INTERMOLECULAR FORCES

Size: px
Start display at page:

Download "INTERMOLECULAR FORCES"

Transcription

1 INTERMOLECULAR FORCES Their Origin and Determination By GEOFFREY C. MAITLAND Senior Research Scientist Schlumberger Cambridge Research, Cambridge MAURICE RIGBY Lecturer in the Department of Chemistry King's College, University of London E. BRIAN SMITH Fellow of St. Catherine's College, Oxford and Lecturer in Physical Chemistry, University of Oxford and WILLIAM A. WAKEHAM Professor of Chemical Physics Imperial College of Science and Technology, University of London ek FB7 Physlkol. Chemie / Chsm. Tedwologia Hochschule L 3 CLARENDON PRESS OXFORD Inventor

2 CONTENTS t2. 3. Pa 8 e INTRODUCTION 1.1. Historical background 1.2. Intermolecular energy Origins of intermolecular forces Long-range energy Electrostatic energy Induction energy Dispersion energy Long-range energy: summary Short-range energy Representation of the intermolecular pair potential energy function Simple functions More flexible analytic functions 28/ Representational functions Non-spherical molecules Sources of information about intermolecular forces Gas imperfection Transport properties of dilute gases Molecular beams Spectra Solid-state properties Summary THEORETICAL CALCULATION OF INTERMOLECULAR FORCES 2.1. Introduction Long-range forces Electrostatic energy Induction energy Dispersion energy Long-range three-atom energy Combination rules Short-range forces Heitler-London methods Molecular orbital theory United atom perturbation theory Model calculations Intermediate-range energy Exchange perturbation theories Molecular orbital theory Model calculations Results 88 GAS IMPERFECTIONS *3.1. Introduction 96 *3.2. Van der Waals equation of state 99

3 CONTENTS *3.3. The virial equation of state Statistical mechanics and the virial equation Virial coefficients and intermolecular forces Quantum corrections Temperature dependence of virial coefficients Corresponding states and virial coefficients Virial coefficients for model potential energy functions Experimental measurements Low-pressure techniques High-pressure techniques Calculation of virial coefficients from experimental results Joule-Thomson coefficients Intermolecular forces from virial coefficients Use of model potential functions Inversion methods Virial coefficients of more complex molecules Calculations using model non-spherical potentials Experimental results for non-spherical molecules Mixtures Dielectric virial coefficients 156 Appendix A3.1. Gas properties in terms of virial coefficients 158 MOLECULAR COLLISIONS 4.1. Introduction Classical dynamics of molecular collisions Binary elastic collisions The equivalent one-body problem Experimental characterization of scattering: cross-sections Definition of collision cross-sections Shortcomings of classical treatment Experimental techniques Principles of molecular beam experiments Sources Velocity and state selection Detectors Centre-of-mass-laboratory coordinates Integral cross-section measurements Differential cross-section measurements 183 t4.5. Quantum mechanical treatment of elastic scattering The wave function The cross-sections Solution of the wave equation: method of partial waves Hard-sphere scattering The semi-classical phase shift Analytical evaluation of phase shifts The scattering cross-sections Scattering of identical particles 211 The determination of intermolecular forces from elastic scattering cross-sections Quality of data Interpretation of data having no oscillatory fine structure

4 r jbiblloihek FB7 fhysikol. Chemie / Chem. lethnojegie CONTENTS Techniscfte Kochstfaufe Interpretation of data for which sojme quantur structure is observed Interpretation of fully-resolved scattering data 4.7. Scattering processes in polyatomic systems Inelastic scattering cross-sections Experimental methods The scattering S-matrix: elastic scattering Scattering matrices: the general case Relation of the S-matrix to scattering cross-sections Evaluation of the S-matrix: quantum approach Close-coupling calculations The centrifugal sudden approximation The infinite-order sudden approximation The space-fixed orientation approximation The l z -conserved energy sudden (IOS) approximation A Other approximate methods Criteria for choosing approximate methods 4.8. The determination of intermolecular forces from inelastic crosssection measurements Appendix A4.1. The JWKB approximation Appendix A4.2. Phase shifts for potentials of the form U(r) = C n r~ n THE KINETIC THEORY OF NON-UNIFORM DILUTE GASES *5.1. Introduction 266 *5.2. Simple kinetic theory Viscosity Thermal conductivity Diffusion Comparison with exact kinetic theory for hard-sphere molecules Application to real gases 275 t5.3. The rigorous kinetic theory 276 t The Boltzmann equation The Maxwell-Boltzmann equilibrium velocity distribution t5.5. The Chapman-Enskog solution for non-uniform gases The zeroth-order solution The first-order solution Explicit evaluation of the thermal conductivity coefficient 292 t5.6. Transport coefficients for pure gases Formulae for special intermolecular potential models 299 t5.7. Transport coefficients for binary mixtures Formulae for special intermolecular potential models 304 t5.8. Polyatomic gases Quantum mechanical theory The semi-classical theory t The classical theory The transport coefficients of polyatomic gases The semi-classical transport coefficients The Mason-Monchick approximation Polyatomic gas mixtures 315

5 xii CONTENTS Quantum-mechanical effects 316 t5.10. The kinetic theory of dense gases The Enskog theory The general kinetic theory of dense gases 322 tappendix A5.1. Integrals occurring in the kinetic theory 323 tappendix A5.2. Kinetic theory formulae for the transport properties of monatomic gases and gas mixtures 324 tappendix A5.3. Semi-classical formulae for the transport coefficients of dilute polyatomic gases and gas mixtures THE TRANSPORT PROPERTIES OF GASES AND INTERMOLECULAR FORCES 6.1. Introduction The calculation of transport properties from the intermolecular potential Experimental measurements Viscosity Thermal conductivity Binary diffusion coefficient The thermal diffusion factor Extraction of collision integrals from experimental data Principle of corresponding states Traditional methods of testing intermolecular potential functions The direct determination of intermolecular forces: inversion methods The basis of the inversion procedure Polyatomic gases Simple molecular models The semi-classical and classical kinetic theories The Mason and Monchick approximation Spherically-averaged potential The principle of corresponding states Monchick and Mason's treatment of polar gases Recent developments 380 I 7. SPECTROSCOPIC MEASUREMENTS 7.1. Introduction The origins of van der Waals molecules Concentrations 390 f Lifetimes Experimental techniques 391 I Ultraviolet and infrared studies of dimers 391 f Molecular-beam electric resonance: radiofrequency and microwave spectra Other techniques, Analysis of rotation-vibration spectra to give U(r): spherical systems Introduction The Rydberg-Klein-Rees inversion method Determination of dissociation energy (well depth) 400

6 CONTENTS 7.5. Experimental results for inert gas dimers Pure components Mixtures 7.6. Analysis of spectra for non-spherical systems General approach Diatomic-monatomic dimer systems Methods of calculating bound-state energies Weakly anisotropic systems Strongly anisotropic systems Dimers of diatomic and polyatomic molecules 7.7. Sensitivity of alternative spectroscopic and scattering processes to the intermolecular potential 8. CONDENSED PHASES 8.1. Introduction 8.2. Many body forces 8.3. The solid state Introduction Static lattice properties Lattice vibrations Lattice vibrations: higher order effects Experimental measurements Results for the inert gases More complex molecules 8.4. The liquid state Liquid structure Distribution function theories of liquids Computer simulation Perturbation theories Transport properties of liquids Experimental measurements for simple liquids Liquid-state properties and intermolecular forces Results for argon More complex molecules Liquid mixtures Appendix A8.1. The virial theorem of Clausius 9. INTERMOLECULAR FORCES: THE PRESENT POSITION *9.1. Introduction * * The Lennard-Jones era The basis of recent advances Potential energy functions Accurate potential functions (Class I) * Argon Krypton Helium Neon Xenon Argon-krypton Helium-heavier inert gas interactions

7 CONTENTS 9.6. Class II potential functions Kr-Xe, Ar-Xe, Ne-Xe, Ne-Ar, Ne-Kr Alkali metal-mercury system Class III potential functions Methane f Hydrogen 509 t Other diatomic molecules Inert-gas-diatomic-molecule interactions Benzene 513 J Water *9.9. Class IV potential functions General features of potential energy functions f 9.9.i: Conformality 518 I Combining rules 519 S *9.10. Concluding remarks 523 Appendix 1. Intermolecular pair potential models Appendix 2. Collision integrals and second virial coefficients for 531 n 6 and n(r) 6 potentials Appendix 3. The extended law of corresponding states correlation 538 I of thermophysical properties Appendix 4. Recommended values for thermophysical properties of 564.some representative gases 568 Appendix 5. Characteristic parameters of some simple substances 573 Appendix 6. Pitzer's acentric factor: corresponding states for second virial coefficients 574 Appendix 7. Lattice sums, L*, for some cubic lattices 575 Appendix 8. v Collision integrals and second virial coefficients for non-spherical intermolecular potential models 577 Appendix 9. The intermolecular pair potential for argon 581 Appendix 10. Parameters of the n(r) 6 potential model for some gases 582 Appendix 11. FORTRAN-IV computer program for the evaluation of second virial coefficients 583 Appendix 12. FORTRAN-IV computer programme for the evaluation of collision integrals 590 Appendix 13. Inversion functions for gas phase properties 601 Substance index 605 Index 606 * These sections provide a suitable introduction for readers approaching the subject for the first time. t These sections may not be necessary for all users on a first reading.

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166 Subject Index Ab-initio calculation 24, 122, 161. 165 Acentric factor 279, 338 Activity absolute 258, 295 coefficient 7 definition 7 Atom 23 Atomic units 93 Avogadro number 5, 92 Axilrod-Teller-forces

More information

DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS

DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS THERMAL SCIENCE: Year 07, Vo., No. 6B, pp. 85-858 85 DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS Introduction by Bo SONG, Xiaopo WANG *,

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic gases

An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic gases Korean J. Chem. Eng., 23(3), 447-454 (2006) SHORT COMMUNICATION An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic

More information

TRANSPORT PROPERTIES OF FLUIDS

TRANSPORT PROPERTIES OF FLUIDS CINDAS Data Series on Material Properties Volume 1-1 TRANSPORT PROPERTIES OF FLUIDS Thermal Conductivity, Viscosity, and Diffusion Coefficient Edited by С. Y. Ho Director, Center for Information and Numerical

More information

Ideal Gas Behavior. NC State University

Ideal Gas Behavior. NC State University Chemistry 331 Lecture 6 Ideal Gas Behavior NC State University Macroscopic variables P, T Pressure is a force per unit area (P= F/A) The force arises from the change in momentum as particles hit an object

More information

CHEMICAL KINETICS EDITED BY C. H. BAMFORD

CHEMICAL KINETICS EDITED BY C. H. BAMFORD CHEMICAL KINETICS EDITED BY C. H. BAMFORD M.A., Ph.D., Sc.D. (Cantab.), F.R.I.C, F.R.S. Campbell-Brown Professor of Industriell Chemistry, University of Liverpool AND C. F. H. TIPPER Ph.D. (Bristol), D.Sc.

More information

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Effusion The Maxwell-Boltzmann Distribution A Digression on

More information

1. I can use Collision Theory to explain the effects of concentration, particle size, temperature, and collision geometry on reaction rates.

1. I can use Collision Theory to explain the effects of concentration, particle size, temperature, and collision geometry on reaction rates. Chemical Changes and Structure Learning Outcomes SECTION 1 Controlling the Rate. Subsection (a) Collision Theory 1. I can use Collision Theory to explain the effects of concentration, particle size, temperature,

More information

Rotational-translational relaxation effects in diatomic-gas flows

Rotational-translational relaxation effects in diatomic-gas flows Rotational-translational relaxation effects in diatomic-gas flows V.V. Riabov Department of Computer Science, Rivier College, Nashua, New Hampshire 03060 USA 1 Introduction The problem of deriving the

More information

1.3 Molecular Level Presentation

1.3 Molecular Level Presentation 1.3.1 Introduction A molecule is the smallest chemical unit of a substance that is capable of stable, independent existence. Not all substances are composed of molecules. Some substances are composed of

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 3, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law of

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

INTERMEDIATE BONDING AND INTERMOLECULAR FORCES. Electronegativity

INTERMEDIATE BONDING AND INTERMOLECULAR FORCES. Electronegativity INTERMEDIATE BNDING AND INTERMLECULAR FRCES Electronegativity is defined as follows Electronegativity Electronegativity is the ability of an atom within a covalent bond to attract the bonding pair of electrons.

More information

CHEM 121 Lecture Planner

CHEM 121 Lecture Planner CHEM 121 Lecture Planner Lecture Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Topics The Scientific Method Theories & Laws Quantitative Measurements vs Qualitative Measurements Accuracy & Precision

More information

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley Fundamentals of and Statistical thermal physics F. REIF Professor of Physics Universüy of California, Berkeley McGRAW-HILL BOOK COMPANY Auckland Bogota Guatemala Hamburg Lisbon London Madrid Mexico New

More information

THE GASEOUS STATE OF MATTER

THE GASEOUS STATE OF MATTER THE GASEOUS STATE OF MATTER The gaseous state of matter is a form of matter in which the particles are in a high state of energy, which causes them to vibrate rapidly, experiencing a strong repulsion among

More information

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES BONDING & INTERMOLECULAR FORCES Page 1 INTERMOLECULAR FORCES Intermolecular forces (van der Waals forces) relative weak interactions that occur between molecules. Most of the physical properties of gases,

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Estimations of Rotational Relaxation Parameters in Diatomic Gases

Estimations of Rotational Relaxation Parameters in Diatomic Gases Estimations of Rotational Relaxation Parameters in Diatomic Gases Vladimir V. Riabov Department of Mathematics and Computer Science, Rivier College, 420 S. Main St., Nashua, NH 03060, USA Abstract: The

More information

Table of Contents [ttc]

Table of Contents [ttc] Table of Contents [ttc] 1. Equilibrium Thermodynamics I: Introduction Thermodynamics overview. [tln2] Preliminary list of state variables. [tln1] Physical constants. [tsl47] Equations of state. [tln78]

More information

MC Molecular Structures, Dipole Moments, Geometry, IMF Name: Date:

MC Molecular Structures, Dipole Moments, Geometry, IMF Name: Date: MC Molecular Structures, Dipole Moments, Geometry, IMF Name: Date: 2008 22. Which of the following is a nonpolar molecule that contains polar bonds? (A) F 2 (B) CHF 3 (C) CO 2 (D) HCl (E) NH 3 28. Which

More information

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech LECTURE NOTES Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE Geoffrey A. Blake Fall term 2016 Caltech Acknowledgment Part of these notes are based on lecture notes from the

More information

Physical Chemistry Using Mathcad

Physical Chemistry Using Mathcad Platform: Windows Requires: 4 MB hard disk space; includes the Mathcad Engine Available for ground shipment This book does two things: 1) Teaches the aspects of Mathcad that are most useful for solving

More information

The Spectroscopy of Stars

The Spectroscopy of Stars The Spectroscopy of Stars In this activity you will use a hand held spectroscope to investigate a number of known and unknown light sources. A spectroscope is an instrument that helps to observe the spectrum

More information

Gases. T boil, K. 11 gaseous elements. Rare gases. He, Ne, Ar, Kr, Xe, Rn Diatomic gaseous elements H 2, N 2, O 2, F 2, Cl 2

Gases. T boil, K. 11 gaseous elements. Rare gases. He, Ne, Ar, Kr, Xe, Rn Diatomic gaseous elements H 2, N 2, O 2, F 2, Cl 2 Gases Gas T boil, K Rare gases 11 gaseous elements He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomic gaseous elements Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120

More information

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 1 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University 1. Molecular Model of an Ideal Gas. Molar Specific Heat of an Ideal Gas. Adiabatic

More information

Data on the Velocity Slip and Temperature Jump Coefficients

Data on the Velocity Slip and Temperature Jump Coefficients Data on the Velocity Slip and Temperature Jump Coefficients Felix Sharipov Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Brazil email: sharipov@fisica.ufpr.br;

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

ChE 524 A. Z. Panagiotopoulos 1

ChE 524 A. Z. Panagiotopoulos 1 ChE 524 A. Z. Panagiotopoulos 1 VIRIAL EXPANSIONS 1 As derived previously, at the limit of low densities, all classical fluids approach ideal-gas behavior: P = k B T (1) Consider the canonical partition

More information

PHYSICAL CHEMISTRY. Donald A. McQuarrie UNIVERS1TY OF CALIFORNIA, DAVIS. John D. Simon UNIVERSITY OF CALIFORNIA, SAN DIEGO

PHYSICAL CHEMISTRY. Donald A. McQuarrie UNIVERS1TY OF CALIFORNIA, DAVIS. John D. Simon UNIVERSITY OF CALIFORNIA, SAN DIEGO PHYSICAL CHEMISTRY A MOLECULAR APPROACH Donald A. McQuarrie UNIVERS1TY OF CALIFORNIA, DAVIS John D. Simon UNIVERSITY OF CALIFORNIA, SAN DIEGO University Science Books Sausalito, California Contents

More information

Liquids and Solutions

Liquids and Solutions Liquids and Solutions Physical Chemistry Tutorials Mark Wallace, Wadham College mark.wallace@chem.ox.ac.uk CRL Floor 1 Office 1 Phone (2)75467 Taken from Thomas Group Website, Problems 1. The answers are

More information

A Corresponding State Theory for the Viscosity of Liquids Bull. Korean Chem. Soc. 2008, Vol. 29, No Articles

A Corresponding State Theory for the Viscosity of Liquids Bull. Korean Chem. Soc. 2008, Vol. 29, No Articles A Corresponding State Theory for the Viscosity of Liquids Bull. Korean Chem. Soc. 2008, Vol. 29, No. 1 33 Articles A Corresponding State Theory for the Viscosity of Liquids Wonsoo Kim * and Sukbae Lee

More information

CHEMISTRY LTF DIAGNOSTIC TEST STATES OF MATTER TEST CODE:

CHEMISTRY LTF DIAGNOSTIC TEST STATES OF MATTER TEST CODE: Chemsitry States of Matter Multiple Choice 017074 CHEMISTRY LTF DIAGNOSTIC TEST STATES OF MATTER TEST CODE: 017074 Directions: Each group of questions below consists of five lettered answers followed by

More information

Computation of Shock Waves in Inert Binary Gas Mixtures in Nonequilibrium Using the Generalized Boltzmann Equation

Computation of Shock Waves in Inert Binary Gas Mixtures in Nonequilibrium Using the Generalized Boltzmann Equation 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-0361 Computation of Shock Waves in Inert Binary Gas Mixtures

More information

KINETICE THEROY OF GASES

KINETICE THEROY OF GASES INTRODUCTION: Kinetic theory of gases relates the macroscopic properties of gases (like pressure, temperature, volume... etc) to the microscopic properties of the gas molecules (like speed, momentum, kinetic

More information

Chapter 2 Experimental sources of intermolecular potentials

Chapter 2 Experimental sources of intermolecular potentials Chapter 2 Experimental sources of intermolecular potentials 2.1 Overview thermodynamical properties: heat of vaporization (Trouton s rule) crystal structures ionic crystals rare gas solids physico-chemical

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

Photoelectron Spectroscopy

Photoelectron Spectroscopy Stefan Hüfner Photoelectron Spectroscopy Principles and Applications Third Revised and Enlarged Edition With 461 Figures and 28 Tables JSJ Springer ... 1. Introduction and Basic Principles 1 1.1 Historical

More information

Close coupling results for inelastic collisions of NH3 and Ar. A stringent test of a spectroscopic potential

Close coupling results for inelastic collisions of NH3 and Ar. A stringent test of a spectroscopic potential 12 August 1994 ELSEVIER Chemical Physics Letters 226 ( 1994) 22-26 CHEMICAL PHYSICS LETTERS Close coupling results for inelastic collisions of NH3 and Ar. A stringent test of a spectroscopic potential

More information

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Slide 2-3 Properties of Liquids Unlike gases, liquids respond dramatically to temperature and pressure changes. We can study the liquid state and

More information

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook CHAPTER 13 States of Matter States that the tiny particles in all forms of matter are in constant motion. Kinetic = motion A gas is composed of particles, usually molecules or atoms, with negligible volume

More information

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces Intermolecular Forces Have studied INTRAmolecular forces the forces holding atoms together to form compounds. Now turn to forces between molecules INTERmolecular forces. Forces between molecules, between

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An open-tube manometer is used to measure the pressure in a flask. The atmospheric

More information

The Boltzmann Equation and Its Applications

The Boltzmann Equation and Its Applications Carlo Cercignani The Boltzmann Equation and Its Applications With 42 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo CONTENTS PREFACE vii I. BASIC PRINCIPLES OF THE KINETIC

More information

Test Exchange Thermodynamics (C) Test Answer Key

Test Exchange Thermodynamics (C) Test Answer Key 1 Test Exchange Thermodynamics (C) Test Answer Key Made by Montgomery High School montyscioly@gmail.com 2 Questions are worth between 1 to 3 points. Show calculations for all open-ended math questions

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

Status and Future Developments in the Study of Transport Properties

Status and Future Developments in the Study of Transport Properties Status and Future Developments in the Study of Transport Properties NATO AS. Series Advanced Science Institutes Series A Series presenting the results of activities sponsored by the NA TO Science Committee,

More information

Molecule Matters van der Waals Molecules

Molecule Matters van der Waals Molecules FEATURE ARTICLE Molecule Matters van der Waals Molecules. Noble Gas Clusters are London Molecules! E Arunan E Arunan is an Professor at the Inorganic and Physical Chemistry Department, Indian Institute

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

States of matter Part 1

States of matter Part 1 Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry UNIT 6 GASES OUTLINE States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry STATES OF MATTER Remember that all matter exists in three physical states: Solid Liquid

More information

Molecular Aggregation

Molecular Aggregation Molecular Aggregation Structure Analysis and Molecular Simulation of Crystals and Liquids ANGELO GAVEZZOTTI University of Milano OXFORD UNIVERSITY PRESS Contents PART I FUNDAMENTALS 1 The molecule: structure,

More information

Chemistry 111 Syllabus

Chemistry 111 Syllabus Chemistry 111 Syllabus Chapter 1: Chemistry: The Science of Change The Study of Chemistry Chemistry You May Already Know The Scientific Method Classification of Matter Pure Substances States of Matter

More information

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Lecture 18 - Covalent Bonding. Introduction. Introduction. Introduction. Introduction

Lecture 18 - Covalent Bonding. Introduction. Introduction. Introduction. Introduction Chem 103, Section F0F Unit VII - States of Matter and Intermolecular Interactions Lecture 19 Physical states and physical changes Description of phase changes Intermolecular interactions Properties of

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

CHM2045 Exam 3 Review Fall 2015

CHM2045 Exam 3 Review Fall 2015 The steps to solving any chemistry problem 1) Read Question 2) Re-read Question 3) Write down everything you are given 4) Write down what you are trying to find CHM2045 Exam 3 Review 1) Write out the following

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

Lecture Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten

Lecture Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Lecture 1101 John D. Bookstaver St. Charles Community College Cottleville, MO Molecular Comparison

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Section #2 Downloadable at: http://tekim.undip.ac.id/staf/istadi Compounds: Introduction to Bonding The noble gases - helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe),

More information

4. Paras M. Agrawal and M. P. Saksena, Rotational relaxation in mixtures of hydrogen isotopes with noble gases, J. Phys. (U.K.) B8, 1575 (1975).

4. Paras M. Agrawal and M. P. Saksena, Rotational relaxation in mixtures of hydrogen isotopes with noble gases, J. Phys. (U.K.) B8, 1575 (1975). Research papers. 1. M. P. Saksena, Paras M. Agrawal, and Harminder, Distribtion of relaxation times and ultrasonic absorption in ammonia, Indian J. Pure & Applied Physics 11, 563 (1973). 2. Paras M. Agrawal

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Downloaded at http://www.istadi.net Section #2 1 2 1 Compounds: Introduction to Bonding The noble gases - helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Kinetic theory. Collective behaviour of large systems Statistical basis for the ideal gas equation Deviations from ideality

Kinetic theory. Collective behaviour of large systems Statistical basis for the ideal gas equation Deviations from ideality Kinetic theory Collective behaviour of large systems Statistical basis for the ideal gas equation Deviations from ideality Learning objectives Describe physical basis for the kinetic theory of gases Describe

More information

AT 620 Notes. These notes were prepared by Prof. Steven A. Rutledge. (and adapted slightly for the Fall 2009 course, and again slightly for this year)

AT 620 Notes. These notes were prepared by Prof. Steven A. Rutledge. (and adapted slightly for the Fall 2009 course, and again slightly for this year) AT 620 Notes These notes were prepared by Prof. Steven A. Rutledge (and adapted slightly for the Fall 2009 course, and again slightly for this year) You may access Prof. Cotton s notes, password cloud9

More information

Chem. 112 spring 2012 Exam 1 7:30am/Odago Wednesday March 7, 2012

Chem. 112 spring 2012 Exam 1 7:30am/Odago Wednesday March 7, 2012 Chem. 112 spring 2012 Exam 1 7:0am/Odago Wednesday March 7, 2012 Attempt all the questions and fill in your answers correctly on the scantron provided 1. A particular gas exerts a pressure of 4.6 atm.

More information

Thermophysical Properties of a Krypton Gas

Thermophysical Properties of a Krypton Gas CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 3 June 214 Thermophysical Properties of a Krypton Gas C. Benseddik, 1 M. T. Bouazza, 1 and M. Bouledroua 2 1 Laboratoire LAMA, Badji Mokhtar University, B. P. 12,

More information

Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school

Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school 2015-2016 Have a Great Summer!!! Ms. Charles LAB SAFETY/Vocabulary

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Liquids, Solids, and Intermolecular Forces Outline 1. Phase Diagrams and Triple Point Diagrams 2. Intermolecular Forces Review 1. Phase Diagrams and Triple Point Diagrams Phase Diagram of Water Triple

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

CHEMISTRY XL-14A GASES. August 6, 2011 Robert Iafe

CHEMISTRY XL-14A GASES. August 6, 2011 Robert Iafe CHEMISTRY XL-14A GASES August 6, 2011 Robert Iafe Chemistry in the News 2 Polymer nicotine trap is composed of a porphyrin derivative (black), in which amide pincers (green) are attached to the zinc (violet)

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Equations of State. Equations of State (EoS)

Equations of State. Equations of State (EoS) Equations of State (EoS) Equations of State From molecular considerations, identify which intermolecular interactions are significant (including estimating relative strengths of dipole moments, polarizability,

More information

Fundamentals of Mass Transfer

Fundamentals of Mass Transfer 1 Fundamentals of Mass Transfer What is mass transfer? When a system contains two or more components whose concentrations vary from point to point, there is a natural tendency for mass to be transferred,

More information

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum Alignment is based on the topics and subtopics addressed by each sim. Sims that directly address the topic area

More information

MOLECULAR COMPLEXES IN EARTH'S, PLANETARY, COMETARY, AND INTERSTELLAR ATMOSPHERES

MOLECULAR COMPLEXES IN EARTH'S, PLANETARY, COMETARY, AND INTERSTELLAR ATMOSPHERES MOLECULAR COMPLEXES IN EARTH'S, PLANETARY, COMETARY, AND INTERSTELLAR ATMOSPHERES Editors Andrei A. Vigasin Obukhov Institute of Atmospheric Physics, Russia Zdenek Slanina Toyohashi University of Technology,

More information

AP Chemistry: Liquids and Solids Practice Problems

AP Chemistry: Liquids and Solids Practice Problems AP Chemistry: Liquids and Solids Practice Problems Directions: Write your answers to the following questions in the space provided. or problem solving, show all of your work. Make sure that your answers

More information

THE BIG IDEA: ELECTRONS AND THE STRUCTURE OF ATOMS. BONDING AND INTERACTIONS.

THE BIG IDEA: ELECTRONS AND THE STRUCTURE OF ATOMS. BONDING AND INTERACTIONS. HONORS CHEMISTRY - CHAPTER 9 CHEMICAL NAMES AND FORMULAS OBJECTIVES AND NOTES - V18 NAME: DATE: PAGE: THE BIG IDEA: ELECTRONS AND THE STRUCTURE OF ATOMS. BONDING AND INTERACTIONS. Essential Questions 1.

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

CHEM. Ch. 12 Notes ~ STATES OF MATTER

CHEM. Ch. 12 Notes ~ STATES OF MATTER CHEM. Ch. 12 Notes ~ STATES OF MATTER NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 12.1 topics States of Matter: SOLID, LIQUID, GAS, PLASMA I. Kinetic Theory

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE Extended Second Edition A. Weiss, W. Hillebrandt, H.-C. Thomas and H. Ritter Max-Planck-lnstitut fur Astrophysik, Garching, Germany C S P CONTENTS PREFACE

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 3: The Three States of Matter Gas state (Equation of state: ideal gas and real gas). Liquid state

More information

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201) Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van

More information

Exam Style Questions

Exam Style Questions Calderglen High School Chemistry Department CfE Higher Chemistry Unit 1: Chemical Changes and Structure Exam Style Questions 1 1.1 Controlling the Rate 1. The graph shows how the rate of a reaction varies

More information

Advanced Stellar Astrophysics

Advanced Stellar Astrophysics v Advanced Stellar Astrophysics William K. Rose University of Maryland College Park CAMBRIDGE UNIVERSITY PRESS Contents Preface xiii Star formation and stellar evolution: an overview 1 1 A short history

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43. Made by Montgomery High School -

Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43. Made by Montgomery High School - 1 Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43 Made by Montgomery High School - montyscioly@gmail.com 2 Questions are worth between 1 and 3 points. Show calculations for all

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the oxidation number of the underlined element in K 2CO 3. a. 1 b. 2 c.

More information