The Vibrational-Rotational Spectrum of HCl

Size: px
Start display at page:

Download "The Vibrational-Rotational Spectrum of HCl"

Transcription

1 CHEM 332L Physical Chemistry Lab Revision 2.2 The Vibrational-Rotational Spectrum of HCl In this experiment we will examine the fine structure of the vibrational fundamental line for H 35 Cl in order to determine several spectroscopic constants; the Rotational Constants B 0 and B 1, the Centrifugal Distortion Constant D e, and the Fundamental Vibrational Band Origin. Inclusion of a few literature values for Rotational Constants B v for higher vibrational states v=2,3,4, will allow us to determine the Equilibrium Rotational Constant B e. Inclusion of literature values for the 1 st thru 4 th vibrational overtones will allow us to determine further spectroscopic constants; the Equilibrium Fundamental Vibrational Frequency and the Anharmonicity Constant. Finally, we will assume the HCl molecule is behaving approximately as two masses connected by a stiff spring of constant k rotating with internuclear distance r. We will then extract these molecular parameters from the appropriate spectroscopic constants. First, we must recognize that Hydrogen Chloride is a diatomic gaseous substance. Because it is a diatomic molecule, it will have one vibrational mode and one rotational mode of motion. Thus, we can model HCl molecules as vibrating rotors. We begin by examining the vibrational motion of the molecule and treat the atoms of the molecule as being connected by a Hookean spring of constant k. In this case, the Hamiltonian operator for the system is written as: = (Eq. 1) Solving the Schrodinger wave equation = E for the energy yields: E v = h (v + ½) v = 0, 1, 2, (Eq. 2) where = (1/2 ) is the Fundamental Vibrational Frequency of the system and is its reduced mass. v is the quantum number associated with the vibrational energy state E v. In

2 P a g e 2 anticipation of discussing spectral lines arising from with energy transitions, we can define the vibrational spectral "Term" as: G(v) = = (v + ½) (Eq. 3) where = /c. h and c are Planck's Constant and the speed of light, respectively. If we allow for non-hookean behavior, then: G(v) = (v + ½) - (v + ½) 2 (Eq. 4) where is an anharmonicity constant. This anharmonicity correction lowers the energy of each vibrational state because the parabolic potential of Hookean behavior tends to broaden and flatten and become more Morse like. The anharmonicity correction becomes more severe at higher vibrational states where the deviation from Hookean behavior is more pronounced. A couple of points must be kept in mind when considering equation 4. First, anharmonicity will cause the fundamental frequency of the oscillator to depend on which vibrational state the system is in. Thus, we define an equilibrium fundamental frequency ; this equals at the bottom of the potential well where anharmonicity vanishes. Second, and of equation 4 are spectroscopic constants that can be measured regardless of the model used for representing the molecule. On the other hand, the spring constant k of equation 2 depends on the nature of the model used to represent the molecule. This must be kept in mind when we extract values of k from the measured spectroscopic constant. Now, vibrational spectral lines will occur when a photon is absorbed causing an energy transition from E v'' to E v', where v'' is the lower quantum state and v' is the upper. In terms of spectral Terms, this transition is represented as: = G(v') - G(v'') (Eq. 5) The fundamental line vibrational spectral line will be given by = G(1) - G(0). Overtones, etc. are quantum forbidden by the selection rule v = ±1 and so are very weak. (Hot Bands, 1 2, 2 3, etc. are also very weak because higher vibrational states will not be significantly populated due to

3 P a g e 3 insufficient thermal energy in the system.) Schematically, the spectrum will appear as: Using high resolution spectrometers, it is observed each of these lines exhibits more detailed structure. For instance, at fairly low resolution, the Fundamental Line appears as a doublet. Using a higher resolution spectrometer, it is observed this line exhibits fine structure. At higher resolution yet, each fine structure line is observed to split into a pair of lines. The fine structure can be explained by considering the rotational motion of the HCl molecule. The splitting of each fine structure line can be explained by considering the sample to be made up of a mixture H 35 Cl and H 37 Cl molecules. So, turning to the rotational motion of the HCl molecule, we treat the molecule as a rigid rotor. Again, we write the system's Hamiltonian operator: = (Eq. 6)

4 P a g e 4 Solving the Schrodinger wave equation = E for the energy yields: E l = l (l + 1) l = 0, 1, 2, (Eq. 7) where I = r 2 is the moment of inertia of the molecule. We define the rotational spectral "Term" as: F(J) = = B J (J + 1) (Eq. 8) where B = h/ 2 c is the system's Rotational Constant. (Note: In spectroscopic notation, the quantum number l is denoted by the symbol J.) If we allow for centrifugal distortion as the molecule begins to "spin" faster and faster, then the Term becomes: F(J) = B e J (J + 1) - D e J 2 (J + 1) 2 (Eq. 9) where D e is the Centrifugal Distortion Constant. Again, B e and D e are spectroscopically determinable constants that are independent of molelcular model. Expected values of "I" suggest these terms will lie very close together and that the spectra lines: = F(J') - F(J'') (Eq. 10) will lie in the microwave region. Here the selection rule for allowed transitions is J = ± 1. "Hot" bands are not a problem because the energy levels lie close enough together that thermal population of upper rotational states is considerable. Therefore, in microwave spectroscopy, energy transitions, as pictured to the left, will occur. These rotational states will lie on top the vibrational states, giving us spectral Terms T(v,J) = G(v) + F(J). This allows us to describe the fine structure lines as being due to transitions of the form: = T(v',J') - T(v'',J'') (Eq. 11) Inserting our expressions for G(v) and F(J) into this equation, we obtain the following general result for the spectral lines: = (v' - v'') - [(v' - v'')(v' + v'' + 1)] + B v' J'(J' + 1) - B v'' J''(J'' + 1) - D e J' 2 (J' + 1) 2 + D e J'' 2 (J'' + 1) 2

5 P a g e 5 (Eq. 12) Note that because the molecule "stretches" slightly as it moves into higher vibrational states, due to anharmonicity, the internuclear distance r will depend on vibrational quantum number v (denoted as r v ), hence "I" will depend on the vibrational quantum number and therefore "B" will also depend on the vibrational quantum number (denoted as B v ). We define a vibration-rotation Coupling Constant as e such that the nature of B's dependence on v is: B v = B e - e (v + ½) (Eq. 13) A similar problem occurs for the distortion constant D, except the coupling is weak enough we can neglect it. With all the overlayed rotational fine-structure on the vibrational band, how do we define the "position" of the vibrational spectral line? Well, formally, we define the line's Band Origin as: = (v' - v'') - [(v' - v'')(v' + v'' + 1)] (Eq. 14) If we are dealing with the fundamental line, then v'' = 0 and v' = 1. Then: B 1 J'(J' + 1) - B 0 J''(J'' + 1) - D e J' 2 (J' + 1) 2 + D e J'' 2 (J'' + 1) 2 (Eq. 15) Now, one of two situations can occur; J = J'-J'' = +1 or J = J'-J'' = -1. If J = +1, we are said to be in the R-branch of the line; which occurs at higher wavenumbers. If J = -1, we are in the P-branch; at lower wavenumbers.

6 P a g e 6 Thus, for the R-branch, we have: R(J'') = J= (B 1 + B 0 ) (J''+1) + (B 1 - B 0 ) (J''+1) 2-4D e (J''+1) 3 and, for the P-branch, we have: (Eq. 1) P(J'') = J= (B 1 + B 0 ) J'' + (B 1 - B 0 ) J'' 2 + 4D e J'' 3 (Eq. 17) We now turn to the question of how to extract the spectroscopic constants from the measured positions of the fine-structure lines; R(0), R(1), R(2),., P(1), P(2), P(3),. First, how do we extract the rotational constants B 0 and B 1 and the distortion constant D e? Equations 16 and 17 can be re-arranged to obtain the following forms: = B 1-2 D e (J'' 2 + J'' + 1) (Eq. 18) = B 0-2 D e (J'' 2 + J'' + 1) (Eq. 19) Thus, measurements of R(J'') and P(J''), when plotted according to equations 18 and 19, and the results subjected to a linear least square analysis, will yield the desired constants. Next, to determine the band origin we use another manipulation of equations 16 and 17: = + (B 1 - B 0 ) (J'' + 1) 2 (Eq. 20) Another linear least square analysis is needed to obtain this constant. To obtain and we will need additional information concerning the overtone lines for the case where v'' = 0. We can rearrange equation 14 to yield the following. = - (v' + 1) (Eq. 21) Again, a linear least square analysis will give us the desired constants. Overtone data for H 35 Cl is: Overtone [cm -1 ]

7 P a g e 7 Next, we can use our measured values of B 0 and B 1, along with additional data, and a linear least square analysis according to equation 13, to determine B e. Needed data for H 35 Cl is: v B [cm -1 ] Finally, once the spectroscopic constants and B e are determined, we can use our model for the HCl molecule to determine the molecular parameters k and r e. e = c = (1/2 ) (Eq. 22) B e = h / 2 c r e 2 (Eq. 23) (See development above.) Here r e represents the equilibrium internuclear distance when the molecule is not vibrating. When the molecule moves into vibrational states v = 0,1,2, it begins to stretch, due to the anharmonicity of the potential, and r increases. Hence, the internuclear distance (really root-mean-square internuclear distance ) will depend on the vibrational state v. From the rotational constants B 0 and B 1, the root-mean-square internuclear distance between the H and Cl atoms in vibrational states v=0 and v=1, and respectively, can be determined. B v = h / 2 c (Eq. 24) Thus, we will experimentally determine the positions of all the fine-structures lines R(J'') and P(J'') of the fundamental band for H 35 Cl. We will use this information to extract the spectroscopic constants B 0, B 1, D e and. We will supplement the fundamental line data with additional spectroscopic data to determine, and B e. Finally, we will invoke our molecular model for HCl and determine the constants k and r e,, and.

8 P a g e 8 Procedure Obtain a high resolution Infrared spectrum of HCl gas. You will use a 10 cm gas cell as pictured below. The cell will be filled with HCl gas via one of the methods listed: i) Use a "lecture" gas bottle, as pictured on page one of this laboratory, to fill the cell directly. ii) Treat Sodium Chloride with concentrated Sulfuric Acid to produce the Hydrogen Chloride gas: NaCl(s) + H 2 SO 4 (l) HCl(g) + NaHSO 4 (s) You can do this by dropping, very slowly, ~30 ml of conc. H 2 SO 4 into about 5g of the solid NaCl as pictured below.

9 P a g e 9 Your laboratory instructor will indicate which method of filling the gas cell will be used. Once your gas cell is filled with HCl, your laboratory instructor will demonstrate the use of the IR spectrometer. Take the spectrum with an appropriate resolution to see the fine structure in the fundamental line. Measure the positions of R(J'') and P(J'') spectral lines for H 35 Cl.

10 P a g e 10 Data Analysis The following calculations will require linear least squares analyses that are of fairly high precision. Track your significant figures closely and make sure you perform an error analysis for each directly measured quantity. 1. From your data, determine the spectroscopic constants: B 0, B 1 and 2. Use the supplemental overtone data to determine the spectroscopic constants: and 3. Use the supplemental data for rotational constants to determine the spectroscopic constant B e. 4. Determine the molecular parameters k, r e, and. 5. Use the following data to determine k for alternate isotopic substitutions of HCl. Molecule e [cm -1 ] D 35 Cl D 37 Cl Use the following data to determine r e for alternate isotopic substitutions of HCl. Molecule B e [cm -1 ] H 37 Cl D 35 Cl D 37 Cl 5.432

11 P a g e 11 References Arnaiz, Francisco J. "A Convenient Way to Generate Hydrogen Chloride in the Freshman Lab" J. Chem. Ed. 72 (1995) Herzberg, G. Spectra of Diatomic Molecules Van Nostrand, Princeton, New Jersey, Levine, Ira N. Physical Chemistry McGraw-Hill, Boston, Levine, Ira N. Quantum Chemistry Prentice Hall, Englewood Cliffs, New Jersey, Meyer, Charles F. and Levin, Aaron A. "On the Absorption Spectrum of Hydrogen Chloride" Phys. Rev. 34 (1929) 44. Pickworth, J. and Thompson, H.W. "The Fundamental Vibration-Rotation Band of Deuterium Chloride" Proc. R. Soc. London Ser. A 218 (1953) 218. Rank, D.H.; Eastman, D.P; Rao, B.S.; and Wiggins, T.A. "Rotational and Vibrational Constants of the HCl 35 and DCl 35 Molecules" J. Opt. Soc. Am. 52 (1961) 1. Sime, Rodney J. Physical Chemistry: Methods, Techniques, and Experiments Saunders College Publishing, Philadelphia, Tipler, Paul A. Physics Worth Publishers, New York, Van Horne, B.H. and House, C.D. "Near Infrared Spectrum of DCl" J. Chem. Phys. 25 (1956) 56.

INFRARED ABSORPTION SPECTROSCOPY. References: See relevant sections in undergraduate text. Learn from your instructor how to use the spectrometer.

INFRARED ABSORPTION SPECTROSCOPY. References: See relevant sections in undergraduate text. Learn from your instructor how to use the spectrometer. INFRARED ABSORPTION SPECTROSCOPY References: See relevant sections in undergraduate text Background: Learn from your instructor how to use the spectrometer. Know definitions of the following and their

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

Vibration-Rotation Spectrum of HCl

Vibration-Rotation Spectrum of HCl HCl report.pb 1 Vibration-Rotation Spectrum of HCl Introduction HCl absorbs radiation in the infrared portion of the spectrum which corresponds to the molecule changing its vibrational state. A concommitant

More information

EXPERIMENT 12. SPECTROSCOPIC STUDIES OF HCL AND DCL

EXPERIMENT 12. SPECTROSCOPIC STUDIES OF HCL AND DCL EXPERIMENT 12. SPECTROSCOPIC STUDIES OF HCL AND DCL High resolution infrared spectroscopy is one of the most useful tools for investigating the structure of small molecules. In this experiment you will

More information

Molecular energy levels and spectroscopy

Molecular energy levels and spectroscopy Molecular energy levels and spectroscopy 1. Translational energy levels The translational energy levels of a molecule are usually taken to be those of a particle in a three-dimensional box: n x E(n x,n

More information

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017 Molecular spectroscopy Multispectral imaging (FAFF 00, FYST9) fall 017 Lecture prepared by Joakim Bood joakim.bood@forbrf.lth.se Molecular structure Electronic structure Rotational structure Vibrational

More information

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients CHM 3411 - Physical Chemistry II Chapter 12 - Supplementary Material 1. Einstein A and B coefficients Consider two singly degenerate states in an atom, molecule, or ion, with wavefunctions 1 (for the lower

More information

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine We have already seen that molecules can rotate and bonds can vibrate with characteristic energies, each energy being associated with a particular

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

Vibronic Spectra of Diatomic Molecules and the Birge-Sponer Extrapolation

Vibronic Spectra of Diatomic Molecules and the Birge-Sponer Extrapolation Vibronic Spectra of Diatomic Molecules and the Birge-Sponer Extrapolation George M Shalhoub Department of Chemistry LaSalle University Philadelphia, PA 9 shalhoub@lasalleedu and Theresa Julia Zielinski

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Vibrational-Rotational Spectroscopy. Spectroscopy

Vibrational-Rotational Spectroscopy. Spectroscopy Applied Spectroscopy Vibrational-Rotational Spectroscopy Recommended Reading: Banwell and McCash Section 3.2, 3.3 Atkins Section 6.2 Harmonic oscillator vibrations have the exact selection rule: and the

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

( )( s 1

( )( s 1 Chemistry 362 Dr Jean M Standard Homework Problem Set 6 Solutions l Calculate the reduced mass in kg for the OH radical The reduced mass for OH is m O m H m O + m H To properly calculate the reduced mass

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

NORTH CAROLINA STATE UNIVERSITY Department of Chemistry. Physical Chemistry CH437 Problem Set #4 Due Date: September 22, 2015

NORTH CAROLINA STATE UNIVERSITY Department of Chemistry. Physical Chemistry CH437 Problem Set #4 Due Date: September 22, 2015 NORTH CAROLINA STATE UNIVERSITY Department of Chemistry Name Physical Chemistry CH437 Problem Set #4 Due Date: September 22, 2015 Using a Fourier Transform Infra-red (FTIR) spectrometer we can obtain sufficiently

More information

VIBRATION-ROTATION SPECTRUM OF CO

VIBRATION-ROTATION SPECTRUM OF CO Rice University Physics 332 VIBRATION-ROTATION SPECTRUM OF CO I. INTRODUCTION...2 II. THEORETICAL CONSIDERATIONS...3 III. MEASUREMENTS...8 IV. ANALYSIS...9 April 2011 I. Introduction Optical spectroscopy

More information

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2)

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Obtaining fundamental information about the nature of molecular structure is one of the interesting aspects of molecular

More information

Experiment 4 INFRARED SPECTROSCOPY

Experiment 4 INFRARED SPECTROSCOPY Experiment INFRARED SPECTROSCOPY Infrared (IR) spectroscopy is one tool for the study of molecular structure. In the case of diatomic molecules, one can extract bond lengths and bond force constants from

More information

Advanced Chemistry 2008

Advanced Chemistry 2008 Advanced Chemistry 008 Vibration - Rotation Spectrum of a Diatomic Molecule Analysis of the Fundamental Bands of the H 9 Br and H 8 Br Molecules 0 The vibration-rotation spectrum of the HBr molecule in

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

The Iodine Spectrum. and

The Iodine Spectrum. and The Iodine Spectrum George Long Department of Chemistry Indiana University of Pennsylvania Indiana, PA 15705 grlong@grove.iup.edu and Department of Chemistry, Medical Technology, and Physics Monmouth University

More information

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible.

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Physical Chemistry Lab II Name: KEY CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Constants: c = 3.00 10 8 m/s h = 6.63 10-34 J s 1 Hartree = 4.36 10-18

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

An Aside: Application of Rotational Motion. Vibrational-Rotational Spectroscopy

An Aside: Application of Rotational Motion. Vibrational-Rotational Spectroscopy An Aside: Application of Rotational Motion Vibrational-Rotational Spectroscopy Rotational Excited States of a Diatomic Molecule are Significantly Populated at Room Temperature We can estimate the relative

More information

Introduction to Molecular Vibrations and Infrared Spectroscopy

Introduction to Molecular Vibrations and Infrared Spectroscopy hemistry 362 Spring 2017 Dr. Jean M. Standard February 15, 2017 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Atomic spectra of one and two-electron systems

Atomic spectra of one and two-electron systems Atomic spectra of one and two-electron systems Key Words Term symbol, Selection rule, Fine structure, Atomic spectra, Sodium D-line, Hund s rules, Russell-Saunders coupling, j-j coupling, Spin-orbit coupling,

More information

Physical Chemistry II Laboratory

Physical Chemistry II Laboratory Kuwata Spring 2003 Physical Chemistry II Laboratory The Rovibrational Spectra of H 35 Cl and H 37 Cl Using FTIR Write-Up Due Date: Thursday, April 17 (You may record spectra and write your reports in teams

More information

Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled)

Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled) Varberg and Kuwata Chemistry 312 Spring 28 Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled) Meet for lab on Thursday, April

More information

6.2 Polyatomic Molecules

6.2 Polyatomic Molecules 6.2 Polyatomic Molecules 6.2.1 Group Vibrations An N-atom molecule has 3N - 5 normal modes of vibrations if it is linear and 3N 6 if it is non-linear. Lissajous motion A polyatomic molecule undergoes a

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

eigenvalues eigenfunctions

eigenvalues eigenfunctions Born-Oppenheimer Approximation Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity) a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r

More information

4. Molecular spectroscopy. Basel, 2008

4. Molecular spectroscopy. Basel, 2008 4. Molecular spectroscopy Basel, 008 4.4.5 Fluorescence radiation The excited molecule: - is subject to collisions with the surrounding molecules and gives up energy by decreasing the vibrational levels

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

2. Infrared spectroscopy

2. Infrared spectroscopy 2. Infrared spectroscopy 2-1Theoretical principles An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer.

More information

Molecular Constants of CO by Infrared Spectroscopy

Molecular Constants of CO by Infrared Spectroscopy Molecular Constants of CO by Infrared Spectroscopy Purpose This experiment uses infrared spectroscopy to determine the bond length, vibration frequency, anharmonicity, and other properties of the carbon

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Vibrational spectroscopy, 017 Uwe Burghaus, Fargo, ND, USA CHEM761 Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states... microwave

More information

Lecture 7: Electronic Spectra of Diatomics

Lecture 7: Electronic Spectra of Diatomics Lecture 7: Electronic Spectra of Diatomics. Term symbols for diatomic molecules Fortrat parabola, (Symmetric Top). Common molecular models for diatomics 3. Improved treatments 4. Quantitative absorption

More information

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a. SPECTROSCOPY Readings in Atkins: Justification 13.1, Figure 16.1, Chapter 16: Sections 16.4 (diatomics only), 16.5 (omit a, b, d, e), 16.6, 16.9, 16.10, 16.11 (omit b), 16.14 (omit c). Exercises 16.3a,

More information

Chemistry 21b Final Examination

Chemistry 21b Final Examination Chemistry 21b Final Examination Out: 11 March 2011 Due: 16 March 2011, 5 pm This is an open book examination, and so you may use McQuarrie or Harris and Bertolucci along with the posted Lecture Notes and

More information

Vibrations and Rotations of Diatomic Molecules

Vibrations and Rotations of Diatomic Molecules Chapter 6 Vibrations and Rotations of Diatomic Molecules With the electronic part of the problem treated in the previous chapter, the nuclear motion shall occupy our attention in this one. In many ways

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Chapter 8 Problem Solutions

Chapter 8 Problem Solutions Chapter 8 Problem Solutions 1. The energy needed to detach the electron from a hydrogen atom is 13.6 ev, but the energy needed to detach an electron from a hydrogen molecule is 15.7 ev. Why do you think

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Symmetry requirement for coupling combination bands and Fermi resonance 2 3 V 3 1505 cm -1 (R, IR) E' stretches v 1 888 cm -1 (R) A 1 ' stretch V 2 718 cm -1 (IR) A

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) INTRODUCTION THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in the

More information

van Quantum tot Molecuul

van Quantum tot Molecuul 10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based

More information

Synthesis and Infrared Spectrum of Nitric Oxide 1

Synthesis and Infrared Spectrum of Nitric Oxide 1 Synthesis and Infrared Spectrum of Nitric Oxide 1 Purpose: Infrared spectroscopy is used to determine the force constant of the bond in nitric oxide. Prelab: Reading: Section 6.1 and 6.2 in Brown, LeMay,

More information

SIMPLE QUANTUM SYSTEMS

SIMPLE QUANTUM SYSTEMS SIMPLE QUANTUM SYSTEMS Chapters 14, 18 "ceiiinosssttuu" (anagram in Latin which Hooke published in 1676 in his "Description of Helioscopes") and deciphered as "ut tensio sic vis" (elongation of any spring

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

Workshop 4: Diatomic molecule vibrational and rotational spectra CH351 Physical Chemistry, Fall 2004

Workshop 4: Diatomic molecule vibrational and rotational spectra CH351 Physical Chemistry, Fall 2004 Workshop 4: Diatomic molecule vibrational and rotational spectra CH35 Physical Chemistry, Fall 004 http://quantum.bu.edu/courses/ch35/pltl/4.pdf Last updated Monday, November 9, 004 6:59:3-05:00 Copyright

More information

CHAPTER 13 LECTURE NOTES

CHAPTER 13 LECTURE NOTES CHAPTER 13 LECTURE NOTES Spectroscopy is concerned with the measurement of (a) the wavelengths (or frequencies) at which molecules absorb/emit energy, and (b) the amount of radiation absorbed at these

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY

USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY Proceedings of the South Dakota Academy of Science, Vol. 79 (2000) 63 USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY Deanna L. Donohoue, Gary W. Earl and Arlen Viste Department

More information

5.3 Rotational Raman Spectroscopy General Introduction

5.3 Rotational Raman Spectroscopy General Introduction 5.3 Rotational Raman Spectroscopy 5.3.1 General Introduction When EM radiation falls on atoms or molecules, it may be absorbed or scattered. If λis unchanged, the process is referred as Rayleigh scattering.

More information

Determination and study the energy characteristics of vibrationalrotational levels and spectral lines of GaF, GaCl, GaBr and GaI for ground state

Determination and study the energy characteristics of vibrationalrotational levels and spectral lines of GaF, GaCl, GaBr and GaI for ground state International Letters of Chemistry, Physics and Astronomy Online: 2015-05-03 ISSN: 2299-3843, Vol. 50, pp 96-112 doi:10.18052/www.scipress.com/ilcpa.50.96 2015 SciPress Ltd., Switzerland Determination

More information

6.05 Computational Raman Spectroscopy

6.05 Computational Raman Spectroscopy 2nd/3rd year Physical Chemistry Practical Course, Oxford University 6.05 Computational Raman Spectroscopy (5 points) Raman spectra are obtained by irradiating a sample with very intense monochromatic radiation,

More information

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6. Introduction to Spectroscopy Spectroscopic techniques are widely used to detect molecules, to measure the concentration of a species in solution, and to determine molecular structure. For proteins, most

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

Dye molecule spectrum experiment (Experiment 34 Absorption Spectrum of a Conjugated Dye) Figure 1. Structure of dye molecules.

Dye molecule spectrum experiment (Experiment 34 Absorption Spectrum of a Conjugated Dye) Figure 1. Structure of dye molecules. Lab Reports Second Three Experiments Dye molecule spectrum experiment (Experiment 34 Absorption Spectrum of a Conjugated Dye) Some of the analysis you will do for this experiment is based on material in

More information

Radiative Transfer and Molecular Lines Sagan Workshop 2009

Radiative Transfer and Molecular Lines Sagan Workshop 2009 Radiative Transfer and Molecular Lines Sagan Workshop 2009 Sara Seager Trent Schindler Trent Schindler MIT Lecture Contents Overview of Equations for Planetary Atmospheres Radiative Transfer Thermal Inversions

More information

Chem120a : Exam 3 (Chem Bio) Solutions

Chem120a : Exam 3 (Chem Bio) Solutions Chem10a : Exam 3 (Chem Bio) Solutions November 7, 006 Problem 1 This problem will basically involve us doing two Hückel calculations: one for the linear geometry, and one for the triangular geometry. We

More information

The Harmonic Oscillator: Zero Point Energy and Tunneling

The Harmonic Oscillator: Zero Point Energy and Tunneling The Harmonic Oscillator: Zero Point Energy and Tunneling Lecture Objectives: 1. To introduce simple harmonic oscillator model using elementary classical mechanics.. To write down the Schrodinger equation

More information

Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY

Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY Professor Angelo R. Rossi http://homepages.uconn.edu/rossi Department of Chemistry, Room CHMT215 The University of Connecuticut

More information

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Lecture 10 Diatomic Vibration Spectra Harmonic Model Chemistry II: Introduction to Molecular Spectroscopy Prof. Mangala Sunder Department of Chemistry and Biochemistry Indian Institute of Technology, Madras Lecture 10 Diatomic Vibration Spectra Harmonic

More information

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Vibrational spectroscopy, 017 Uwe Burghaus, Fargo, ND, USA CHEM761 Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states... by microwave

More information

Homework Assignment #3

Homework Assignment #3 Chemistry 12600 Spring 2016 Homework Assignment #3 1. Determine whether each of the following statements is true or false. If the statement is false, modify and rewrite it so that it is a true statement.

More information

Final Exam & Grading Schedule

Final Exam & Grading Schedule 1/07/01 Physical Chemistry Lab Chem343 Lecture 7 (1/07/1) Class Schedule/Grading Final Review Final Exam & Grading Schedule Final Exam Schedule Dec 13 (Thr) From 1 PM (hours) at 130 SES; ~60 % is multiple

More information

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy No. 1 of 10 1. Internal vibration modes of a molecule containing N atoms is made up of the superposition of 3N-(5 or 6) simple

More information

Isotopic effect of Cl + 2 rovibronic spectra in the A X system

Isotopic effect of Cl + 2 rovibronic spectra in the A X system Vol 18 No 7, July 009 c 009 Chin. Phys. Soc. 1674-1056/009/1807)/74-05 Chinese Physics B and IOP Publishing Ltd Isotopic effect of Cl + rovibronic spectra in the A X system Wu Ling ) a)c), Yang Xiao-Hua

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki Ashley Robison My Preferences Site Tools FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki BioWiki GeoWiki StatWiki

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule Infrared Spectroscopy Provides information about the vibraions of functional groups in a molecule Therefore, the functional groups present in a molecule can be deduced from an IR spectrum Two important

More information

Chemistry 218 Spring Molecular Structure

Chemistry 218 Spring Molecular Structure Chemistry 218 Spring 2015-2016 Molecular Structure R. Sultan COURSE SYLLABUS Email: rsultan@aub.edu.lb Homepage: http://staff.aub.edu.lb/~rsultan/ Lectures: 12:30-13:45 T, Th. 101 Chemistry Textbook: P.

More information

Abstract. The vibrational properties of pentane, neopentane, polyethylene and polyvinylchloride are

Abstract. The vibrational properties of pentane, neopentane, polyethylene and polyvinylchloride are Computational Infrared Spectroscopy: Pentane, Neopentane, Polyethylene and Polyvinylchloride Eman Mousa Alhajji North Carolina State University Department of Materials Science and Engineering MSE 255 Lab

More information

Rotational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Rotational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Rotational spectroscopy, 2017 Uwe Burghaus, Fargo, ND, USA Atomic spectroscopy (part I) Absorption spectroscopy Bohr model QM of H atom (review) Atomic spectroscopy (part II) Visualization of wave functions

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.8 Small-Molecule Spectroscopy and Dynamics Fall 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Course Outline Chem 3BA3 Fall 2006 Prof. Kruse page 1 of 7

Course Outline Chem 3BA3 Fall 2006 Prof. Kruse page 1 of 7 Chem 3BA3 Course Outline - Fall 2006 Quantum Mechanics and Spectroscopy I Prof. P. Kruse, ABB-263, x23480, pkruse@mcmaster.ca http://www.chemistry.mcmaster.ca/kruse/ version 08 Sept 2006 Welcome to Introductory

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Course Outline Chem 3BA3 Fall 2008 Prof. Kruse page 1 of 5

Course Outline Chem 3BA3 Fall 2008 Prof. Kruse page 1 of 5 Chem 3BA3 Course Outline - Fall 2008 Quantum Mechanics and Spectroscopy I Prof. P. Kruse, ABB-263, x23480, pkruse@mcmaster.ca http://www.chemistry.mcmaster.ca/kruse/ version 19 Aug 2008 Welcome to Introductory

More information

Fourier transforms of molecular vibrations

Fourier transforms of molecular vibrations Fourier transforms of molecular vibrations Part I: An Introduction to the Harmonic Oscillator and Fourier Transforms W. Tandy Grubbs, Department of Chemistry, Unit 827, Stetson University, DeLand, FL 32720

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Principles of Molecular Spectroscopy

Principles of Molecular Spectroscopy Principles of Molecular Spectroscopy What variables do we need to characterize a molecule? Nuclear and electronic configurations: What is the structure of the molecule? What are the bond lengths? How strong

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the 1 and 2 3 States

Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the 1 and 2 3 States JOURNAL OF MOLECULAR SPECTROSCOPY 192, 152 161 (1998) ARTICLE NO. MS987633 Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the 1 and 2 3 States Yoshiyuki Kawashima,*

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 3 The Born-Oppenheimer approximation C.-K. Skylaris Learning outcomes Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer

More information

Infrared spectroscopy Basic theory

Infrared spectroscopy Basic theory Infrared spectroscopy Basic theory Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 davide.ferri@psi.ch Importance of IR spectroscopy in catalysis IR Raman NMR XAFS UV-Vis EPR 0 200 400 600 800 1000

More information

Chapter IV: Electronic Spectroscopy of diatomic molecules

Chapter IV: Electronic Spectroscopy of diatomic molecules Chapter IV: Electronic Spectroscopy of diatomic molecules IV.2.1 Molecular orbitals IV.2.1.1. Homonuclear diatomic molecules The molecular orbital (MO) approach to the electronic structure of diatomic

More information

Computational Spectroscopy III. Spectroscopic Hamiltonians

Computational Spectroscopy III. Spectroscopic Hamiltonians Computational Spectroscopy III. Spectroscopic Hamiltonians (e) Elementary operators for the harmonic oscillator (f) Elementary operators for the asymmetric rotor (g) Implementation of complex Hamiltonians

More information

Phys 172 Modern Mechanics Summer 2010

Phys 172 Modern Mechanics Summer 2010 Phys 172 Modern Mechanics Summer 2010 r r Δ p = F Δt sys net Δ E = W + Q sys sys net surr r r Δ L = τ Δt Lecture 14 Energy Quantization Read:Ch 8 Reading Quiz 1 An electron volt (ev) is a measure of: A)

More information