Ground based UV/vis observations

Size: px
Start display at page:

Download "Ground based UV/vis observations"

Transcription

1 Ground based UV/vis observations A) History B) Spectroscopy C) Basic viewing directions D) Radiative transport modelling E) Results from different stations 1

2 Remote sensing in UV / vis spectral range Cloud droplets rain droplets aerosols molecules Wavelengths from ~3 to 7nm -electronic + vibrational transitions => Emission can be neglected 2

3 William Hyde Wollaston Philosophical Transactions of the Royal Society of London, vol. 92 (182), p. 38 (Plate XIV) ,5 m -Wollaston verwendet statt rundem Loch einen dünnen Spalt (1.3 mm) -er entdeckt 7 schwarze Linien, 5 davon hält er für Grenzen zwischen natürlichen Farben 3

4 Anfänge der Spektroskopie Joseph von Fraunhofer ( ) Ich fand mit dem Fernrohre fast unzählig viele starke und schwache vertikale Linien, die aber dunkler sind als der übrige Teil des Farbbildes; einige scheinen fast schwarz zu sein erste große achromatische Objektive für Fernrohre erste Verwendung von Beugungsgittern, erste absolute Wellenlängenbestimmung Bestimmung der Position von 234 der über 5 von ihm gefundenen Linien im Sonnenspektrum; seine Benennung wird heute noch Verwendet Von Joseph von Fraunhofer selbst koloriertes Sonnenspektrum, um

5 Gustav Robert Kirchhoff in Heidelberg: Robert Wilhelm Bunsen in Heidelberg: , in Berichten der Preußischen Akademie der Wissenschaften: Über die Fraunhoferschen Linien: Kochsalzdampf absorbiert auch dieselben von ihm emittierten Linien; diese sind mit den Fraunhoferlinien in der heißen Sonnenatmosphäre identisch. 5

6 Ozon Wirkungsquerschnitt 188, Hartley: UV Ozonabsorption [cm ] 1E-17 1E-18 1E-19 1E-2 1E-19 1E-2 1E-21 1E , Chappuis: vis Ozonabsorption 189, Huggins 1E-21 1E-22 1E-23 Liniengruppe Spektrum des Sirius (langwellige UV Absorption des Ozon) Hartley Huggins Chappuis Wavelength [nm] 6

7 Basic viewing geometries: Direct light: Sun, Moon, Stars -easy geometry -nightime measurements Direktlicht- Beobachtungen Zenit SZA Zenith scattered sun light: -sensitive to stratospheric trace gases Vom Zenit gestreute Intensität Scattered sun light in various viewing directions (MAXDOAS): -sensitive to tropospheric trace gases Sun Spectrograph Zenith Stratosphere Troposphere

8 1925: Dobson-Spekrophotometer zur Messung der Ozonschichtdicke 8

9 9

10 O3-Absorptionsquerschnitt [cm ] 3E-19 2E-19 1E-19 A B C D E Wellenlänge [nm] Dobson-Photospektrometer Das Intensitätsverhältnis verschiedener Wellenlängenpaare hängt von der Ozongesamtsäule ab 1 Dobson Unit (DU) entspricht einer Säule von 1 m unter Normalbedingungen Typische Ozonschichtdicke: 35 DU (3.5 mm unter N.B.) 1

11 UV / vis remote sensing (of the earth s atmosphere) A modified Brewer instrument was used to measure the atmospheric NO 2 absorptions [cm²] 1E-18 8E-19 6E-19 4E-19 2E-19 NO 2 cross section (22K) Vandaele et al., 1997 Brewer et al., Nature, 1973, Uni-Toronto 1E-18 8E Wavelength [nm] E-19 F log I log1 I 2 I I 2 3 [cm²] 4E-19 2E Wavelength [nm]

12 Absorption spectroscopy Beer- Lambert-law : Optical depth l I( ) I ( ) exp i ( ) i ( s) s ( ) ds i i : i : s : Absorption cross section of trace gas i Concentration of trace gas i Extinction coefficient => From the knowledge of the absorption cross section it is possible to determine the trace gas concentration 12

13 Differential absorption spectroscopy Beer- Lambert-law : Differential optical depth l I( ) I' ( ) exp ' i ( ) i ( s i ) ds I i : Intensity minus all broad and contributions (absorption & scattering) i : Differential absorption cross section of trace gas i i : Concentration of trace gas i s : Extinction coefficient => From the knowledge of the differential absorption cross section it is possible to determine the trace gas concentration 13

14 Intensit t I( ) Meßspektrum 'differentielle' optische Dichte I O3-Absorption I c ln I I' l ' Typically the light path length l is not known NO2-Absorption Wellenlänge [nm] SCD c s ' 14 I I '

15 6 % 7 % 7 % Atmospheric spectrum Divided by Sun Spectrum Ring Spectrum Example of a DOAS analysis of scattered sun light (from satellite measurements).3 % BrO Target species: BrO 1.2 % O3 2.2 %.2 % O4 Residual From spectral fit => Trace gas SCD Wavelength [nm] 15

16 O O , SZA: Optical density NO , SZA: OClO , SZA: NO 2 OClO Examples of different trace gas analyses (ground based measurements at Kiruna, northern Sweden) BrO , SZA: Wavelength [nm] Examples of the spectral fitting procedure of the different trace gases (data from the Kiruna instrument). Displayed are the absorption cross sections (red curves) scaled to the respective trace gas absorption in the measured spectrum (black curves). BrO 16

17 Differentielle Wirkungsquerschnitte verschiedener atmosphärischer Spurengase '[1-19 cm 2 ] O 3 Phenol SO 2 1 HCHO 2 ClO 5 BrO Benzol 1 5 Toluol 8 4 para-kresol HONO NO Wavelength [nm] 17 IO NO2 Detection Limit 1 ppb L=5km 5 ppt L=5km 2 ppt L=5km 1 ppt L=5km 5 ppt L=5km 5 ppt L=5km 2 ppt L=12km 2 ppt L=12km 1 ppt L=16km 2 ppt L=1km 25 ppt L=1km 5 ppt L=1km 2 ppt L=1km

18 General strategy for UV / vis observations: two step approach: a) Spectroscopy (spectral fit) => yields the integrated trace gas concentration along the light path, the so called slant column density, SCD b) Radiative transfer simulations => converts the SCD into the vertical column density, the vertically integrated trace gas cincentration This separation is possible because a) usually the absorptions in the UV/vis are weak b) only absorption (no emission) has to be considered (in principle also the general retrieval approach, e.g. Optimal Estimation, could be applied) 18

19 Direct light observations -light source: sun, moon or star -direct light path, easy interpretation of the measurement (similar to long path DOAS) -complex instrumental set-up, tracking system -night-time chemistry can be investigated 19

20 Der 'Air-Mass-Faktor' (AMF) Zenit Direktlicht- Beobachtungen SZA Quotient aus schräger und vertikaler Säulendichte: AMF = SCD / VCD 1 / cos (SZA) SCD: entlang des Lichtstrahls integrierte Spurenstoffkonzentration VCD: entlang der Vertikalen integrierte Spurenstoffkonzentration 2

21 The AMF depends on the altitude of the trace gas profile Stratospheric trace gas layer Trop. trace gas layer Direct light AMF for different (box) profile height 6 AMF profile height (x km - x+1 km) geometric AMF SZA 21

22 Intensity [arbitr. units] Stratospheric DOAS-measurements A / B: C: reference spectrum O3 B: SZA=65 degrees spectra measured at different solar zenith angles A: SZA=9 degrees Two measurements are needed to remove the Fraunhofer lines: One measurement at low SZA (with weak atmospheric absorptions) and one at high SZA (with strong atmospheric absorptions) Direktlicht- Beobachtungen Zenit SZA D: reference spectrum O => only differences! Wavelength [nm] 22

23 Direktlicht- Beobachtungen Zenit SZA ref mess The measured SCD is the difference between both measurements: SCD = SCD mess SCD ref = VCD * AMF mess VCD * AMF ref => VCD = SCD / (AMF mess - AMF ref ) 23

24 O3-Langley-Plot 1 Fit: Y = 356DU * X - 454DU SCD O3[DU] SCD 5 Slope = VCD y-intercept => SCD ref AMF VCD = SCD / AMF VCD = (SCDmess + SCDref) / AMF Dmess + SCDref) / AMF VCD = ( SCD SCD SCDmess = (VCD * AMF) - SCDref 24

25 Kiruna, 25./26.Jan 1994 VCD NO3 [113molec/cm ] Direct moonlight measurements 4 VCD NO2 [115 molec/cm ] VCD NO2 night VCD NO2 day 1/25/94 4:48 1/25/94 16:48 1/26/94 4:48 1/26/94 16:48 Zenith scattered sunlight measurements 25

26 Stickoxidgleichgewicht Photolyse NO NO 2 N 2 O 5 schnelles Gleichgewicht langsame Gleichgewichte HNO 3 Diurnal cycle of reactive nitrogen compounds. N 2 O 5 is accumulated during night and photolised during day. Thus NO 2 is systematically smaller during sunrise than during sunset [Lambert et al., 22]. 26

27 Zenith scattered light observations -simple instrumental set-up -restricted to daylight -high sensitivity for stratospheric trace gases -often complicated data analysis, radiative transfer simulation is required 27

28 Spectroscopy of zenith scattered light Vom Zenit gestreute Intensität Sensitivity: -is high for low sun (large solar zenith angle, SZA) (sensitivity for stratosphere is higher than for direct light observations) -depends on many parameters: -wavelength -concentration profile -aerosol profile -clouds => Radiative transfer modelling is required 28

29 Dependence of the AMF on SZA and surface albedo 14 1/cos(SZA) 12 1 strat. AMF, albedo: 8% & 5% AMF 8 6 trop. AMF, albedo: 8% trop. AMF, albedo: 5% SZA [ ] 29

30 Monte Carlo Radiative transfer models (e.g. MCARTIM, Tim Deutschmann) - individual photon paths are modelled -atmospheric processes like scattering and absorption and also surface reflection are simulated statistically - advantages: - full 3D geometry - most realistic simulation of the reality - disadvantages: - computational expensive 3

31 MCARTIM, Tim Deutschmann Deutschmann et al

32 satellite Example of radiative transfer modelling for satellite nadir geometry, 37 nm, no clouds Look from the side Rayleigh-scattering ground reflection TRACY-II Tim Deutschmann, IUP Heidelberg Look from above 32

33 satellite Example of radiative transfer modelling for satellite nadir geometry, 37 nm, with cloud (OD 4) from the surface to 8 km Look from the side Rayleigh-scattering ground reflection particle scattering TRACY-II Tim Deutschmann, IUP Heidelberg Look from above 33

34 Realistic modelling of microscopic cloud properties: Backward Monte Carlo modelling Photon paths for different aerosol phase functions Green points indicate scattering points of photons => reception area of the detector Strong forward peak aerosol layer Instrument Suniti Sanghavi, IUP Heidelberg Moderate forward peak aerosol layer Instrument 34 Tim Deutschmann, IUP Heidelberg

35 Simulated Intensity.12 no aerosols Normalised Radiance Reihe1 42 nm (blue) Reihe2 5 nm (green) Reihe3 6 nm (red) Elevation angle , 4:1 The sky is bright close to the horizon AOD:.1 Normalised Radiance Reihe1 42 nm (blue) Reihe2 5 nm (green) Reihe3 6 nm (red) Elevation angle 35

36 AMF calculation from simulated radiances 1) The atmospheric properties for a given measurement (e.g. the SZA, the trace gas profile, etc.) are defined. 2) The intensity is modelled for two cases: with (I) and without (I ) the absorbing species. From the calculated intensities the corresponding optical density for the trace gas SCD is determined: SCD I ln I 3) The ratio of this optical density and the absorption cross section for the selected trace gas absorption yields the trace gas SCD: SCD SCD 4) The trace gas profile defined in the first step is integrated to yield the respective VCD. The AMF is determined from the SCD and VCD according to the AMF-equation : AMF = SCD / VCD 36

37 Raman scattering on air molecules (Ring effect) Transitions for rotational and vibrational Raman scattering on O 2 and N 2 molecules 37

38 Filling-in of Fraunhofer lines by inelastic scattering (Ring effect) In the UV spectral range the corresponding spectral features accound for up to 1% optical depth earth shine spectrum dirct sun light spectrum intensity [arbitrary units] Wavelength [nm] 38

39 Fig.Sample Ring spectrum (I( Ring )) calculated for the evaluation of UV spectra taken during ALERT2. Shown is also the logarithm of the Fraunhofer reference spectrum(i meas ) used for the calculation. 39

40 6 % 7 % Atmospheric spectrum Divided by Sun Spectrum Example of a DOAS analysis of scattered sun light (from satellite measurements) Ring spectrum 7 % Ring Spectrum.3 % BrO Target species: BrO 1.2 % O3 2.2 % O4.2 % Residual Wavelength [nm] 4

41 Time series from zenith sky observations at different locations Overview on the Heidelberg network of ground based DOAS stations. The instrument at Paramaribo (Suriname) was build and installed within the project. Kiruna Paramaribo Neumayer Arrival Heigts MAXDOAS Jan-1 Jan-2 Jan-3 Jan-4 Jan-5 Periods of successful measurements. The Paramaribo measurements started in May 22. In early the instrument at the Neumayer station was equipped with a MAXDOAS telescope.

42 Instrumental set-up at Kiruna. Three spectrometers are mounted on a high table directly below the plexiglass dome. The controlling devices are placed below. The telescope lenses for the three spectrometers are mounted on a common frame over which a black shielding or a halogen lamp is automatically moved during night. These measurements are important for the calibration of the instrument and the correction of dark current and electronic offset (Bugarski, 23). 42

43 O3-Auswertung O3-Fitergebnis SCD O3 [DU] 8 Optische Dichte [rel. Einheiten] 4 Tagesgang, Kiruna, SCD O3 VCD O3 [DU] VCD O3 4:48 7:12 9:36 12: 14:24 16:48 Zeit 43

44 NO 2 -Auswertung Optische Dichte [rel. Einheiten] NO2-Fitergebnis Wellenlänge [nm] SCD NO2 [1e15 molec/cm ] Tagesgang, Kiruna, SCD NO2 VCD NO2 [1e15 molec/cm ] VCD NO2 7:12 9:36 12: 14:24 Zeit 44

45 Stickoxidgleichgewicht Photolyse NO NO 2 N 2 O 5 schnelles Gleichgewicht langsame Gleichgewichte HNO 3 Diurnal cycle of reactive nitrogen compounds. N 2 O 5 is accumulated during night and photolised during day. Thus NO 2 is systematically smaller during sunrise than during sunset [Lambert et al., 22]. 45

46 8.E+15 7.E+15 VCD Average NO2 VCD from SCIAMACHY at noon Reihe2 MAXDOAS NO2 VCD sunrise 9 SZA Reihe3 MAXDOAS NO2 VCD sunset 9 SZA 6.E+15 NO2 VCD [molec/cm²] 5.E+15 4.E+15 3.E+15 2.E+15 1.E+15.E+ SCIAMACHY NO2 VCD Andreas Richter Nov. 96 Nov. 97 Nov. 98 Nov. 99 Nov. Nov. 1 Nov. 2 Nov. 3 Nov. 4 Time Time series of NO 2 VCDs measured by the Kiruna instrument since December From 22 to 25 also the time series of average SCIAMACHY NO 2 VCDs (within 2km, scientific product of the University of Bremen) are shown. 46

47 8.E+15 7.E+15 6.E+15 Minimum VCDmin NO2 VCD from SCIAMACHY at noon MAXDOAS Reihe2 NO2 VCD sunrise 9 SZA MAXDOAS Reihe3 NO2 VCD sunset 9 SZA SCIAMACHY NO2 VCD Andreas Richter NO2 VCD [molec/cm²] 5.E+15 4.E+15 3.E+15 2.E+15 1.E+15.E+ Jan. 5 Feb. 5 Mrz. 5 Apr. 5 Mai. 5 Jun. 5 Time series of NO 2 VCDs measured by the Kiruna instrument and minimum SCIAMACHY NO 2 VCDs (within 2km, scientific product of the University of Bremen) for the first half of 25. The SCIAMACHY NO 2 VCDs are between the Kiruna AM and PM data probably indicating remaining low NO 2 contributions from the troposphere. 47 Time

48 Time series of NO 2 VCDs measured by the Kiruna instrument between January 1997 to December 214. In addition satellite results (GOME-1, SCIAMACHY, GOME-2) analysed by the University of Bremen are shown. Myojeong Gu, MPIC Mainz 48

49 Long time series allow to investigate trends... Paul Johnston, Richard Querel (NIWA), personal communication 49

50 Telescope Observation platform Quartz glass fiber bundles Top: Building of the meteorological service of Suriname in Paramaribo. The telescopes of the MAXDOAS instrument are seen at the top. Right: The telescope units outside the building are connected to the spectrometers inside via glass fibre bundles. Spectrograph UV Spectrograph Visible Electronics Meteorological Office Building Computer 5

51 4.E E+15 SCIAMACHY NO2 VCD Andreas Richter 3.E+15 NO2 VCD [molec/cm²] 2.5E+15 2.E E+15 1.E+15 5.E+14.E+ Min VCDmin NO2 VCD from SCIAMACHY at noon MAXDOAS Reihe2 NO2 VCD sunrise 9 SZA MAXDOAS Reihe3 NO2 VCD sunset 9 SZA Apr. 2 Okt. 2 Apr. 3 Okt. 3 Apr. 4 Okt. 4 Apr. 5 Time Time series of NO 2 VCDs measured by the Paramaribo instrument and minimum SCIAMACHY NO 2 VCDs (within 2km, scientific product of the University of Bremen) for the period

52 Dynamical and photochemical development in the stratosphere during polar winter Surface reactions Gas phase reactions Abundance ClONO2 HCl ClO + 2 Cl2O2 Fall Early winter Late winter Spring Time Denitrification Dehydration End of polar night photochemical ozone destruction Transport hv (UV) PSC BrO CFC Stratosphere Reservoir compounds active comp. OClO (HCl, ClONO 2 ) (Cl, ClO) Ozone destruction 52

53 During polar night a vortex formes in the stratosphere. No effective mixing appears between air inside and outside this polar vortex. vironment-book/images/polarvortex.jpg f_record_ozone_loss_arctic_wide_measurements_verify_rapid_depletion_in_ recent/?chash=ee2ef56ededac781aeddcb73f26bdc 53

54 High values of OClO (indicating stratospheric chlorine activation) are found only when the polar vortex is over Kiruna. 54

55 3. E +1 4 OClO DSCD [molec/cm²] 2.5 E E E E E +1 3 KR iruna e ihe 1O C lo D SC D A M KR iruna e ihe 2O C lo D SC D P M OClO DSCDs over Kiruna for different polar winters. High values were detected for the cold winters 1999/2 and 24/25.. E E +1 3 Jan. Ja n. 1 Jan. 2 Ja n. 3 Jan. 4 Jan. 5 Tim e Volume of polar stratospheric clouds and Ozone loss for different Antarctic winters ( Markus Rex, see Strong ozone destruction was observed during the winters with high chlorine activation indicated by high OClO DSCDs over Kiruna 55

56 DOAS- Messungen auf der Neumayer- Station/Antarktis Udo Frieß VCD O 3 [DU] DOAS (84 <=SZA<=9 ) DOAS (88 <=SZA<=94 ) Ozone soundings TOMS VCD NO 2 [1 15 molec/cm 2 ] am pm Date hPa [K] Date SCD OClO [1 14 molec/cm 2 ] am, SZA = 9 pm, SZA = 9 am, SZA = 94 pm, SZA = K (PVU) Date

57 Absorptionserhöhung durch Bewölkung Effects of clouds II -clouds enhance the light path inside the cloud Mie-Vielfach-Streuung Spektrograph 57

58 intensity [counts] 2E+6 1E+6 E+ B: A: cloudy sky ( , SZA: 85.4 ) clear sky ( , SZA: 85.5 ) Quotient A / B 3 2 A 2 C = A / B B 1 Quotient C / Polynomial wavelength [nm] O4 H2O 58

59 Average [1/s] nm 3E+4 2E+4 1E+4 Intensität Thick cloud over Kiruna, Intensit tsquotient 682nm / 388 nm E E-3 Colour-Index VCD NO 2 klarer Tag klarer Tag OD 5E-4 OD OD E SCD H 2 O Diff. SCD O 4 The strongest absorption enhancement occurs when a very thick cloud waslocated over the measurement site (low intensity). 6 Trop. O 3 Absorption [DU] 3 7:12 9:36 12: 14:24 Zeit 59

60 Multi-Axis Observation Geometry Sun Zenith Stratosphere 45 Scattered light measurements in different viewing directions (close to the horizon to the zenith) Zenith sky measurements are sensitive mainly to the stratospheric column Spectrograph Troposphere Measurements close to the horizon have a long light path through the troposphere and are therefore sensitive for trace gases near the surface Multi-Axis DOAS allows to gain information on the vertical distribution of atmospheric trace gases 6

61 Compact (Mini) MAX-DOAS instrument The whole instrument is turned by stepper motor Advantages: - rather cheap, commercially available - simple operation (only battery and notebook needed) Mini-MAX-DOAS during the CINDI campaign, Cabauw, The Netherlands, 29 Disadvantages: - poor spectral quality - low quantum efficiency in UV - often problems with USB connection Hoffmann Messtechnik, Germany 61

62 Advanced MAX-DOAS set-up spectrometer inside moveable telescope outside two-axis sun tracker Clemer et al., AMT 21 62

63 Three azimuth directions are observed simultaneously Three UV spectra on the CCD Same azimuth angle Different azimuth angles 63 Wagner et al., AMT 211

64 High-speed 2-D MAX-DOAS instruments moveable telescope with strong & precise motor Similar instruments are used by Uni Colorado Uni Heidelberg AIOFM Hefei BIRA Brussels 64

65 MAX-DOAS observations at Milano, 23 For (mainly) stratospheric Absorbers (e.g. O 3 ) all elevation angles yield the same DSCDs 3 1.E+2 O4 DSCD O3 DSCD Altitude [km] 2 1 O3 O3 DSCD [molec/cm²] 8.E+19 6.E+19 4.E+19 Reihe1 3 elevation angle Reihe2 6 Reihe3 1 Reihe E+19.E+ 4: 6:24 8:48 11:12 13:36 16: The U-shape is caused by the changing SZA 65

66 MAX-DOAS observations at Milano, 23 For surface-near Absorbers (e.g. HCHO) all elevation angles yield different DSCDs Altitude [km] HCHO4 SCD HCHO [molec/cm²] 1.E+17 8.E+16 6.E+16 4.E+16 Reihe 3 Reihe Reihe 1 Reihe 18 Elevation: Reihe1 3 Reihe2 6 6 Reihe3 1 Reihe E+16.E+ 4: 6:24 8:48 11:12 13:36 16: Time

67 Altitude [km] For Absorbers located also in the free troposphere (e.g. the oxygen dimer O 4 ) the difference between the DSCDs is small MAX-DOAS observations at Milano, 23 O4 O4 DSCD [14molec2/cm5] The U-shape is caused by the changing SZA elevation angle O4 DSCD Reihe2 18 Reihe3 1 Reihe4 6 Reihe5 3 4: 6:24 8:48 11:12 13:36 16:

68 Increasing aerosol optical depth O4 DSCD [1 4 molec 2 /cm 5 ] Telescope elevation Reihe Reihe2 Reihe3 Reihe4 Reihe5 Reihe O4 AMF (reference added) 14. Sep. 15. Sep. 16. Sep. 17. Sep. Date Increasing aerosol laod leads to a decreas of the absorption paths and thus to a decrease of the measured absorptions. => From MAX-DOAS measurements aerosol profiles can be inverted => Only after aerosol profiles are known, trace gas profiles can be inverted

69 How to derive profiles (trace gases and aerosols) from measured DSCDs? -compare results from forward model to measurements -iterate assumed profiles until forward model and measurements agree -information content is limited (typically 1-3 pieces of information) -Optimal estimation and parameterised inversion algorithms are used 69

70 Forward model: A) aerosol or trace gas profile B) Radiative transfer model Trace gas DSCDs altitude DSCD Concentration MCARTIM (T. Deutschmann) 3D spherical MC model - Raman scattering - Polarisation Elevation angle 7

71 S =.5 S =.8 S = 1. S = 1.2 S = 1.2 linear two layers Trace gas concentration or aerosol extinction We use simple parameterisation (1-3 independent pieces of information) for tropospheric profiles: -layer height -shape factor -vertically integrated amount (trace gas VCD or AOT) 71

72 Comparison of measured O 4 DAMFs (black dots) to the results of the forward model (coloured lines) O 4 damf , 12: 19.9., 8: Reihe1 Measurement Reihe2 S = 1.1 Reihe9 S = 1. Reihe8 S =.8 Reihe3 S = 1.1 (linear) Elevation angle [ ] O 4 damf Reihe1 Measurement Reihe2 S = 1.1 Reihe9 S = 1. Reihe8 S =.8 Reihe3 S = 1.1 (linear) Elevation angle [ ] : : f: 1.1 AOD:.4 f: 1.1 AOD:.61 f: 1. AOD:.85 f: 1. AOD:.77 f:.8 AOD: 1.28 f:.8 AOD:.73 f: 1.1 lin AOD: 1.28 f: 1.1 lin AOD:.78 72

73 Comparison of measured DSCDs of NO 2 and HCHO (black dots) to the results of the forward model (coloured lines) damf ratio (or dscd ratio) Reihe1 Measurement Reihe2 S = 1.1 Reihe9 S = 1. Reihe8 S =.8 Reihe3 S =.5 NO Elevation angle [ ] damf ratio (or dscd ratio) Reihe1 Measurement Reihe2 S = 1.1 Reihe9 S = 1. Reihe8 S =.8 Reihe3 S =.5 HCHO Elevation angle [ ] S:.5, L=183m, VCD= molec/cm² S:.8, L=267m, VCD= molec/cm² S: 1., L=32m, VCD= molec/cm² S: 1.1, L=254m, VCD= molec/cm² S:.5, L=282m, VCD= molec/cm² S:.8, L=445m, VCD= molec/cm² S: 1., L=515m, VCD= molec/cm² S: 1.1, L=35m, VCD= molec/cm² 73

74 OD Results for selected days September : 7: 9: 11: 13: 15: 17: south Reihe7 north Reihe6 west Reihe5 AOT_35 AERONET telescopes directed to different azimuth angles NO2 mixing ratio [ppb] : 7: 9: 11: 13: 15: 17: south Reihe2 north Reihe3 west Reihe1 LP-DOAS NO2_[ppb] 6 6 HCHO mixing ratio [ppb] : 7: 9: 11: 13: 15: 17: south north west LP-DOAS Hantzsch Reihe2 Reihe3 #DIV/! HCHO_[ppb] HCHO-PPB Layer height [m] : 7: 9: 11: 13: 15: 17: aerosols south HCHO south NO 2 south north north north west west west 74

75 OD Results for selected days 19 September 23 5: 7: 9: 11: 13: 15: 17: south Reihe7 north Reihe6 west Reihe5 AOT_35 AERONET telescopes directed to different azimuth angles NO2 mixing ratio [ppb] : 7: 9: 11: 13: 15: 17: south Reihe2 north Reihe3 west Reihe1 LP-DOAS NO2_[ppb] 6 6 HCHO mixing ratio [ppb] : 7: 9: 11: 13: 15: 17: south north west LP-DOAS Hantzsch Reihe2 Reihe3 #DIV/! HCHO_[ppb] HCHO-PPB Layer height [m] : 7: 9: 11: 13: 15: 17: aerosols south HCHO south NO 2 south north north north 75 west west west

76 Comparison of trace gas mixing ratios from MAX-DOAS and LP-DOAS (towards north-west) South North West NO 2 NO 2 mixing ratio South 1 5 slope:.76 ±.2 r²: NO 2 mixing ratio LP-DOAS 1 5 slope: 1. ±.3 r²: NO 2 mixing ratio LP-DOAS 1 5 slope: 1.16 ±.3 r²: NO 2 mixing ratio LP-DOAS HCHO HCHO mixing ratio South [ppb] slope: 1.11 r: HCHO mixing ratio LP-DOAS [ppb] slope: 1.16 r: HCHO mixing ratio LP-DOAS [ppb] slope:.98 r: HCHO mixing ratio LP-DOAS [ppb] 76 Wagner et al., AMT 211

77 Examples for MAX-DOAS profile inversion, CINDI campaign, Cabauw, The Netherlands, Summer Aerosol extinction NO2 concentration 77

78 Ceilometer data } Optimal Estimation Cabauw, Paramerised retrievals }Udo Friess, IUP 78 Heidelberg

79 Ceilometer data } } Optimal Estimation Cabauw, Paramerised retrievals Udo Friess, IUP 79 Heidelberg

80 Validation for column data and surface values Comparison of MAX-DOAS AODs at 36, 477, 577, and 63 nm and a co-located sun photometer observations. Better agreement for short wavelengths Clemer et al., ACP 21 8

81 Extinction coefficient retrieved by MAX-DOAS vs. in-situ pm 2.5 measurements Good qualitative agreement Border Air Quality and Meteorology Study (BAQS-Met) at Ridgetown 27 Jamie Halla et al., ACP

82 Extinction coefficient retrieved by MAX-DOAS vs. in-situ measurements. The color code denotes the AOD. Good qualitative agreement, but poor quantitative agreement slope: 3.4 slope: 1.5 Paul Zieger et al., ACP

83 83

84 The whole route of Polarstern on ANT/XX in the year 22/23. The cruise started on and ended on

85 6.E+15 5.E+15 morning NO2 VCD afternoon NO2 VCD NO2 VCD Latitude 4.E+15 3.E+15 2.E+15 1.E+15.E E BrO VCD BrO VCD [molec/cm²] 5. E E E E E E P o la rs te rn B r O V C D A M 2 4 P o la rs te rn B r O V C D P M E E L a titu d e Top: NO 2 VCDs for the Atlantic traverse during May 24 as a function of latitude. Bottom: Latitudinal mean VCDs of BrO in May 25 for SZA between 84 and

86 Enhanced BrO in Antarctica Wagner et al., ACP, 27 86

87 'Bromine explosion' gas phase aerosol, sea ice surface 1Br atom BrO + HO2 -> O2 + HOBr HOBr + H+ + Br - -> Br2 2 Br atoms 2 Br <- hv + Br2 BrO + O 2 <= Br + O 3 87

88 Car MAX-DOAS measurements - determination of emissions - validation of satellite observations Paris Summer 29 (3 measurement days) Paris Winter 21 (2 measurement days) New Dehli 21 & 211 (8 measurement days) Elevation angles: Typical integration time: 3 s R. Shaiganfar, MPIC 88 Mainz

89 Emission estimates for Paris from car MAX-DOAS Car MAX-DOAS Car MAX-DOAS

90 Car MAX-DOAS in Rhein-Main region Frankfurt Mainz, 5th November 215 Sebastian Donner 9

91 Car MAX-DOAS around Mannhein/Ludwigshafen 1:3 12: 11:3 13: 24 August, 29 Ibrahim et al., ACP, 21 91

92 A) Emission estimates from car MAX-DOAS F NO2 S VCD NO2 (s) w n ds Wind vector Normal vector of driving route B) F NO c L c F x NO 2 Correction for NO x to NO 2 ratio Correction for NO x lifetime 92

93 C) Extrapolation of encircled emissions to total emission (New Delhi) NO 2 VCD from car MAX-DOAS Correction factor derived from light distribution measured from sky 3 sec spatial resolutin 93

94 NO x emissions New Delhi Shaiganfar et al., ACP

95 Comparison to Chimere model simulations (Paris) Hervé Pepetin, Matthias Beekmann, LISA, Paris 95

96 Validation of OMI satellite observations Paris, Summer 29 96

97 Paris New Delhi summer winter Over polluted regions satellite observations systematically underestimate the tropospheric NO 2 VCD 97

98 Ma et al., ACP 213 (28 21) (28 211) Comparison of tropospheric NO 2 VCD over Beijing. Satellite data are systematically lower than the MAX-DOAS. Why? Coarse spatial resolution of satellite data Too large AMF used in satellite data analysis (aerosols shield part of the tropospheric NO 2 ) 98

99 Imaging DOAS: 2-dimensional information F. Hoffmann, IUP-Heidelberg 99

100 NO 2 -chimney plume, Power plant Fernheizkraftwerk Heidelberg F. Lohberger, IUP-Heidelberg Lohberger et al., Ground-based imaging differential optical absorption spectroscopy of atmospheric gases, Appl. Optic., 24. 1

101 Imaging DOAS of volcanic emissions SO 2 at Popocatepetl, 15 April, 29 Diploma Thesis, Peter Lübcke, IUP Heidelberg 11

102 Short summary for UV/vis ground based observations: -in general simple retrieval algorithms because thermal emission can be neglected (typically no optimal estimation algorithms are used. -scattered light observations are limited to daylight -from spectral effects (almost) no information on vertical distribution can be derived -several sophisticated techniques exist (e.g. MAX-DOAS) for the retrieval of profile information -instruments at different platforms and with different viewing geometries (and light sources: scattered light and direct light) -typically simple instrumentation 12

Ground based UV/vis observations

Ground based UV/vis observations Ground based UV/vis observations A) History B) Basic viewing directions B) Spectroscopy C) Radiative transport modelling D) Results from different stations Anfänge der Spektroskopie Joseph von Fraunhofer

More information

Ground based UV/vis observations

Ground based UV/vis observations Ground based UV/vis observations A) History B) Basic viewing directions B) Spectroscopy C) Radiative transport modelling D) Results from different stations Anfänge der Spektroskopie Joseph von Fraunhofer

More information

Ground based UV/vis observations

Ground based UV/vis observations Ground based UV/vis observations A) History B) Basic viewing directions B) Spectroscopy C) Radiative transport modelling D) Results from different stations Anfänge der Spektroskopie Joseph von Fraunhofer

More information

Remote Sensing of Atmospheric Trace Gases Udo Frieß Institute of Environmental Physics University of Heidelberg, Germany

Remote Sensing of Atmospheric Trace Gases Udo Frieß Institute of Environmental Physics University of Heidelberg, Germany Remote Sensing of Atmospheric Trace Gases Udo Frieß Institute of Environmental Physics University of Heidelberg, Germany CREATE Summer School 2013 Lecture B, Wednesday, July 17 Remote Sensing of Atmospheric

More information

Investigation of the effects of horizontal gradients of trace gases, aerosols and clouds on the validation of tropospheric TROPOMI products (TROPGRAD)

Investigation of the effects of horizontal gradients of trace gases, aerosols and clouds on the validation of tropospheric TROPOMI products (TROPGRAD) Investigation of the effects of horizontal gradients of trace gases, aerosols and clouds on the validation of tropospheric TROPOMI products (TROPGRAD) T. Wagner, J. Remmers, S. Beirle, Y. Wang MPI for

More information

Long term DOAS measurements at Kiruna

Long term DOAS measurements at Kiruna Long term DOAS measurements at Kiruna T. Wagner, U. Frieß, K. Pfeilsticker, U. Platt, University of Heidelberg C. F. Enell, A. Steen, Institute for Space Physics, IRF, Kiruna 1. Introduction Since 1989

More information

Atmospheric Measurements from Space

Atmospheric Measurements from Space Atmospheric Measurements from Space MPI Mainz Germany Thomas Wagner Satellite Group MPI Mainz Part 1: Basics Break Part 2: Applications Part 1: Basics of satellite remote sensing Why atmospheric satellite

More information

Remote Measurement of Tropospheric NO 2 by a Dual MAX-DOAS over Guangzhou During the 2008 PRD Campaign

Remote Measurement of Tropospheric NO 2 by a Dual MAX-DOAS over Guangzhou During the 2008 PRD Campaign Session h A&WMA International Specialty Conference, 10-14 May 2010, China Ih: Remote Sensing Technologies for Source Monitoring Remote Measurement of Tropospheric NO 2 by a Dual MAX- over Guangzhou During

More information

UV-Vis Nadir Retrievals

UV-Vis Nadir Retrievals SCIAMACHY book UV-Vis Nadir Retrievals Michel Van Roozendael, BIRA-IASB ATC14, 27-31 October, Jülich, Germany Introduction Content Fundamentals of the DOAS method UV-Vis retrievals: from simplified to

More information

7.5-year global trends in GOME cloud cover and humidity - a signal of climate change? Institut für Umweltphysik, Uni-Heidelberg, Germany

7.5-year global trends in GOME cloud cover and humidity - a signal of climate change? Institut für Umweltphysik, Uni-Heidelberg, Germany 7.5-year global trends in GOME cloud cover and humidity - a signal of climate change? T. Wagner, S. Beirle, M. Grzegorski, S. Sanghavi, U. Platt Institut für Umweltphysik, Uni-Heidelberg, Germany The Greenhouse

More information

Satellite remote sensing of NO 2

Satellite remote sensing of NO 2 Satellite remote sensing of NO 2 views from outside Steffen Beirle Satellite Group MPI Mainz UV-vis satellite instruments Current nadir UV/vis satellite instruments: GOME 1/2, SCIAMACHY, OMI Nadir: probing

More information

MAX-DOAS observations of NO 2 in NDACC: status and perspectives

MAX-DOAS observations of NO 2 in NDACC: status and perspectives MAX-DOAS observations of NO 2 in NDACC: status and perspectives F. Hendrick 31/01/2015 C. Gielen, G. Pinardi, B. Langerock, M. De Mazière, and M. Van Roozendael Royal Belgian Institute for Space Aeronomy

More information

Trace gases, aerosols & clouds analysed from GOME, SCIAMACHY and GOME-2. Recommendations for TROPOMI. Thomas Wagner. Satellite Group Mainz Heidelberg

Trace gases, aerosols & clouds analysed from GOME, SCIAMACHY and GOME-2. Recommendations for TROPOMI. Thomas Wagner. Satellite Group Mainz Heidelberg MPI Mainz Germany Trace gases, aerosols & clouds analysed from GOME, SCIAMACHY and GOME-2. Recommendations for TROPOMI. Thomas Wagner Satellite Group Mainz Heidelberg with contributions from: Uni- Heidelberg

More information

Cloud detection and classification based on MAX-DOAS observations

Cloud detection and classification based on MAX-DOAS observations doi:9/amt-7-89- Author(s). CC Attribution. License. Atmospheric Measurement Techniques Open Access Cloud detection and classification based on MAX-DOAS observations T. Wagner, A. Apituley, S. Beirle, S.

More information

BrO PROFILING FROM GROUND-BASED DOAS OBSERVATIONS: NEW TOOL FOR THE ENVISAT/SCIAMACHY VALIDATION

BrO PROFILING FROM GROUND-BASED DOAS OBSERVATIONS: NEW TOOL FOR THE ENVISAT/SCIAMACHY VALIDATION BrO PROFILING FROM GROUND-BASED DOAS OBSERVATIONS: NEW TOOL FOR THE ENVISAT/SCIAMACHY VALIDATION F. Hendrick (1), M. Van Roozendael (1), M. De Mazière (1), A. Richter (2), A. Rozanov (2), C. Sioris (3),

More information

Long-Term Halogen Measurements at Cape Verde

Long-Term Halogen Measurements at Cape Verde Long-Term Halogen Measurements at Cape Verde Ulrich Platt, Udo Frieß, Jessica Balbo Institut for Environmental Physics, University of Heidelberg, Germany Reactive Halogen Species in the Troposphere Previous

More information

MAX-DOAS observations of NO 2 in NDACC: status and perspectives

MAX-DOAS observations of NO 2 in NDACC: status and perspectives MAX-DOAS observations of NO 2 in NDACC: status and perspectives F. Hendrick 31/01/2015 C. Gielen, G. Pinardi, B. Langerock, M. De Mazière, and M. Van Roozendael Royal Belgian Institute for Space Aeronomy

More information

Simulation of UV-VIS observations

Simulation of UV-VIS observations Simulation of UV-VIS observations Hitoshi Irie (JAMSTEC) Here we perform radiative transfer calculations for the UV-VIS region. In addition to radiance spectra at a geostationary (GEO) orbit, air mass

More information

RETRIEVAL OF STRATOSPHERIC TRACE GASES FROM SCIAMACHY LIMB MEASUREMENTS

RETRIEVAL OF STRATOSPHERIC TRACE GASES FROM SCIAMACHY LIMB MEASUREMENTS RETRIEVAL OF STRATOSPHERIC TRACE GASES FROM SCIAMACHY LIMB MEASUREMENTS Jānis Puķīte (1,2), Sven Kühl (1), Tim Deutschmann (1), Walburga Wilms-Grabe (1), Christoph Friedeburg (3), Ulrich Platt (1), and

More information

Car MAX-DOAS measurements around entire cities: quantification of NO x emissions from the cities of Mannheim and Ludwigshafen (Germany)

Car MAX-DOAS measurements around entire cities: quantification of NO x emissions from the cities of Mannheim and Ludwigshafen (Germany) Atmos. Meas. Tech., 3, 709 721, 2010 doi:10.5194/amt-3-709-2010 Author(s) 2010. CC Attribution 3.0 License. Atmospheric Measurement Techniques Car MAX-DOAS measurements around entire cities: quantification

More information

Monitoring of trace gas emissions from space: tropospheric abundances of BrO, NO 2, H 2 CO, SO 2, H 2 O, O 2, and O 4 as measured by GOME

Monitoring of trace gas emissions from space: tropospheric abundances of BrO, NO 2, H 2 CO, SO 2, H 2 O, O 2, and O 4 as measured by GOME Monitoring of trace gas emissions from space: tropospheric abundances of BrO, NO 2, H 2 CO, SO 2, H 2 O, O 2, and O 4 as measured by GOME T. Wagner, S. Beirle, C. v.friedeburg, J. Hollwedel, S. Kraus,

More information

UV-visible observations of atmospheric O 4 absorptions using direct moonlight and zenith-scattered sunlight for clear-sky and cloudy sky conditions

UV-visible observations of atmospheric O 4 absorptions using direct moonlight and zenith-scattered sunlight for clear-sky and cloudy sky conditions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D20, 4424, doi:10.1029/2001jd001026, 2002 UV-visible observations of atmospheric O 4 absorptions using direct moonlight and zenith-scattered sunlight for

More information

Supplement of Cloud and aerosol classification for 2.5 years of MAX-DOAS observations in Wuxi (China) and comparison to independent data sets

Supplement of Cloud and aerosol classification for 2.5 years of MAX-DOAS observations in Wuxi (China) and comparison to independent data sets Supplement of Atmos. Meas. Tech., 8, 5133 5156, 215 http://www.atmos-meas-tech.net/8/5133/215/ doi:1.5194/amt-8-5133-215-supplement Author(s) 215. CC Attribution 3. License. Supplement of Cloud and aerosol

More information

The Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments

The Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments The Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments Ankie Piters, KNMI and CINDI Organisation Team Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments Main

More information

Longtime Satelite Observation of Atmospheric Trace Gases

Longtime Satelite Observation of Atmospheric Trace Gases Longtime Satelite Observation of Atmospheric Trace Gases T. Wagner, S. Beirle, C. v. Friedeburg, M. Grzegorski, J. Hollwedel, S. Kühl, S. Kraus, W. Wilms-Grabe, M. Wenig, U. Platt Institut für Umweltphysik,

More information

Diffuser plate spectral structures and their influence on GOME slant columns

Diffuser plate spectral structures and their influence on GOME slant columns Diffuser plate spectral structures and their influence on GOME slant columns A. Richter 1 and T. Wagner 2 1 Insitute of Environmental Physics, University of Bremen 2 Insitute of Environmental Physics,

More information

Algorithm Document HEIDOSCILI

Algorithm Document HEIDOSCILI lgorithm Document for the retrieval of OClO, BrO and NO 2 vertical profiles from SCIMCHY limb measurements by HEIDOSCILI (Heidelberg DOS of SCIMCHY Limb measurements) uthors: Sven Kühl, Janis Pukite, Thomas

More information

Long Path (active) DOAS

Long Path (active) DOAS Long Path (active) DOAS -basic principle -Long path DOAS (UV/vis/IR) -instrumental improvements -Specific applications -white cell -vertical profiles -tomographic inversions DOAS: Differentielle Optische

More information

Tropospheric NO 2 column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation

Tropospheric NO 2 column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation Atmos. Chem. Phys., 9, 31 3, 9 www.atmos-chem-phys.net/9/31/9/ Author(s) 9. This work is distributed under the Creative Commons Attribution 3. License. Atmospheric Chemistry and Physics Tropospheric NO

More information

Algorithms/Results (SO 2 and ash) based on SCIAMACHY and GOME-2 measurements

Algorithms/Results (SO 2 and ash) based on SCIAMACHY and GOME-2 measurements ESA/EUMETSAT Workshop on Volcanic Ash Monitoring ESA/ESRIN, Frascati, 26-27 May 2010 Algorithms/Results (SO 2 and ash) based on SCIAMACHY and GOME-2 measurements Nicolas THEYS H. Brenot, J. van Gent and

More information

SCIAMACHY VALIDATION USING GROUND-BASED DOAS MEASUREMENTS OF THE UNIVERSITY OF BREMEN BREDOM NETWORK

SCIAMACHY VALIDATION USING GROUND-BASED DOAS MEASUREMENTS OF THE UNIVERSITY OF BREMEN BREDOM NETWORK SCIAMACHY VALIDATION USING GROUND-BASED DOAS MEASUREMENTS OF THE UNIVERSITY OF BREMEN BREDOM NETWORK A. Richter (1), D. Adukpo (1), S. Fietkau (1), A. Heckel (1), A. Ladstätter-Weißenmayer (1), A. Löwe

More information

Improving S5P NO 2 retrievals

Improving S5P NO 2 retrievals Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Department 1 Physics/Electrical Engineering Improving S5P NO 2 retrievals ESA ATMOS 2015 Heraklion June 11, 2015 Andreas Richter, A. Hilboll,

More information

A simulation for UV-VIS VIS observations of tropospheric composition from a geostationary satellite over Asia

A simulation for UV-VIS VIS observations of tropospheric composition from a geostationary satellite over Asia A simulation for UV-VIS VIS observations of tropospheric composition from a geostationary satellite over Asia Hitoshi Irie 1, Hironobu Iwabuchi 2, Katsuyuki Noguchi 3 Yasuko Kasai 4, Kazuyuki Kita 5, and

More information

Simulated Radiances for OMI

Simulated Radiances for OMI Simulated Radiances for OMI document: KNMI-OMI-2000-004 version: 1.0 date: 11 February 2000 author: J.P. Veefkind approved: G.H.J. van den Oord checked: J. de Haan Index 0. Abstract 1. Introduction 2.

More information

Longtime Satelite Observation of Atmospheric Trace Gases

Longtime Satelite Observation of Atmospheric Trace Gases Longtime Satelite Observation of Atmospheric Trace Gases T. Wagner, S. Beirle, C. v. Friedeburg, M. Grzegorski, J. Hollwedel, S. Kühl, S. Kraus, W. Wilms-Grabe, M. Wenig, U. Platt Institut für Umweltphysik,

More information

Progress of total ozone data retrieval from Phaeton - REG(AUTH)

Progress of total ozone data retrieval from Phaeton - REG(AUTH) Progress of total ozone data retrieval from Phaeton - REG(AUTH) Alkis Bais, Fani Gkertsi, Theano Drosoglou, Natalia Kouremeti* Lab of Atmospheric Physics Aristotle University of Thessaloniki *PMOD/WRC

More information

DOAS UV/VIS minor trace gases from SCIAMACHY

DOAS UV/VIS minor trace gases from SCIAMACHY DOAS UV/VIS minor trace gases from SCIAMACHY Rüdiger de Beek, Andreas Richter, John P. Burrows Inst. of Environm. Physics, University of Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany, Email: ruediger.de_beek@iup.physik.uni-bremen.de

More information

WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES

WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES S. Noël, H. Bovensmann, J. P. Burrows Institute of Environmental Physics, University of Bremen, FB 1, P. O. Box 33 4 4, D 28334 Bremen, Germany

More information

Tomographic MAX-DOAS observations of sun-illuminated targets: a new technique providing well-defined absorption paths in the.

Tomographic MAX-DOAS observations of sun-illuminated targets: a new technique providing well-defined absorption paths in the. Tomographic MAX-DOAS observations of sun-illuminated targets: a new technique providing well-defined orption paths in the boundary layer Erna Frins 1, Nicole Bobrowski 2, Ulrich Platt 2, Thomas Wagner

More information

Overview on UV-Vis satellite work

Overview on UV-Vis satellite work Overview on UV-Vis satellite work Where we are and what possible directions are? M. Van Roozendael Belgian Institute for Space Aeronomy ACCENT AT-2 Follow up meeting, MPI Mainz, Germany, 22-23 June 2009

More information

Scattered-light DOAS Measurements

Scattered-light DOAS Measurements 9 Scattered-light DOAS Measurements The absorption spectroscopic analysis of sunlight scattered by air molecules and particles as a tool for probing the atmospheric composition has a long tradition. Götz

More information

A feasibility study for GMAP-Asia and APOLLO UV-visible observations and its implications for GEMS

A feasibility study for GMAP-Asia and APOLLO UV-visible observations and its implications for GEMS A feasibility study for GMAP-Asia and APOLLO UV-visible observations and its implications for GEMS Hitoshi Irie 1, Katsuyuki Noguchi 2, and Hironobu Iwabuchi 3 1 Japan Agency for Marine-Earth Science and

More information

SCIAMACHY limb measurements of NO 2, BrO and OClO. Retrieval of vertical profiles: Algorithm, first results, sensitivity and comparison studies

SCIAMACHY limb measurements of NO 2, BrO and OClO. Retrieval of vertical profiles: Algorithm, first results, sensitivity and comparison studies Available online at www.sciencedirect.com Advances in Space Research 42 (2008) 1747 1764 www.elsevier.com/locate/asr SCIAMACHY limb measurements of NO 2, BrO and OClO. Retrieval of vertical profiles: Algorithm,

More information

Multi axis differential optical absorption spectroscopy (MAX-DOAS)

Multi axis differential optical absorption spectroscopy (MAX-DOAS) Atmos. Chem. Phys.,, 31, www.atmos-chem-phys.org/acp//31/ SRef-ID: 18-73/acp/--31 Atmospheric Chemistry and Physics Multi axis differential optical absorption spectroscopy (MAX-DOAS) G. Hönninger 1,*,

More information

BIRA-IASB, Brussels, Belgium: (2) KNMI, De Bilt, Netherlands.

BIRA-IASB, Brussels, Belgium: (2) KNMI, De Bilt, Netherlands. Tropospheric CH 2 O Observations from Satellites: Error Budget Analysis of 12 Years of Consistent Retrieval from GOME and SCIAMACHY Measurements. A contribution to ACCENT-TROPOSAT-2, Task Group 1 I. De

More information

Long Path (active) DOAS

Long Path (active) DOAS Long Path (active) DOAS -basic principle -Long path DOAS (UV/vis/IR) -instrumental improvements -Specific applications -white cell -vertical profiles -tomographic inversions 1 DOAS: Differentielle Optische

More information

Differential Optical Absorption Spectroscopy (DOAS)

Differential Optical Absorption Spectroscopy (DOAS) Differential Optical Absorption Spectroscopy (DOAS) An example of methodology using ground based emission measurements of Popocateptl volcano, Mexico Group 6 Mike Perry Paula Salas de los Rios Moises Blanco

More information

CREATE Summer School. Tim Canty

CREATE Summer School. Tim Canty CREATE Summer School Tim Canty Understanding Halogens in the Arctic Today: Will focus on chlorine and bromine How lab studies affect our view of ozone loss Using observations and models to probe the atmosphere

More information

Long Path (active) DOAS

Long Path (active) DOAS Long Path (active) DOAS -basic principle -Long path DOAS (UV/vis/IR) -instrumental improvements -Specific applications -white cell -vertical profiles -tomographic inversions DOAS: Differentielle Optische

More information

Long Path (active) DOAS

Long Path (active) DOAS Long Path (active) DOAS -basic principle -Long path DOAS (UV/vis/IR) -instrumental improvements -Specific applications -white cell -vertical profiles -tomographic inversions DOAS: Differentielle Optische

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Retrieval and Monitoring of atmospheric trace gas concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument

Retrieval and Monitoring of atmospheric trace gas concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument Retrieval and Monitoring of atmospheric trace gas concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument B. Sierk, A. Richter, A. Rozanov, Ch. von Savigny, A.M. Schmoltner,

More information

Supplement of Iodine oxide in the global marine boundary layer

Supplement of Iodine oxide in the global marine boundary layer Supplement of Atmos. Chem. Phys., 1,, 01 http://www.atmos-chem-phys.net/1//01/ doi:.1/acp-1--01-supplement Author(s) 01. CC Attribution.0 License. Supplement of Iodine oxide in the global marine boundary

More information

ATM 507 Lecture 9 Text reading Section 5.7 Problem Set # 2 due Sept. 30 Next Class Tuesday, Sept. 30 Today s topics Polar Stratospheric Chemistry and the Ozone Hole, Required reading: 20 Questions and

More information

Total column density variations of ozone (O 3 ) in presence of different types of clouds

Total column density variations of ozone (O 3 ) in presence of different types of clouds O 3 Total column density variations of ozone (O 3 ) in presence of different types of clouds G S Meena Indian Institute of Tropical Meteorology, Pashan, Pune 411 008, India. e-mail: gsm@tropmet.res.in

More information

Long Path (active) DOAS

Long Path (active) DOAS Long Path (active) DOAS -basic principle -Long path DOAS (UV/vis/IR) -instrumental improvements -Specific applications -white cell -vertical profiles -tomographic inversions 1 DOAS: Differentielle Optische

More information

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm -Aerosol and tropospheric ozone retrieval method using continuous UV spectra- Atmospheric composition measurements from satellites are

More information

BUMBA Belgian Urban NO2 Monitoring Based on APEX hyperspectral data. Koen Meuleman and the BUMBA team (special thanks to F.

BUMBA Belgian Urban NO2 Monitoring Based on APEX hyperspectral data. Koen Meuleman and the BUMBA team (special thanks to F. BUMBA Belgian Urban NO2 Monitoring Based on APEX hyperspectral data Koen Meuleman and the BUMBA team (special thanks to F. Tack BIRA/ISAB) PROJECT SETUP» STEREO III Application project» Two years project

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

Progress Towards an Absolute Calibration of Lunar Irradiance at Reflected Solar Wavelengths

Progress Towards an Absolute Calibration of Lunar Irradiance at Reflected Solar Wavelengths Progress Towards an Absolute Calibration of Lunar Irradiance at Reflected Solar Wavelengths Claire Cramer, Steve Brown, Keith Lykke, John Woodward (NIST) Tom Stone (USGS) Motivation for using the Moon

More information

Emission Limb sounders (MIPAS)

Emission Limb sounders (MIPAS) Emission Limb sounders (MIPAS) Bruno Carli ENVISAT ATMOSPHERIC PACKAGE MIPAS Michelson Interferometric Passive Atmospheric Sounder GOMOS Global Ozone Monitoring by Occultation of Stars SCIAMACHY Scanning

More information

Atmospheric Chemistry and Physics. Atmos. Chem. Phys., 4, , SRef-ID: /acp/

Atmospheric Chemistry and Physics. Atmos. Chem. Phys., 4, , SRef-ID: /acp/ Atmos. Chem. Phys., 4, 91 216, 4 www.atmos-chem-phys.org/acp/4/91/ SRef-ID: 168-7324/acp/4-4-91 Atmospheric Chemistry and Physics Retrieval of nitrogen dioxide stratospheric profiles from ground-based

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

Using visible spectra to improve sensitivity to near-surface ozone of UV-retrieved profiles from MetOp GOME-2

Using visible spectra to improve sensitivity to near-surface ozone of UV-retrieved profiles from MetOp GOME-2 Using visible spectra to improve sensitivity to near-surface ozone of UV-retrieved profiles from MetOp GOME-2 Richard Siddans, Georgina Miles, Brian Kerridge STFC Rutherford Appleton Laboratory (RAL),

More information

MEASURING TRACE GAS PROFILES FROM SPACE

MEASURING TRACE GAS PROFILES FROM SPACE MEASURING TRACE GAS PROFILES FROM SPACE Caroline Nowlan Atomic and Molecular Physics Division Harvard-Smithsonian Center for Astrophysics Collaborators: Kelly Chance, Xiong Liu, Gonzalo Gonzalez Abad,

More information

NATS 101 Section 13: Lecture 31. Air Pollution Part II

NATS 101 Section 13: Lecture 31. Air Pollution Part II NATS 101 Section 13: Lecture 31 Air Pollution Part II Last time we talked mainly about two types of smog:. 1. London-type smog 2. L.A.-type smog or photochemical smog What are the necessary ingredients

More information

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA Global NEST Journal, Vol 8, No 3, pp 204-209, 2006 Copyright 2006 Global NEST Printed in Greece. All rights reserved TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA A.A. ACULININ

More information

Support to H 2 O column retrieval algorithms for GOME-2

Support to H 2 O column retrieval algorithms for GOME-2 Support to H 2 O column retrieval algorithms for GOME-2 O3M-SAF Visiting Scientist Activity Final Report 18.09.2011 Thomas Wagner, Kornelia Mies MPI für Chemie Joh.-Joachim-Becher-Weg 27 D-55128 Mainz

More information

Retrieval of stratospheric and tropospheric BrO columns from multi-axis DOAS measurements at Reunion Island (21 S, 56 E)

Retrieval of stratospheric and tropospheric BrO columns from multi-axis DOAS measurements at Reunion Island (21 S, 56 E) Atmos. Chem. Phys., 7, 4733 4749, 27 www.atmos-chem-phys.net/7/4733/27/ Author(s) 27. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Retrieval of stratospheric

More information

Contribution from GOME on the linkage between solar activity and climate

Contribution from GOME on the linkage between solar activity and climate Contribution from GOME on the linkage between solar activity and climate Mark Weber Institute of Environmental Physics (IUP), University Bremen (UB) www.iup.physik.uni-bremen.de/gome weber@uni-bremen.de

More information

Uncertainty Budgets. Title: Uncertainty Budgets Deliverable number: D4.3 Revision 00 - Status: Final Date of issue: 28/04/2013

Uncertainty Budgets. Title: Uncertainty Budgets Deliverable number: D4.3 Revision 00 - Status: Final Date of issue: 28/04/2013 Uncertainty Budgets Deliverable title Uncertainty Budgets Deliverable number D4.3 Revision 00 Status Final Planned delivery date 30/04/2013 Date of issue 28/04/2013 Nature of deliverable Report Lead partner

More information

Comparison of measurements and model calculations of stratospheric bromine monoxide

Comparison of measurements and model calculations of stratospheric bromine monoxide JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 7, NO. D9, 498, doi:.9/jd94, Comparison of measurements and model calculations of stratospheric bromine monoxide B.-M. Sinnhuber,, D. W. Arlander, H. Bovensmann, J.

More information

Atmospheric Chemistry and Physics

Atmospheric Chemistry and Physics Atmos. Chem. Phys., 7, 19 133, 27 www.atmos-chem-phys.net/7/19/27/ Author(s) 27. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Comparison of box-air-mass-factors

More information

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion Chemistry 471/671 Atmospheric Chemistry III: Stratospheric Ozone Depletion 2 The Chapman Mechanism O 2 + hn 2 O( 1 D) O( 1 D) + O 2 + M O 3 + M Exothermic O( 1 D) + O 3 2 O 2 O 3 + hn O( 1 D) + O 2 ( 1

More information

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 Graphics: ESA Graphics: ESA Graphics: ESA Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 S. Noël, S. Mieruch, H. Bovensmann, J. P. Burrows Institute of Environmental

More information

MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund - Radiative transfer studies and their application

MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund - Radiative transfer studies and their application Atmos. Chem. Phys., 4, 955 966, 2004 SRef-ID: 1680-7324/acp/2004-4-955 Atmospheric Chemistry and Physics MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund - Radiative transfer studies and

More information

GROUNDBASED FTIR, OZONESONDE AND LIDAR MEASUREMENTS FOR THE VALIDATION OF SCIAMACHY (AOID 331)

GROUNDBASED FTIR, OZONESONDE AND LIDAR MEASUREMENTS FOR THE VALIDATION OF SCIAMACHY (AOID 331) GROUNDBASED FTIR, OZONESONDE AND LIDAR MEASUREMENTS FOR THE VALIDATION OF SCIAMACHY (AOID 331) Astrid Schulz (1), Thorsten Warneke (2), Justus Notholt (2), Otto Schrems (1), Roland Neuber (1), Peter von

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

A critical review of the absorption cross-sections of O 3 and NO 2 in the ultraviolet and visible

A critical review of the absorption cross-sections of O 3 and NO 2 in the ultraviolet and visible Journal of Photochemistry and Photobiology A: Chemistry 157 (2003) 185 209 A critical review of the absorption cross-sections of O 3 and NO 2 in the ultraviolet and visible J. Orphal Laboratoire de Photophysique

More information

SCIAMACHY VALIDATION USING THE AMAXDOAS INSTRUMENT

SCIAMACHY VALIDATION USING THE AMAXDOAS INSTRUMENT SCIAMACHY VALIDATION USING THE AMAXDOAS INSTRUMENT Klaus-Peter Heue (1), Steffen Beirle (1) Marco Bruns (2), John P. Burrows (2), Ulrich Platt (1), Irene Pundt (1), Andreas Richter (2), Thomas Wagner (1)

More information

Atmospheric Chemistry III

Atmospheric Chemistry III Atmospheric Chemistry III Chapman chemistry, catalytic cycles: reminder Source of catalysts, transport to stratosphere: reminder Effect of major (O 2 ) and minor (N 2 O, CH 4 ) biogenic gases on [O 3 ]:

More information

Practice Questions: Seasons #1

Practice Questions: Seasons #1 1. Seasonal changes on Earth are primarily caused by the A) parallelism of the Sun's axis as the Sun revolves around Earth B) changes in distance between Earth and the Sun C) elliptical shape of Earth's

More information

OZONE AND ULTRAVIOLET RADIATION

OZONE AND ULTRAVIOLET RADIATION OZONE AND ULTRAVIOLET RADIATION Alfio Parisi, Michael Kimlin Imagine if the earth s protective atmosphere did not exist and the earth was subjected to the harmful ultraviolet energy from the sun. Life

More information

Description of the MPI-Mainz H2O retrieval (Version 5.0, March 2011) Thomas Wagner, Steffen Beirle, Kornelia Mies

Description of the MPI-Mainz H2O retrieval (Version 5.0, March 2011) Thomas Wagner, Steffen Beirle, Kornelia Mies Description of the MPI-Mainz HO retrieval (Version 5., March ) Thomas Wagner, Steffen Beirle, Kornelia Mies Contact: Thomas Wagner MPI for Chemistry Joh.-Joachim-Becher-Weg 7 D-558 Mainz Germany Phone:

More information

Volcanic & Air Quality SO2 Service -- Product Information

Volcanic & Air Quality SO2 Service -- Product Information TEMIS PROMOTE SACS Volcanic & Air Quality SO2 Service Product Information Document date: 15 January 2008 Data & Service version: 103, S-07 Introduction Sulphur dioxide (SO2) enters the atmosphere as a

More information

Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II. (MICROTOPS II) sun-photometer

Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II. (MICROTOPS II) sun-photometer Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II (MICROTOPS II) sun-photometer Agossa Segla, Antonio Aguirre, and VivianaVladutescu Office of Educational Program (FAST Program)

More information

DOAS: Yesterday, Today, and Tomorrow

DOAS: Yesterday, Today, and Tomorrow 12 DOAS: Yesterday, Today, and Tomorrow The preceding two chapters presented examples of the technological development and the scientific contributions of the DOAS technique. This final chapter will give

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals to atmospheric chemical reactions. The stratospheric

More information

Detection of ship NO 2 emissions over Europe from satellite observations

Detection of ship NO 2 emissions over Europe from satellite observations Detection of ship NO 2 emissions over Europe from satellite observations Huan Yu DOAS seminar 24 April 2015 Ship Emissions to Atmosphere Reporting Service (SEARS project) Outline Introduction Shipping

More information

Arctic Oxidation Chemistry

Arctic Oxidation Chemistry 19 July 2016 Connaught Summer Institute 1 Arctic Oxidation Chemistry Connaught Summer Institute 2016 William (Bill) Simpson Geophysical Institute and Department of Chemistry, University of Alaska Fairbanks

More information

CINDI-2. Second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments. Cabauw, The Netherlands 25 August 7 October 2016

CINDI-2. Second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments. Cabauw, The Netherlands 25 August 7 October 2016 CINDI-2 Second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments Cabauw, The Netherlands 25 August 7 October 2016 Semi-blind Intercomparison Protocol Version 1.2.2 Date 13/09/2016 Authors:

More information

TEN YEARS OF NO 2 COMPARISONS BETWEEN GROUND-BASED SAOZ AND SATELLITE INSTRUMENTS (GOME, SCIAMACHY, OMI)

TEN YEARS OF NO 2 COMPARISONS BETWEEN GROUND-BASED SAOZ AND SATELLITE INSTRUMENTS (GOME, SCIAMACHY, OMI) ABSTRACT TEN YEARS OF NO 2 COMPARISONS BETWEEN GROUND-BASED SAOZ AND SATELLITE INSTRUMENTS (GOME, SCIAMACHY, OMI) Dmitry Ionov (1), Florence Goutail (1), Jean-Pierre Pommereau (1), Ariane Bazureau (1),

More information

Atmospheric Measurement Techniques

Atmospheric Measurement Techniques Atmos. Meas. Tech., 3, 751 78, 21 www.atmos-meas-tech.net/3/751/21/ doi:1.5194/amt-3-751-21 Author(s) 21. CC Attribution 3. License. Atmospheric Measurement Techniques Differential optical absorption spectroscopy

More information

Dynamics and chemistry of tropospheric bromine explosion events in the Antarctic coastal region

Dynamics and chemistry of tropospheric bromine explosion events in the Antarctic coastal region JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jd004133, 2004 Dynamics and chemistry of tropospheric bromine explosion events in the Antarctic coastal region U. Frieß, 1,2 J. Hollwedel, 1

More information

MAX-DOAS O 4 measurements: A new technique to derive information on atmospheric aerosols: 2. Modeling studies

MAX-DOAS O 4 measurements: A new technique to derive information on atmospheric aerosols: 2. Modeling studies JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005jd006618, 2006 MAX-DOAS O 4 measurements: A new technique to derive information on atmospheric aerosols: 2. Modeling studies U. Frieß, 1 P. S.

More information

Understanding the Relation between V PSC and Arctic Ozone Loss

Understanding the Relation between V PSC and Arctic Ozone Loss Understanding the Relation between V PSC and Arctic Ozone Loss Neil Harris European Ozone Research Coordinating Unit Department of Chemistry, University of Cambridge Ralph Lehmann, Markus Rex, Peter von

More information

O3M SAF VALIDATION REPORT

O3M SAF VALIDATION REPORT 08/2/2009 Page of 20 O3M SAF VALIDATION REPORT Validated products: Identifier Name Acronym O3M- Offline Total OClO OTO/OClO Authors: Name Andreas Richter Sander Slijkhuis Diego Loyola Institute Universität

More information

Evidence from Satellite Data for Export phenomena

Evidence from Satellite Data for Export phenomena Evidence from Satellite Data for Export phenomena A contribution to subproject ESPORT-E2 T. Wagner, S. Beirle, C. Frankenberg, C. v. Friedeburg, M. Grzegorski, J. Hollwedel, S. Kühl, M. F. A. Khokhar,

More information

Comparison of Results Between the Miniature FASat-Bravo Ozone Mapping Detector (OMAD) and NASA s Total Ozone Mapping Spectrometer (TOMS)

Comparison of Results Between the Miniature FASat-Bravo Ozone Mapping Detector (OMAD) and NASA s Total Ozone Mapping Spectrometer (TOMS) Comparison of Results Between the Miniature FASat-Bravo Ozone Mapping Detector (OMAD) and NASA s Total Ozone Mapping Spectrometer (TOMS) Juan A. Fernandez-Saldivar, Craig I. Underwood Surrey Space Centre,

More information