GeS as measured for the isovalent SiS (15). The estimated I-: was nm. We subsequently adjusted the r: value to nm, while preserving the shape of the potential curve, to match the calculated relative intensity distribution of the a'-0 progression to experiment. The RKR curves used are given in Table 2. The Franck-Condon factors obtained from these curves are shown in Table 3. The predictions of these calculations agree well with the observations in both the ultraviolet and visible regions.

3 CAN. J. CHEM. VOL. 71, 1993 TABLE 2. RKR potential energy curves for the x'z' and E'Z' states of GeS X'Z' State E'Z+ State B, (cm-') r i n r n m v G(u) (cm-') B, (cm-') I

4 BALFOUR AND SHETTY 1625 TABLE 2 (concluded) x'c+ State u G(u) (cm-') Bv (cm-') rnmin (nm) E'Z' State r m m u G(u) (cm-') B, (cm-') rmin (nm) rmdx (nm) (a) Ultraviolet bands TABLE 3. Franck-Condon factors in the EIC+-x'C+ system of GeS u' , (b) Visible bands u" 71)' Acknowledgement 1. N. Elander and A. Lagerqvist. Phys. Scr. 3, 267 (1971). This research was supported by funds from the Univer- 2. R.F. Barrow and T.J. Stone. J. Phys. B: At. Mol. Phys. 8, L13 sity of Victoria and the Natural Sciences and Engineering (1975). Research Council of Canada. 3. E.E. Vago and R.F. Barrow. Proc. Phys. Soc. 58, 538 (1946).

5 1626 CAN. J. CHEM. VOL. 71, G. Lakshminarayana, B.J. Shetty, and S. Gopal. J. Mol. Spectrosc. 112, 1 (1985). 5. G. Lakshminarayana and B.J. Shetty. J. Mol. Spectrosc. 130, 155 (1988). 6. K. Sunanda, S. Gopal, B.J. Shetty, and G. Lakshminarayana. J. Quant. Spectrosc. Radiat. Transfer, 42, 631 (1989). 7. C.V. Shapiro, R.C. Gibbs, and A.W. Laubengayer. Phys. Rev. 40, 354 (1932). 8. G. Drummond and R.F. Barrow. Proc. Phys. Soc. London, Sect. A, 65, 277 (1952). 9. P. Magat, A.C. Le Floch, and J. Lebreton. J. Phys. B: At. Mol. Phys. 13, 4143 (1980). Z. Naturforsch. A: Astrophys. Phys. Phys. Chem. 24A, 1217 (1969). W.U. Steida, E. Tiemann, T. Torring, and J. Hoeft. Z. Naturforsch., A: Phys. Phys. Chem. ~ osmo~h~s. 31A, 374 (1976). C. in ton. J. Mol. Spectrosc. 79, 90 (1980). H. Uehara, K. Horiai, K. Sueoka, and K. Nakagawa. Chem. Phys. Lett. 160, 149 (1989). (a) R.N. Zare. University of California Radiation Lab. Rep. UCRL , University of California, Los Angeles, Calif.; (b) J. Chem. Phys. 40, 1934 (1964). K.P. Huber and G. Herzberp. " Molecular s~ectra and molecular structure. IV. Constants of diatomic molecules. Van 10. J. Hoeft, F.J. Lovas, E. Tiemann, R. Tiescher, and T. Torring. Nostrand Reinhold Co., New York

Ab initio Based Configuration Interaction Study of the Electronic Spectrum of GeS

Ab initio Based Configuration Interaction Study of the Electronic Spectrum of GeS 22 J. Phys. Chem. A 200, 05, 22-29 Ab initio Based Configuration Interaction Study of the Electronic Spectrum of GeS Antara Dutta, Surya Chattopadhyaya, and Kalyan Kumar Das* Department of Chemistry, Physical

More information

On Franck-Condon Factors and Intensity Distributions in some Band Systems of I 2, NS and PS Molecules

On Franck-Condon Factors and Intensity Distributions in some Band Systems of I 2, NS and PS Molecules J. Astrophys. Astr. (1982) 3, 13 25 On Franck-Condon Factors and Intensity Distributions in some Band Systems of I 2, NS and PS Molecules Κ. Raghuveer and Ν. A. Narasimham spectroscopy Division, Bhabha

More information

ULTRAVIOLET BANDS OF POTASSIUM DIMER

ULTRAVIOLET BANDS OF POTASSIUM DIMER IC/2001/36 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ULTRAVIOLET BANDS OF POTASSIUM

More information

DISSOCIATION ENERGY OF GROUND STATE OF GaCl MOLECULE

DISSOCIATION ENERGY OF GROUND STATE OF GaCl MOLECULE Journal of Ovonic Research Vol. 9, No. 2, March - April 2013, p. 55-60 DISSOCIATION ENERGY OF GROUND STATE OF GaCl MOLECULE HEWA Y ABDULLAH * Department of Physics, College of Education,Salahaddin University-Hawler,

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Instrumentation Radiation sources Hollow cathode lamp Most common source Consist of W anode and a cathode sealed in a glass tube filled with Ne or Ar. Hollow

More information

Atomic Absorption Spectroscopy

Atomic Absorption Spectroscopy CH 2252 Instrumental Methods of Analysis Unit IV Atomic Absorption Spectroscopy Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering

More information

Chemistry 212 ATOMIC SPECTROSCOPY

Chemistry 212 ATOMIC SPECTROSCOPY Chemistry 212 ATOMIC SPECTROSCOPY The emission and absorption of light energy of particular wavelengths by atoms and molecules is a common phenomenon. The emissions/absorptions are characteristic for each

More information

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017 Molecular spectroscopy Multispectral imaging (FAFF 00, FYST9) fall 017 Lecture prepared by Joakim Bood joakim.bood@forbrf.lth.se Molecular structure Electronic structure Rotational structure Vibrational

More information

Isotopic effect of Cl + 2 rovibronic spectra in the A X system

Isotopic effect of Cl + 2 rovibronic spectra in the A X system Vol 18 No 7, July 009 c 009 Chin. Phys. Soc. 1674-1056/009/1807)/74-05 Chinese Physics B and IOP Publishing Ltd Isotopic effect of Cl + rovibronic spectra in the A X system Wu Ling ) a)c), Yang Xiao-Hua

More information

Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the 1 and 2 3 States

Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the 1 and 2 3 States JOURNAL OF MOLECULAR SPECTROSCOPY 192, 152 161 (1998) ARTICLE NO. MS987633 Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the 1 and 2 3 States Yoshiyuki Kawashima,*

More information

Successive approximation to determine rotational temperature

Successive approximation to determine rotational temperature PramS.ha, Vol. 21, No. 1, July 1983, pp. 29-34. Printed in India. Successive approximation to determine rotational temperature M I SAVADATTI and N N MATH Department of Physics, Karnatak University, Dharwad

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

Atomic Spectra for Atoms and Ions. Light is made up of different wavelengths

Atomic Spectra for Atoms and Ions. Light is made up of different wavelengths Atomic Spectra for Atoms and Ions What will you be doing in lab next week? Recording the line spectra of several different substances in discharge tubes. Recording the line spectra of several ions from

More information

Collisional-Radiative Model of Molecular Hydrogen

Collisional-Radiative Model of Molecular Hydrogen 016.3 IAEA Collisional-Radiative Model of Molecular Hydrogen Keiji Sawada and Shinichi Hidaka Shinshu University, Japan Motoshi Goto NIFS, Japan Introduction : Our models elastic collision Collisional

More information

High-Resolution Survey of the Visible Spectrum of NiF by Fourier Transform Spectroscopy

High-Resolution Survey of the Visible Spectrum of NiF by Fourier Transform Spectroscopy Journal of Molecular Spectroscopy 214, 152 174 (2002) doi:10.1006/jmsp.2002.8567 High-Resolution Survey of the Visible Spectrum of NiF by Fourier Transform Spectroscopy Y. Krouti, T. Hirao,,1 C. Dufour,

More information

Laser-Induced Fluorescence and Fourier Transform Spectroscopy of NiCl: Identification of a Low-Lying 2 State (1768 cm 1 )

Laser-Induced Fluorescence and Fourier Transform Spectroscopy of NiCl: Identification of a Low-Lying 2 State (1768 cm 1 ) Journal of Molecular Spectroscopy 204, 125 132 (2000) doi:10.1006/jmsp.2000.8186, available online at http://www.idealibrary.com on Laser-Induced Fluorescence and Fourier Transform Spectroscopy of NiCl:

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

RAY OPTICS 6. DISPERSION POINTS TO REMEMBER

RAY OPTICS 6. DISPERSION POINTS TO REMEMBER Y OPTICS 6. DISPESION POINTS TO EMEMBE. Dispersion : a) The splitting of white light into constituent colours is called dispersion and the band of colours is called spectrum. b) Dispersion of light was

More information

Atomic Spectroscopy. Absorption and Emission Spectra. Lodovico Lappetito. SpettroscopiaAtomica - 15/07/2015 Pag. 1

Atomic Spectroscopy. Absorption and Emission Spectra. Lodovico Lappetito. SpettroscopiaAtomica - 15/07/2015 Pag. 1 Atomic Spectroscopy Absorption and Emission Spectra Lodovico Lappetito SpettroscopiaAtomica - 15/07/2015 Pag. 1 Table of Contents Atomic Spectra... 3 Diffraction Grating Spectrometer... 4 Spectral Lamps...

More information

ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light

ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light by these elements in order to measure their concentration.

More information

Fourier Transform Infrared Emission Spectroscopy of NaCl and KCl

Fourier Transform Infrared Emission Spectroscopy of NaCl and KCl JOURNAL OF MOLECULAR SPECTROSCOPY 183, 360 373 (1997) ARTICLE NO. MS977292 Fourier Transform Infrared Emission Spectroscopy of NaCl and KCl R. S. Ram,* M. Dulick,, B. Guo, K.-Q. Zhang, and P. F. Bernath*,

More information

Experiment 24: Spectroscopy

Experiment 24: Spectroscopy Experiment 24: Spectroscopy Figure 24.1: Spectroscopy EQUIPMENT High Voltage Power Supply Incandescent Light Source (3) Gas Discharge Tubes: 1. Helium 2. Hydrogen 3. Unknown Element Spectrometer Felt (1)

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Characterization of the Ground State of Br 2 by Laser-Induced Fluorescence Fourier Transform Spectroscopy of the B 3 0 u X 1 g System

Characterization of the Ground State of Br 2 by Laser-Induced Fluorescence Fourier Transform Spectroscopy of the B 3 0 u X 1 g System Journal of Molecular Spectroscopy 200, 104 119 (2000) doi:10.1006/jmsp.1999.8039, available online at http://www.idealibrary.com on Characterization of the Ground State of Br 2 by Laser-Induced Fluorescence

More information

Laboratory Atomic Emission Spectrum

Laboratory Atomic Emission Spectrum Laboratory Atomic Emission Spectrum Pre-Lab Questions: Answer the following questions in complete sentences by reading through the Overview and Background sections below. 1. What is the purpose of the

More information

FTIR Emission Spectra, Molecular Constants, and Potential Curve of Ground State GeO

FTIR Emission Spectra, Molecular Constants, and Potential Curve of Ground State GeO Journal of Molecular Spectroscopy 94, 97 202 (999) Article ID jmsp.998.7789, available online at http://www.idealibrary.com on FTIR Emission Spectra, Molecular Constants, and Potential Curve of Ground

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

Experiment #9. Atomic Emission Spectroscopy

Experiment #9. Atomic Emission Spectroscopy Introduction Experiment #9. Atomic Emission Spectroscopy Spectroscopy is the study of the interaction of light with matter. This interaction can be in the form of the absorption or the emission of electromagnetic

More information

Infrared Diode Laser Spectroscopy of the NS Radical

Infrared Diode Laser Spectroscopy of the NS Radical JOURNAL OF MOLECULAR SPECTROSCOPY 84, 68-73 (1980) Infrared Diode Laser Spectroscopy of the NS Radical KEIJI MATSUMURA, KENTAROU KAWAGUCHI, KEIICHI NAGAI, CHIKASHI YAMADA, AND EIZI HIROTA Institute for

More information

Ab initio calculations on the ground and low-lying excited states of InI

Ab initio calculations on the ground and low-lying excited states of InI MOLECULAR PHYSICS, 1OCTOBER 23, VOL. 11, NO. 19, 2963 2968 Ab initio calculations on the ground and low-lying excited states of InI WENLI ZOU, MEIRONG LIN*, XINZHENG YANG and BAOZHENG ZHANG Institute of

More information

Use of intermediate coupling relationships to test measured branching fraction data

Use of intermediate coupling relationships to test measured branching fraction data J. Phys. B: At. Mol. Opt. Phys. 31 (1998) L769 L774. Printed in the UK PII: S0953-4075(98)95845-X LETTER TO THE EDITOR Use of intermediate coupling relationships to test measured branching fraction data

More information

Precision VUV spectroscopy of Ar I at 105 nm

Precision VUV spectroscopy of Ar I at 105 nm J. Phys. B: At. Mol. Opt. Phys. 32 (999) L5 L56. Printed in the UK PII: S0953-4075(99)05625-4 LETTER TO THE EDITOR Precision VUV spectroscopy of Ar I at 05 nm I Velchev, W Hogervorst and W Ubachs Vrije

More information

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine We have already seen that molecules can rotate and bonds can vibrate with characteristic energies, each energy being associated with a particular

More information

The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps

The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps Sun Qin-Qing( ) a)b), Miao Xin-Yu( ) a), Sheng Rong-Wu( ) c), and Chen Jing-Biao( ) a)b) a)

More information

CSUS Department of Chemistry Experiment 9 Chem. 1A

CSUS Department of Chemistry Experiment 9 Chem. 1A CSUS Department of Chemistry xperiment 9 Chem. 1A xp. 9 PR-Lab ASSIGNMNT Name: Lab Section (1) Use equation (2) [see the discussion on the next page] to calculate the energies of the ten lowest states

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 1: Atomic Spectroscopy Text: Chapter 12,13 & 14 Rouessac (~2 weeks) 1.0 Review basic concepts in Spectroscopy 2.0 Atomic Absorption and Graphite Furnace Instruments 3.0 Inductively Coupled Plasmas

More information

The Vibrational-Rotational Spectrum of HCl

The Vibrational-Rotational Spectrum of HCl CHEM 332L Physical Chemistry Lab Revision 2.2 The Vibrational-Rotational Spectrum of HCl In this experiment we will examine the fine structure of the vibrational fundamental line for H 35 Cl in order to

More information

Atomization. In Flame Emission

Atomization. In Flame Emission FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic by its monatomic particles in gaseous state in the

More information

Rotation harmonics for a numerical diatomic potential

Rotation harmonics for a numerical diatomic potential Le The for dans J. Physique 44 (1983) 12571262 NOVEMBRE 1983, 1 E 1257 Classification Physics Abstracts 31.00 Rotation harmonics for a numerical diatomic potential H. Kobeissi and M. Korek Faculty of Science,

More information

Observation of Atomic Spectra

Observation of Atomic Spectra Observation of Atomic Spectra Introduction In this experiment you will observe and measure the wavelengths of different colors of light emitted by atoms. You will first observe light emitted from excited

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

Pramfina-J. Phys., Vol. 30, No. 2, February 1988, pp Printed in India.

Pramfina-J. Phys., Vol. 30, No. 2, February 1988, pp Printed in India. Pramfina-J. Phys., Vol. 30, No. 2, February 1988, pp. 135-141. Printed in India. Photoacoustic spectra of some laser dyes R S RAM and OM PRAKASH Division of Standards, National Physical Laboratory, New

More information

Experimental study of the 39 K g state by perturbation facilitated infrared-infrared double resonance and two-photon excitation spectroscopy

Experimental study of the 39 K g state by perturbation facilitated infrared-infrared double resonance and two-photon excitation spectroscopy THE JOURNAL OF CHEMICAL PHYSICS 122, 074302 2005 Experimental study of the 39 K 2 2 3 g state by perturbation facilitated infrared-infrared double resonance and two-photon excitation spectroscopy Yizhuo

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.76 Lecture

More information

Determination and study the energy characteristics of vibrationalrotational levels and spectral lines of GaF, GaCl, GaBr and GaI for ground state

Determination and study the energy characteristics of vibrationalrotational levels and spectral lines of GaF, GaCl, GaBr and GaI for ground state International Letters of Chemistry, Physics and Astronomy Online: 2015-05-03 ISSN: 2299-3843, Vol. 50, pp 96-112 doi:10.18052/www.scipress.com/ilcpa.50.96 2015 SciPress Ltd., Switzerland Determination

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Interaction of Molecules with Radiation

Interaction of Molecules with Radiation 3 Interaction of Molecules with Radiation Atoms and molecules can exist in many states that are different with respect to the electron configuration, angular momentum, parity, and energy. Transitions between

More information

Topic 2.11 ANALYTICAL TECHNIQUES. High Resolution Mass Spectrometry Infra-red Spectroscopy

Topic 2.11 ANALYTICAL TECHNIQUES. High Resolution Mass Spectrometry Infra-red Spectroscopy Topic 2.11 ANALYTICAL TECHNIQUES High Resolution Mass Spectrometry Infra-red Spectroscopy HIGH RESOLUTION MASS SPECTROMETRY The technique of mass spectrometry was used in Unit 1 to: a) determine the relative

More information

ATOMIC SPECROSCOPY (AS)

ATOMIC SPECROSCOPY (AS) ATOMIC ABSORPTION ANALYTICAL CHEMISTRY ATOMIC SPECROSCOPY (AS) Atomic Absorption Spectroscopy 1- Flame Atomic Absorption Spectreoscopy (FAAS) 2- Electrothermal ( Flame-less ) Atomic Absorption Spectroscopy

More information

The relationship between these aspects is described by the following equation: E = hν =

The relationship between these aspects is described by the following equation: E = hν = 1 Learning Outcomes EXPERIMENT A10: LINE SPECTRUM Upon completion of this lab, the student will be able to: 1) Examine the line spectrum of the hydrogen atom. 2) Calculate the frequency and energy of the

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

9/13/10. Each spectral line is characteristic of an individual energy transition

9/13/10. Each spectral line is characteristic of an individual energy transition Sensitive and selective determination of (primarily) metals at low concentrations Each spectral line is characteristic of an individual energy transition 1 Atomic Line Widths Why do atomic spectra have

More information

Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region

Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region Christa Haase, Jinjun Liu, Frédéric Merkt, Laboratorium für physikalische Chemie, ETH Zürich current address:

More information

Fourier transform spectroscopy of BaO: New ground-state constants from the A 1 X 1 chemiluminescence

Fourier transform spectroscopy of BaO: New ground-state constants from the A 1 X 1 chemiluminescence JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 8 22 AUGUST 2000 Fourier transform spectroscopy of BaO: New ground-state constants from the A 1 X 1 chemiluminescence Hongzhi Li, Cristian Focsa, a) Bernard

More information

Atomic Emission Spectroscopy

Atomic Emission Spectroscopy Atomic Emission Spectroscopy Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building:

More information

Fourier Transform Emission Spectroscopy of TaO

Fourier Transform Emission Spectroscopy of TaO JOURNAL OF MOLECULAR SPECTROSCOPY 191, 125 136 (1998) ARTICLE NO. MS987620 Fourier Transform Emission Spectroscopy of TaO R. S. Ram and P. F. Bernath 1 Department of Chemistry, University of Arizona, Tucson,

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Classification of spectroscopic methods

Classification of spectroscopic methods Introduction Spectroscopy is the study of the interaction between the electromagnetic radiation and the matter. Spectrophotometry is the measurement of these interactions i.e. the measurement of the intensity

More information

Emission spectrum of H

Emission spectrum of H Atomic Spectroscopy Atomic spectroscopy measures the spectra of elements in their atomic/ionized states. Atomic spectrometry, exploits quantized electronic transitions characteristic of each individual

More information

Wavelength Frequency Measurements

Wavelength Frequency Measurements Wavelength Frequency Measurements Frequency: - unit to be measured most accurately in physics - frequency counters + frequency combs (gear wheels) - clocks for time-frequency Wavelength: - no longer fashionable

More information

Reinvestigation of the NCN Radical Using Infrared Laser Magnetic Resonance Spectroscopy

Reinvestigation of the NCN Radical Using Infrared Laser Magnetic Resonance Spectroscopy Reinvestigation of the NCN Radical Using Infrared Laser Magnetic Resonance Spectroscopy Brooke Chuzles, Chris DiRocco and Dan Sutton Faculty Sponsor: M. Jackson, Department of Physics ABSTRACT The laser

More information

Fine Structure of the metastable a 3 Σ u + state of the helium molecule

Fine Structure of the metastable a 3 Σ u + state of the helium molecule Fine Structure of the metastable a 3 Σ u + state of the helium molecule Rui Su and Charles Markus 12/4/2014 Abstract The original article written by Lichten, McCusker, and Vierima reported the measurement

More information

Quantum defect and fine-structure measurements of P, D, F and G Rydberg states of atomic caesium

Quantum defect and fine-structure measurements of P, D, F and G Rydberg states of atomic caesium J. Phys. B: Atom. Molec. Phys., Vol. 12, No. 20, 1979. Printed in Great Britain LETTER TO THE EDTOR Quantum defect and fine-structure measurements of P, D, F and G Rydberg states of atomic caesium L R

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

by Wood,I Fuchtbauer2 and others; and for mercury, cadmium, lead, The apparatus used in the present work with zinc was similar to that

by Wood,I Fuchtbauer2 and others; and for mercury, cadmium, lead, The apparatus used in the present work with zinc was similar to that 738 PHYSICS: J. G. WINANS PRoc. N. A. S. approaches the normal effect more and more closely as k, increases, so that this also would probably resemble a normal triplet. The patterns which we should expect

More information

Atomic Spectroscopy. Objectives

Atomic Spectroscopy. Objectives Atomic Spectroscopy Name Objectives explain the difference between emission and absorption spectra calculate the energy of orbits in the Bohr model of hydrogen calculate E for energy transitions in the

More information

Chemistry 213 Practical Spectroscopy

Chemistry 213 Practical Spectroscopy Chemistry 213 Practical Spectroscopy Dave Berg djberg@uvic.ca Elliott 314 A course in determining structure by spectroscopic methods Different types of spectroscopy afford different information about molecules

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

The infrared emission spectra of LiF and HF

The infrared emission spectra of LiF and HF The infrared emission spectra of LiF and HF H. G. HEDDERICH,' C. I. FRUM, R. ENGLEMAN, JR., AND P. F. BERNATH' Department of Chemistry, The University of Arizona, Tucson, AZ 85721, U.S.A. Received March

More information

Arrangement of Electrons in the Atom

Arrangement of Electrons in the Atom Arrangement of Electrons in the Atom Bohr s Study of Atomic Spectra When white light is passed through a prism, the white light is broken up into an array of colours. This spread of colours is called a

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

OPTICAL GAIN AND LASERS

OPTICAL GAIN AND LASERS OPTICAL GAIN AND LASERS 01-02-1 BY DAVID ROCKWELL DIRECTOR, RESEARCH & DEVELOPMENT fsona COMMUNICATIONS MARCH 6, 2001 OUTLINE 01-02-2 I. DEFINITIONS, BASIC CONCEPTS II. III. IV. OPTICAL GAIN AND ABSORPTION

More information

RKR Potentials of Isotopologues of the CO Molecule

RKR Potentials of Isotopologues of the CO Molecule ISSN 0030-400X, Optics and Spectroscopy, 015, Vol. 118, No. 1, pp. 6 10. Pleiades Publishing, Ltd., 015. Original Russian Text T.I. Velichko, S.N. Mikhailenko, 015, published in Optika i Spektroskopiya,

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

high energy state for the electron in the atom low energy state for the electron in the atom

high energy state for the electron in the atom low energy state for the electron in the atom Atomic Spectra Objectives The objectives of this experiment are to: 1) Build and calibrate a simple spectroscope capable of measuring wavelengths of visible light. 2) Measure several wavelengths of light

More information

Atomic Spectra & Electron Energy Levels

Atomic Spectra & Electron Energy Levels CHM151LL: ATOMIC SPECTRA & ELECTRON ENERGY LEVELS 1 Atomic Spectra & Electron Energy Levels OBJECTIVES: To measure the wavelength of visible light emitted by excited atoms to calculate the energy of that

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Archives of Physics Research, 2011, 2 (3):23-28 (http://scholarsresearchlibrary.com/archive.html) ISSN : 0976-0970 CODEN (USA): APRRC7 Application of

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3 Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 Figure 2 Figure 3 Light Calculation Notes Here s how the type/form of EM radiation can be determined The amount

More information

Chapter 4. Spectroscopy. Dr. Tariq Al-Abdullah

Chapter 4. Spectroscopy. Dr. Tariq Al-Abdullah Chapter 4 Spectroscopy Dr. Tariq Al-Abdullah Learning Goals: 4.1 Spectral Lines 4.2 Atoms and Radiation 4.3 Formation of the Spectral Lines 4.4 Molecules 4.5 Spectral Line Analysis 2 DR. T. AL-ABDULLAH

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Light sources. Excited gas atoms are the primaty source of radiation in combustion and discharge lamps. lamps is not continuous!

Light sources. Excited gas atoms are the primaty source of radiation in combustion and discharge lamps. lamps is not continuous! Light sources Excited gas atoms are the primaty source of radiation in combustion and discharge lamps. Continuous spectrum: black body radiation Characteristic spectrum: emission lines Absorption lines

More information

Spectroscopy of AuO: Identification of the [10.7] Π 3/2 to X 2 Π 3/2 Transition

Spectroscopy of AuO: Identification of the [10.7] Π 3/2 to X 2 Π 3/2 Transition 11302 J. Phys. Chem. A 2004, 108, 11302-11306 Spectroscopy of AuO: Identification of the [10.7] Π 3/2 to X 2 Π 3/2 Transition Leah C. O Brien,*, Sarah C. Hardimon, and James J. O Brien Department of Chemistry,

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple meter-stick spectroscope that is capable of measuring wavelengths of visible light.

More information

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2 PHYSICAL REVIEW A VOLUME 53, NUMBER 5 MAY 1996 Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2 E. R. I. Abraham, 1 W. I. McAlexander, 1 H. T. C. Stoof, 2 and R. G. Hulet 1 1 Physics

More information

Chapter 13 Spectroscopy

Chapter 13 Spectroscopy hapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-Visible spectroscopy Nuclear magnetic resonance spectroscopy Mass Spectrometry 13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Intro to Galaxies Light and Atoms - I

Intro to Galaxies Light and Atoms - I Astrophysics Study of Light Study of Atoms Intro to Galaxies Light and Atoms - I 1 Atomic Physics elements: substances which cannot be broken down into simpler substances atom : smallest unit of an element

More information

H. R. Hirsch R. J. Hull R. H. Kohler Mrs. Ilana Levitan K. K. Y. Li J. H. Loehlin

H. R. Hirsch R. J. Hull R. H. Kohler Mrs. Ilana Levitan K. K. Y. Li J. H. Loehlin IIIL - -~ V. NUCLEAR MAGNETIC RESONANCE AND HYPERFINE STRUCTURE Prof. F. Bitter Prof. L. C. Bradley III Prof. J. S. Waugh Dr. H. H. Stroke Dr. J. F. Waymouth B. B. Aubrey M. Ciftan H. R. Hirsch R. J. Hull

More information

Spectroscopy Problem Set February 22, 2018

Spectroscopy Problem Set February 22, 2018 Spectroscopy Problem Set February, 018 4 3 5 1 6 7 8 1. In the diagram above which of the following represent vibrational relaxations? 1. Which of the following represent an absorbance? 3. Which of following

More information

Transmutation of Carbon

Transmutation of Carbon This page was last modified 26 February 2004. Transmutation of Carbon In 1994, R. Sundaresan and J.Bockris (Texas A&M) reported that they had observed "Anomalous Reactions During Arcing Between Carbon

More information

Millimeterwave spectroscopy of transient molecules produced in a DC discharge

Millimeterwave spectroscopy of transient molecules produced in a DC discharge PRAMANA cfl Indian Academy of Sciences Vol. 61, No. 1 journal of July 2003 physics pp. 85 91 produced in a DC discharge AIJAMAN Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhan Nagar, Kolkata

More information

5.3. Physics and the Quantum Mechanical Model

5.3. Physics and the Quantum Mechanical Model Chemistry 5-3 Physics and the Quantum Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the

More information

Introduction to Spectroscopic methods

Introduction to Spectroscopic methods Introduction to Spectroscopic methods Spectroscopy: Study of interaction between light* and matter. Spectrometry: Implies a quantitative measurement of intensity. * More generally speaking electromagnetic

More information

Emission Spectroscopy

Emission Spectroscopy Objectives Emission Spectroscopy Observe spectral lines from a hydrogen gas discharge tube Determine the initial and final energy levels for the electronic transitions associated with the visible portion

More information

The Main Point. How do light and matter interact? Lecture #7: Radiation and Spectra II. How is light absorbed and emitted?

The Main Point. How do light and matter interact? Lecture #7: Radiation and Spectra II. How is light absorbed and emitted? Lecture #7: Radiation and Spectra II How is light absorbed and emitted? Models of Atomic Structure. Formation of Spectral Lines. Doppler Shift. Applications in Solar System Studies Detecting gaseous phases

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Their Origin and Determination By GEOFFREY C. MAITLAND Senior Research Scientist Schlumberger Cambridge Research, Cambridge MAURICE RIGBY Lecturer in the Department of Chemistry King's

More information