Tuning Trapped-mode Resonances in a Planar Metamaterial

Size: px
Start display at page:

Download "Tuning Trapped-mode Resonances in a Planar Metamaterial"

Transcription

1 Progress n Electromagnetics Research Smposium Proceedings, Suzhou, China, Sept , Tuning Trapped-mode Resonances in a Planar Metamaterial J. H. Shi 1, E. Plum 2, V. A. Fedotov 2, and N.. Zheludev 2 1 College of Science, Harbin Engineering Universit, Harbin 151, China 2 Optoelectronics Research Center, Universit of Southampton, Southampton SO17 1BJ, UK Abstract We demonstrate tuning of trapped-mode resonances in a smmetric planar metamaterial both eperimentall and theoreticall. B controlling the ecitation of the Fano-tpe trapped-mode resonance via the angle of incidence, its qualit factor is controlled and the resonance is red-shifted b up to 21%. 1. NTRODUCTON The asmmetric Fano resonance, which has long been known as a characteristic feature of interacting quantum sstems, has more recentl been found in plasmonic nanostructures and metamaterials [1, 2]. The steep dispersion of the Fano resonance profile promises applications in slow light [3 9], sensor [1, 11], nonlinear [12] and switching [13] applications. Fano resonances in metamaterials were first observed in arras of asmmetricall split rings [14], consisting of two wire arcs of different lengths. ncident electromagnetic waves with the electric polarization parallel to these asmmetric wires can ecite a high-q mode formed b counter-propagating currents, i.e., a so-called trapped mode resonance that is associated with an asmmetric Fano-tpe line shape [14]. The qualit factor of such trapped-mode resonances is mainl limited b losses and attempts to compensate or eliminate Joule losses using opticall-pumped gain media such as semiconductor quantum dots [15, 16] and superconducting metamaterials [17] have been reported. The tunabilit of Fano resonances is another ke issue. Tuning of a Fano resonance was observed when crossing the superconducting transition temperature of a superconducting metamaterial [17]. Most generall, the properties of Fano resonances can be controlled b the metamaterial design [14, 18 2]. However, it is etremel difficult to change the geometrical size of elements once the are fabricated. Therefore, a practical wa of controlling Fano resonances is of great importance for developing metamaterials for real applications [21]. n this paper, we report that trapped-mode Fano-tpe resonances in a planar metamaterial can be efficientl controlled via the angle of incidence, offering an eas-to-implement wa of achieving local field tunabilit in metamaterials. We demonstrate tuning of the trapped-mode qualit factor and its spectral localization eperimentall and numericall. 2. EXPERMENTAL AND SMULATED RESULTS We investigate resonance tuning in a meta-surface based on smmetricall split rings (SSR), see Fig. 1. The SSR consists of two identical wire arcs corresponding to 16 and each copper split ring has a radius of 6 mm and a width of.8 mm. Due to its high smmetr, this structure does not allow the ecitation of anti-smmetric currents at normal incidence. The metamaterial consists of a square meta-molecule arra with a period of 15 mm and an overall size of about 2 2 mm 2. t was etched from 35 µm copper cladding covering FR4 PCB substrate of 1.6 mm thickness. Detailed dimensions of the SSR unit cell are given in Fig. 1. The SSR metamaterial transmission was measured at angles of incidence from to 5 in the 9 14 GHz frequenc range. The eperiments were carried out in an anechoic chamber using broadband horn antennas (Schwarzbeck BBHA912D) equipped with dielectric lens concentrators and a vector network analzer (Agilent E8364B). The electromagnetic response of the SSR metamaterial was also simulated using a full threedimensional Mawell finite element method solver in the frequenc domain, where copper was treated as a perfect electric conductor and a permittivit ε = 4.5 i.5 was assumed for the loss dielectric substrate. For the results presented below, both the polarization of the incident wave and the ais around which the metamaterial was tilted to achieve oblique incidence were perpendicular to the SSR wires (i.e., the -ais), see Fig. 1. Figures 2 and 3 show simulated and measured transmission and reflection spectra of the SSR metamaterial as a function of the angle of incidence α. At normal incidence onto the metamaterial -polarized electromagnetic waves can onl ecite one electric dipole resonance at about 11.3 GHz.

2 568 PERS Proceedings, Suzhou, China, September 12 16, 211 Figure 1: Metamaterial structure. The angle of incidence α is measured between the incident wave vector k and the metamaterial s surface normal n. Here metamaterial transmission and reflection are studied for -polarized electromagnetic waves at oblique incidence which is realized b tilting the metamaterial around its -ais. Smmetricall split ring (SSR) unit cell. Transmission (db) Frequenc (GHz) Reflection (db) Frequenc (GHz) Figure 2: Simulated transmission and reflection of the SSR metamaterial for various angles of incidence. The resonant modes corresponding to resonances,, and are shown in Fig. 4 for α = 5. The ecitation of the trapped mode, which consists of anti-smmetric current oscillations in opposite wire arcs, is prohibited b the high eperimental smmetr in this case. However, when the metamaterial pattern is tilted around the -ais, the trapped-mode resonance appears: a narrow pass band (reflectivit minimum) which ma also be discussed in terms of electromagneticall induced transparenc (ET) [3] forms between two transmission minima. t is obvious from Figs. 2 and 3 that the SSR metamaterial ehibits large frequenc tunabilit of the trapped-mode resonance. With increasing α, the pass band becomes more pronounced and as illustrated b Fig. 3 its qualit factor measured as Q = f/ f increases to about 18 at α = 5 (peak width f =.6 GHz at 3 db below maimum). Simulations [Fig. 2] and eperimental results [Fig. 3] agree well with each other, however, the resonant feature is more pronounced in the simulations. This deviation is linked to scattering from the edges of the eperimental sample, which was assumed to be an infinite periodic structure in the simulations. Oblique incidence leads to a small dela between the ecitation of the two arcs of the SSR. This dela is sufficient to allow the ecitation of an antismmetric trapped current mode associated with transmission maimum (reflection minimum), which gives rise to a strong magnetic dipole [see Fig. 4]. n contrast to this magnetic dipole mode, resonances and are electric dipole resonances with no significant net magnetic field [see Figs. 4 and (c)]. At normal incidence, the ecited magnetic fields show perfect smmetr with respect to the mirror line of the SSR and completel cancel each other, leading to a vanishing magnetic dipole moment. The anti-smmetric current oscillations of the trapped-mode resonance are largel dominated b the -directional surface currents propagating along the wire arcs. Fig. 5 shows the frequenc dependence of the -directional surface current densit at different angles of incidence. At normal incidence, the net -component of the surface current is zero in each arc. As the angle of incidence increases, currents of equal magnitude oscillating in anti-phase in the two wire arcs appear. n particular the increasing angle of incidence results in a 1-fold enhancement of the magnitude of the ecited currents and a remarkabl large red-shift of the trapped-mode resonance, which can be tuned from 13.2 GHz to 1.4 GHz. The large magnitude of the anti-smmetric currents results from

3 Progress n Electromagnetics Research Smposium Proceedings, Suzhou, China, Sept , Transmission (db) Qualit factor sim ep Frequenc (GHz) Angle of incidence (deg) Figure 3: Measured transmission and qualit factor. Measured transmission spectra for various angles of incidence. Qualit factor for the pass band as a function of the angle of incidence (dashed line: simulation, solid line: eperiment). Magnetic field, z component [A/m] 4.5e-4 7.2e-4 5.6e-4 α =5 α =5 α =5-4.5e-4-7.2e-4.6e-4 (c) Figure 4: Snapshots of the normal magnetic field at resonances - at α = 5, compare Fig. 2. All field maps show the field amplitude at its maimum. The arrows indicate the instantaneous direction of the ecited currents and the dashed lines correspond to the SSR mirror line along the -ais. Surface current densit, component [arb. units] Figure 5: X-component of the instantaneous surface current densit as a function of frequenc at, 3 and 5 oblique incidence. the fact that an fields emitted from opposite arcs would destructivel interfere in the far-field and therefore the electromagnetic energ is trapped at the meta-surface, ensuring a high qualit factor of the pass band. 3. CONCLUSONS n summar, we eperimentall and numericall demonstrate that the ecitation of trapped-mode resonances in SSR metamaterials can be controlled via the angle of incidence. n particular, we have realized trapped mode on/off switching, tuning of the resonance qualit factor and a 21% red-shift of the trapped-mode resonance via the angle of incidence for a simple, planar model structure based on smmetricall split rings. The structure is well-suited for eisting micro-and nanofabrication technologies and tuning via the incidence angle can be easil applied anwhere in the electromagnetic spectrum. The ET-like behavior of the SSR metamaterial makes it a promising candidate

4 57 PERS Proceedings, Suzhou, China, September 12 16, 211 for slow light applications, while local energ confinement provides in interesting platform for nonlinear and gain metamaterials and the lasing spaser. ACKNOWLEDGMENT Financial support of The Leverhulme Trust, The Roal Societ and the UK s Engineering and Phsical Sciences Research Council, UK is acknowledged. The author J. H. Shi also thanks for support provided b the Natural Science Foundation of Heilongjiang Province in China under grant LC216 and in part b the Special Foundation for Basic Scientific Research of Harbin Engineering Universit under grant HEUCF and HEUCF REFERENCES 1. Fano, U., Effects of configuration interaction on intensities and phase shifts, Phs. Rev., Vol. 124, , Luk anchuk, B., N.. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater., Vol. 9, , Papasimakis, N., V. A. Fedotov, N.. Zheludev, and S. L. Prosvirnin, Metamaterial analog of electromagneticall induced transparenc, Phs. Rev. Lett., Vol. 11, No. 25, 25393, Zhang, S., D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Plasmon-induced transparenc in metamaterials, Phs. Rev. Lett., Vol. 11, No. 4, 4741, Tassin, P., L. Zhang, T. Koschn, E. N. Economou, and C. M. Soukoulis, Low-loss metamaterials based on classical electromagneticall induced transparenc, Phs. Rev. Lett., Vol. 12, No. 5, 5391, Chiam, S. Y., R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, Analogue of electromagneticall induced transparenc in a terahertz metamaterial, Phs. Rev. B, Vol. 8, No. 15, 15313, Liu, N., L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, Plasmonic analogue of electromagneticall induced transparenc at the Drude damping limit, Nat. Mater., Vol. 8, No. 9, , Papasimakis, N. and N.. Zheludev, Metamaterial-induced transparenc, Opt. Photonics News, Vol. 2, No. 1, 22 27, Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phs., Vol. 82, , Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, Planar metamaterial analogue of electromagneticall induced transparenc for plasmonic sensing, Nano Lett., Vol. 1, No. 4, , Lahiri, B., A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, Asmmetric split ring resonators for optical sensing of organic materials, Opt. Epress, Vol. 17, No. 2, , Nikolaenko, A. E., F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. DiFabrizio, and N.. Zheludev, Carbon nanotubes in a photonic metamaterial, Phs. Rev. Lett., Vol. 14, 15392, Sámson, Z. L., K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. Di- Fabrizio, D. W. Hewak, and N.. Zheludev, Metamaterial electro-optic switch of nanoscale thickness, Appl. Phs. Lett., Vol. 96. No. 14, 14315, Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N.. Zheludev, Sharp trappedmode resonances in planar metamaterials with a broken structural smmetr, Phs. Rev. Lett., Vol. 99, No. 14, 14741, Plum, E., V. A. Fedotov, P. Kuo, D. P. Tsai, and N.. Zheludev, Towards the lasing spaser: Controlling metamaterial optical response with semiconductor quantum dots, Opt. Epress, Vol. 17, No. 1, , Tanaka, K., E. Plum, J. Y. Ou, T. Uchino, and N.. Zheludev, Multifold enhancement of quantum dot luminescence in plasmonic metamaterials, Phs. Rev. Lett., Vol. 15, No. 22, 22743, Fedotov, V. A., A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N.. Zheludev, Temperature control of Fano resonances and transmission in superconducting metamaterials, Opt. Epress, Vol. 18, , 21.

5 Progress n Electromagnetics Research Smposium Proceedings, Suzhou, China, Sept , Singh, R.,. A.. Al-Naib, M. Koch, and W. L. Zhang, Sharp Fano resonances in THz metamaterials, Opt. Epress, Vol. 19, , Xiao, X., J. Wu, F. Miamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, Fano effect of metamaterial resonance in terahertz etraordinar transmission, Appl. Phs. Lett., Vol. 98, No. 1, 11911, Plum, E., K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N.. Zheludev, A combinatorial approach to metamaterials discover, J. Opt., Vol. 13, 5512, Lu, Y. H., J. Y. Rhee, W. H. Jang, and Y. P. Lee, Active manipulation of plasmonic electromagneticall-induced transparenc based on magnetic plasmon resonance, Opt. Epress, Vol. 18, , 21.

Temperature control of Fano resonances and transmission in superconducting metamaterials

Temperature control of Fano resonances and transmission in superconducting metamaterials Temperature control of Fano resonances and transmission in superconducting metamaterials V.A. Fedotov 1,*, A. Tsiatmas 1, J. H. Shi 1,4, R. Buckingham 2, P. de Groot 2, Y. Chen 3, S. Wang 5, and N.I. Zheludev

More information

Multiple Fano Resonances Structure for Terahertz Applications

Multiple Fano Resonances Structure for Terahertz Applications Progress In Electromagnetics Research Letters, Vol. 50, 1 6, 2014 Multiple Fano Resonances Structure for Terahertz Applications Hadi Amarloo *, Daniel M. Hailu, and Safieddin Safavi-Naeini Abstract A new

More information

Plasmon-induced transparency in twisted Fano terahertz metamaterials

Plasmon-induced transparency in twisted Fano terahertz metamaterials Plasmon-induced transparency in twisted Fano terahertz metamaterials Yingfang Ma, 1 Zhongyang Li, 1 Yuanmu Yang, 1 Ran Huang, Ranjan Singh, 3 Shuang Zhang, 4 Jianqiang Gu, 1 Zhen Tian, 1 Jiaguang Han,

More information

Symmetry breaking and strong coupling in planar optical metamaterials

Symmetry breaking and strong coupling in planar optical metamaterials Symmetry breaking and strong coupling in planar optical metamaterials Koray Aydin 1*, Imogen M. Pryce 1, and Harry A. Atwater 1,2 1 Thomas J. Watson Laboratories of Applied Physics California Institute

More information

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots Towards the Lasing Spaser: Controlling Metamaterial Optical Response with Semiconductor Quantum Dots E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev,, Optoelectronics Research Centre, University

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Metamaterial-Induced

Metamaterial-Induced Metamaterial-Induced Sharp ano Resonances and Slow Light Nikitas Papasimakis and Nikolay I. Zheludev Inspired by the study of atomic resonances, researchers have developed a new type of metamaterial. Their

More information

Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial

Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial Vol. 25, No. 9 Ma 207 OPTICS EXPRESS 0484 Plasmon induced transparenc effect through alternatel coupled resonators in terahertz metamaterial K OIJAM M ONIKA D EVI,,* A MARENDRA K. S ARMA, D IBAKAR R OY

More information

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell Microwave Science and Technology Volume 2, Article ID 3688, 6 pages doi:.55/2/3688 Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit

More information

Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences

Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences Progress In Electromagnetics Research C, Vol. 47, 95, 24 Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences Saeid Jamilan, *, Mohammad N. Azarmanesh, and

More information

Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer

Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer Zhenzhen Liu Jun-Jun Xiao Qiang Zhang Xiaoming Zhang Keyu Tao Abstract: We report collective

More information

Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators

Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators Progress In Electromagnetics Research C, Vol. 49, 141 147, 2014 Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators Wenshan Yuan 1, Honglei

More information

Tuning of superconducting niobium nitride terahertz metamaterials

Tuning of superconducting niobium nitride terahertz metamaterials Tuning of superconducting niobium nitride terahertz metamaterials Jingbo Wu, Biaobing Jin,* Yuhua Xue, Caihong Zhang, Hao Dai, Labao Zhang, Chunhai Cao, Lin Kang, Weiwei Xu, Jian Chen and Peiheng Wu Research

More information

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity 90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity Yuqian Ye 1 and Sailing He 1,2,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory

More information

Asymmetric planar terahertz metamaterials

Asymmetric planar terahertz metamaterials Asymmetric planar terahertz metamaterials Ranjan Singh, 1,2,* Ibraheem A. I. Al-Naib, 3 Martin Koch, 3 and Weili Zhang 1 1 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater,

More information

Supplementary Material for. Resonant Transparency and Non-Trivial Excitations in Toroidal Metamaterials

Supplementary Material for. Resonant Transparency and Non-Trivial Excitations in Toroidal Metamaterials Supplementary Material for Resonant Transparency and Non-Trivial Excitations in Toroidal Metamaterials V. A. Fedotov 1, A. V. Rogacheva 1, V. Savinov 1, D. P. Tsai 2,3, N. I. Zheludev 1, 4 1 Optoelectronics

More information

Low Loss and High Transmission Electromagnetically Induced Transparency (EIT) Effect in Cylindrical Through-Hole Dielectric Cubes

Low Loss and High Transmission Electromagnetically Induced Transparency (EIT) Effect in Cylindrical Through-Hole Dielectric Cubes Progress In Electromagnetics Research M, Vol. 76, 207 215, 2018 Low Loss and High Transmission Electromagnetically Induced Transparency (EIT) Effect in Cylindrical Through-Hole Dielectric Cubes Lei Zhu

More information

High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures

High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures Jie Shu, 1 Weilu Gao, 1 Kimberly Reichel, 1 Daniel Nickel, 1 Jason Dominguez, 2 Igal Brener, 2,3 Daniel M. Mittleman,

More information

arxiv: v1 [physics.optics] 6 Jul 2018

arxiv: v1 [physics.optics] 6 Jul 2018 arxiv:1807.02240v1 [physics.optics] 6 Jul 2018 Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal-graphene metamaterial Tingting Liu 1, Huaixing Wang 1, Yong

More information

From Metamaterials to Metadevices

From Metamaterials to Metadevices From Metamaterials to Metadevices Nikolay I. Zheludev Optoelectronics Research Centre & Centre for Photonic Metamaterials University of Southampton, UK www.nanophotonics.org.uk 13 September 2012, Southampton

More information

Strong coupling between mid-infrared localized plasmons and phonons

Strong coupling between mid-infrared localized plasmons and phonons Strong coupling between mid-infrared localized plasmons and phonons Weiwei Wan, 1 Xiaodong Yang, 1,2 and Jie Gao 1,* 1 Department of Mechanical and Aerospace Engineering, Missouri University of Science

More information

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer Menglin. L. N. Chen 1, Li Jun Jiang 1, Wei E. I. Sha 1 and Tatsuo Itoh 2 1 Dept. Of EEE, The University Of Hong Kong 2 EE Dept.,

More information

Direct dark mode excitation by symmetry matching of a single-particle based. metasurface

Direct dark mode excitation by symmetry matching of a single-particle based. metasurface Direct dark mode excitation by symmetry matching of a single-particle based metasurface Shah Nawaz BUROKUR 1,2,a), Anatole LUPU 1,3, and André de LUSTRAC 1,2 Affiliations: 1 IEF, Univ. Paris-Sud, CNRS,

More information

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

A Broadband Flexible Metamaterial Absorber Based on Double Resonance Progress In Electromagnetics Research Letters, Vol. 46, 73 78, 2014 A Broadband Flexible Metamaterial Absorber Based on Double Resonance ong-min Lee* Abstract We present a broadband microwave metamaterial

More information

Coherent perfect absorber and laser in purely imaginary conjugate metamaterials

Coherent perfect absorber and laser in purely imaginary conjugate metamaterials Coherent perfect absorber and laser in purel imaginar conjugate metamaterials Yangang Fu 1,, Yanan Cao 1, Steven A. Cummer 3, Yadong Xu 1, and Huanang Chen1, 1.College of Phsics, Optoelectronics and Energ,

More information

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China Progress In Electromagnetics Research, PIER 101, 231 239, 2010 POLARIZATION INSENSITIVE METAMATERIAL ABSORBER WITH WIDE INCIDENT ANGLE B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department

More information

Johnson, N.P. and Khokhar, A.Z. and Chong, H.M.H. and De La Rue, R.M. and McMeekin, S. (2006) Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator

More information

Mechanism of the metallic metamaterials coupled to the gain material

Mechanism of the metallic metamaterials coupled to the gain material Mechanism of the metallic metamaterials coupled to the gain material Zhixiang Huang, 1,2 Sotiris Droulias, 3* Thomas Koschny, 1 and Costas M. Soukoulis 1,3 1 Department of Physics and Astronomy and Ames

More information

High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li

High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li International Power, Electronics and Materials Engineering Conference (IPEMEC 215) High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li Engineering University

More information

Coupled-resonator-based metamaterials

Coupled-resonator-based metamaterials REVIEW PAPER IEICE Electronics Express, Vol.9, No.xx, 1 14 Coupled-resonator-based metamaterials Masao Kitano a), Yasuhiro Tamayama, and Toshihiro Nakanishi Department of Electronic Science and Engineering,

More information

An efficient way to reduce losses of left-handed metamaterials

An efficient way to reduce losses of left-handed metamaterials An efficient way to reduce losses of left-handed metamaterials Jiangfeng Zhou 1,2,, Thomas Koschny 1,3 and Costas M. Soukoulis 1,3 1 Ames Laboratory and Department of Physics and Astronomy,Iowa State University,

More information

Random terahertz metamaterials

Random terahertz metamaterials Random terahertz metamaterials Ranjan Singh, 1 Xinchao Lu, 1 Jianqiang Gu, 1,2 Zhen Tian, 1,2 and Weili Zhang 1,a) 1 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater,

More information

Wavevector Selective Metasurfaces and Tunnel Vision Filters

Wavevector Selective Metasurfaces and Tunnel Vision Filters Wavevector Selective Metasurfaces and Tunnel Vision Filters Vassili. A. Fedotov 1,*, Jan Wallauer, Markus Walther, Mauro Perino 1,3, Nikitas Papasimakis 1 and Nikolay I. Zheludev 1,4 1 Optoelectronics

More information

Negative refractive index response of weakly and strongly coupled optical metamaterials.

Negative refractive index response of weakly and strongly coupled optical metamaterials. Negative refractive index response of weakly and strongly coupled optical metamaterials. Jiangfeng Zhou, 1 Thomas Koschny, 1, Maria Kafesaki, and Costas M. Soukoulis 1, 1 Ames Laboratory and Department

More information

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain C. Zhu 1, H. Liu 1,*, S. M. Wang 1, T. Li 1, J. X. Cao 1, Y. J. Zheng 1, L. Li 1, Y. Wang 1, S. N. Zhu

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

Impact of substrate etching on plasmonic elements and metamaterials: preventing red shift and improving refractive index sensitivity

Impact of substrate etching on plasmonic elements and metamaterials: preventing red shift and improving refractive index sensitivity Vol. 26, No. 3 5 Feb 2018 OPTICS EXPRESS 3674 Impact of substrate etching on plasmonic elements and metamaterials: preventing red shift and improving refractive index sensitivity YUTO MORITAKE1 AND TAKUO

More information

Active, Switchable and Nonlinear Photonic Metamaterials

Active, Switchable and Nonlinear Photonic Metamaterials Active, Switchable and Nonlinear Photonic Metamaterials Kevin F. MacDonald, and Nikolay, I. Zheludev Optoelectronics Research Centre & Centre for Photonic Metamaterials University of Southampton, UK Centre

More information

A Random Access Reconfigurable Metamaterial and a Tunable Flat Lens

A Random Access Reconfigurable Metamaterial and a Tunable Flat Lens A Random Access Reconfigurable Metamaterial and a Tunable Flat Lens W. M. Zhu 1, Q. H. Song 2, A. Q. Liu 1, D. P. Tsai 3, H. Cai 4, Z. X. Shen 1, R. F. Huang 5, S. K. Ting 5, Q. X. Liang 2, H. Z. Liu 2,

More information

Graphene in a photonic metamaterial

Graphene in a photonic metamaterial Graphene in a photonic metamaterial Nikitas Papasimakis, 1 Zhiqiang Luo, 2 Ze Xiang Shen, 2 Francesco De Angelis, 3,4 Enzo Di Fabrizio, 3,4 Andrey E. Nikolaenko, 1 and Nikolay I. Zheludev 1 * 1 Optoelectronics

More information

Supporting Information

Supporting Information Supporting Information Light emission near a gradient metasurface Leonard C. Kogos and Roberto Paiella Department of Electrical and Computer Engineering and Photonics Center, Boston University, Boston,

More information

Electromagnetic Enhancement in Lossy Optical. Transition Metamaterials

Electromagnetic Enhancement in Lossy Optical. Transition Metamaterials Electromagnetic Enhancement in Loss Optical Transition Metamaterials Irene Mozjerin 1, Tolana Gibson 1, Edward P. Furlani 2, Ildar R. Gabitov 3, Natalia M. Litchinitser 1* 1. The State Universit of New

More information

Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators

Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators Vol. 7, No. 6 1 Jun 2017 OPTICAL MATERIALS EXPRESS 1950 Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators ZHENYU ZHAO,1,* XIAOBO ZHENG,1

More information

Suppression of radiation loss by hybridization effect in two coupled split-ring resonators

Suppression of radiation loss by hybridization effect in two coupled split-ring resonators Suppression of radiation loss by hybridization effect in two coupled split-ring resonators T. Q. Li, 1 H. Liu, 1, * T. Li, 1 S. M. Wang, 1 J. X. Cao, 1 Z. H. Zhu, 1 Z. G. Dong, 1 S. N. Zhu, 1 and X. Zhang

More information

arxiv: v1 [physics.optics] 15 Oct 2012

arxiv: v1 [physics.optics] 15 Oct 2012 Enhancement of quantum dot luminescence in all-dielectric metamaterial Vyacheslav V. Khardikov and Sergey L. Prosvirnin Institute of Radioastronomy, National Academy of Sciences of Ukraine, arxiv:1210.4146v1

More information

Optical magnetic response in three-dimensional metamaterial of upright plasmonic metamolecules

Optical magnetic response in three-dimensional metamaterial of upright plasmonic metamolecules Optical magnetic response in three-dimensional metamaterial of upright plasmonic metamolecules Wei Ting Chen, 1 Chen Jung Chen, 1 Pin Chieh Wu, 1 Shulin Sun, 1,2 Lei Zhou, 3 Guang-Yu Guo, 1,4 Chinh Ting

More information

Quantum optics and metamaterials. Janne Ruostekoski Mathematics & Centre for Photonic Metamaterials University of Southampton

Quantum optics and metamaterials. Janne Ruostekoski Mathematics & Centre for Photonic Metamaterials University of Southampton Quantum optics and metamaterials Janne Ruostekoski Mathematics & Centre for Photonic Metamaterials University of Southampton Motivation Quantum optics a well-developed field for studying interaction of

More information

Towards optical left-handed metamaterials

Towards optical left-handed metamaterials FORTH Tomorrow: Modelling approaches for metamaterials Towards optical left-handed metamaterials M. Kafesaki, R. Penciu, Th. Koschny, P. Tassin, E. N. Economou and C. M. Soukoulis Foundation for Research

More information

Supplementary Information for. Fano resonance Rabi splitting of surfaces plasmons

Supplementary Information for. Fano resonance Rabi splitting of surfaces plasmons Supplementary Information for Fano resonance Rabi splitting of surfaces plasmons Zhiguang Liu, 1,4,# Jiafang Li, 1,#,* Zhe Liu, 1,# Wuxia Li, 1 Junjie Li, 1 Changzhi Gu, 1,2 and Zhi-Yuan Li 3,1,* 1 Institute

More information

Sub-wavelength focusing meta-lens

Sub-wavelength focusing meta-lens Sub-wavelength focusing meta-lens Tapashree Roy, 1 Edward T. F. Rogers, 1 and Nikolay I. Zheludev 1,2,* 1 Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton,

More information

Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet

Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet Hanif Kazerooni 1, Amin Khavasi, 2,* 1. Chemical Engineering Faculty, Amirkabir University of Technology

More information

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China Progress In Electromagnetics Research C, Vol. 33, 259 267, 2012 A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS B. Li 1, *, L. X. He 2, Y. Z. Yin 1, W. Y. Guo 2, 3, and

More information

Gradient-index metamaterials and spoof surface plasmonic waveguide

Gradient-index metamaterials and spoof surface plasmonic waveguide Gradient-index metamaterials and spoof surface plasmonic waveguide Hui Feng Ma State Key Laboratory of Millimeter Waves Southeast University, Nanjing 210096, China City University of Hong Kong, 11 October

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

Periodic Structures in FDTD

Periodic Structures in FDTD EE 5303 Electromagnetic Analsis Using Finite Difference Time Domain Lecture #19 Periodic Structures in FDTD Lecture 19 These notes ma contain coprighted material obtained under fair use rules. Distribution

More information

Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency

Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency Progress In Electromagnetics Research Letters, Vol. 71, 91 96, 2017 Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency Tuanhui Feng *,HongpeiHan,LiminWang,andFeiYang Abstract A

More information

Characteristics of Surface Plasmon Polaritons with Effective Permittivity

Characteristics of Surface Plasmon Polaritons with Effective Permittivity Journal of Optics Applications December 5, Volume 4, Issue, PP.7-4 Characteristics of Surface Plasmon Polaritons with ffective Permittivit Weiping Mao, eqing uang. School of Mechanical ngineering, Jiangsu

More information

Experimental Study of the Field Structure of the Surface Electromagnetic Wave in an Anisotropically Conducting Tape

Experimental Study of the Field Structure of the Surface Electromagnetic Wave in an Anisotropically Conducting Tape ISSN -9, Journal of Communications Technolog and Electronics,, Vol. 58, No., pp. 8. Pleiades Publishing, Inc.,. Original Russian Tet R.B. Vaganov, I.P. Korshunov, E.N. Korshunova, A.D. Oleinikov,, published

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

Southampton

Southampton Metamaterials @ Southampton EPSRC Programme on Nanostructured Photonic Metamaterials + 21 satellite grants 2010-2016 EPSRC Programme on The Physics and Technology of Metadevices and Metasystems 2015-2021

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

arxiv: v1 [physics.app-ph] 14 Mar 2019

arxiv: v1 [physics.app-ph] 14 Mar 2019 arxiv:1903.06074v1 [physics.app-ph] 14 Mar 2019 Analysis of terahertz wave nonlinear reflection by an array of double silicon elements placed on a metal substrate N V Sydorchuk 1, S L Prosvirnin 1,2, Y

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Large-scale lithography-free metasurface with spectrally tunable super

More information

Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial

Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial Prakash Pitchappa, Manukumara Manjappa, Chong Pei Ho, Ranjan Singh, Navab Singh, and Chengkuo Lee* Electromagnetic

More information

Strong plasmon coupling between two gold nanospheres on a gold slab

Strong plasmon coupling between two gold nanospheres on a gold slab Strong plasmon coupling between two gold nanospheres on a gold slab H. Liu 1, *, J. Ng 2, S. B. Wang 2, Z. H. Hang 2, C. T. Chan 2 and S. N. Zhu 1 1 National Laboratory of Solid State Microstructures and

More information

History of photonic crystals and metamaterials. However, many serious obstacles must be overcome before the impressive possibilities

History of photonic crystals and metamaterials. However, many serious obstacles must be overcome before the impressive possibilities TECHNICAL NOTEBOOK I back to basics BACK TO BASICS: History of photonic crystals and metamaterials Costas M. SOUKOULIS 1,2 1 Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa,

More information

A POLARIZATION-INDEPENDENT WIDE-ANGLE DUAL DIRECTIONAL ABSORPTION METAMATERIAL AB- SORBER

A POLARIZATION-INDEPENDENT WIDE-ANGLE DUAL DIRECTIONAL ABSORPTION METAMATERIAL AB- SORBER Progress In Electromagnetics Research M, Vol. 27, 191 201, 2012 A POLARIZATION-INDEPENDENT WIDE-ANGLE DUAL DIRECTIONAL ABSORPTION METAMATERIAL AB- SORBER Lei Lu 1, *, Shaobo Qu 1, Hua Ma 1, Fei Yu 1, Song

More information

Configurable metamaterial absorber with pseudo wideband spectrum

Configurable metamaterial absorber with pseudo wideband spectrum Configurable metamaterial absorber with pseudo wideband spectrum Weiren Zhu, 1, Yongjun Huang, 2 Ivan D. Rukhlenko, 1 Guangjun Wen, 2 and Malin Premaratne 1 1 Advanced Computing and Simulation Laboratory

More information

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 551 Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Y. Y. Li, P. F. Gu, M. Y. Li,

More information

Dual-band Circular Polarizer and Linear Polarization Transformer Based on Twisted Split-Ring Structure Asymmetric Chiral Metamaterial

Dual-band Circular Polarizer and Linear Polarization Transformer Based on Twisted Split-Ring Structure Asymmetric Chiral Metamaterial Progress In Electromagnetics Research, Vol. 145, 263 272, 2014 Dual-band Circular Polarizer and Linear Polarization Transformer Based on Twisted Split-Ring Structure Asymmetric Chiral Metamaterial Yong

More information

Two-Photon Fabrication of Three-Dimensional Metallic Nanostructures for Plasmonic Metamaterials

Two-Photon Fabrication of Three-Dimensional Metallic Nanostructures for Plasmonic Metamaterials Two-Photon Fabrication of Three-Dimensional Metallic Nanostructures for Plasmonic Metamaterials Atsushi ISHIKAWA 1 and Takuo TANAKA 1,2 1- Metamaterials Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198,

More information

Enhancing and suppressing radiation with some permeability-near-zero structures

Enhancing and suppressing radiation with some permeability-near-zero structures Enhancing and suppressing radiation with some permeability-near-zero structures Yi Jin 1,2 and Sailing He 1,2,3,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical

More information

sensors ISSN

sensors ISSN Sensors 00, 0, 4373-4380; doi:0.3390/s00504373 Article OPEN ACCESS sensors ISSN 44-80 www.mdpi.com/journal/sensors Polarization Dependence Suppression of Optical Fiber Grating Sensor in a -Shifted Sagnac

More information

limitations J. Zhou, E. N. Economou and C. M. Soukoulis

limitations J. Zhou, E. N. Economou and C. M. Soukoulis Mesoscopic Physics in Complex Media, 01011 (010) DOI:10.1051/iesc/010mpcm01011 Owned by the authors, published by EDP Sciences, 010 Optical metamaterials: Possibilities and limitations M. Kafesaki, R.

More information

Singular Nano-Photonics: hydrodynamics-inspired light trapping & routing Svetlana V. Boriskina

Singular Nano-Photonics: hydrodynamics-inspired light trapping & routing Svetlana V. Boriskina Singular Nano-Photonics: hydrodynamics-inspired light trapping & routing Svetlana V. Boriskina Department of Mechanical Engineering Massachusetts Institute of Technology 2 Cat. F5 tornado (Manitoba, Canada,

More information

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Reading: Saleh and Teich Chapter 7 Novotny and Hecht Chapter 11 and 12 1. Photonic Crystals Periodic photonic structures 1D 2D 3D Period a ~

More information

Active tuning of spontaneous emission by. Mie-resonant dielectric metasurfaces: Supporting. Information

Active tuning of spontaneous emission by. Mie-resonant dielectric metasurfaces: Supporting. Information Active tuning of spontaneous emission b Mie-resonant dielectric metasurfaces: Supporting Information Justus Bohn, Tobias Bucher, Katie. Chong, Andrei Komar, Duk-Yong Choi, Dragomir N. Neshev, Yuri S. Kivshar,

More information

Lab 10: Polarization Phy248 Spring 2009

Lab 10: Polarization Phy248 Spring 2009 Lab 10: Polarization Ph248 Spring 2009 Name Section This sheet is the lab document our TA will use to score our lab. It is to be turned in at the end of lab. To receive full credit ou must use complete

More information

Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators

Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators Zhaofeng Li, 1,3,* Semih Cakmakyapan, 1 Bayram Butun, 1 Christina Daskalaki, 2 Stelios Tzortzakis, 2,4

More information

Magneto-optically-controlled surface plasmon excitation

Magneto-optically-controlled surface plasmon excitation Magneto-opticall-controlled surface plasmon excitation Dmitr A. Bkov, 1,,a) and Leonid L. Doskolovich 1, 1 Image Processing Sstems Institute of the Russian Academ of Sciences, Molodogvardeskaa 151, 443001

More information

GHz magnetic response of split ring resonators

GHz magnetic response of split ring resonators Photonics and Nanostructures Fundamentals and Applications 2 (2004) 155 159 www.elsevier.com/locate/photonics GHz magnetic response of split ring resonators Lei Zhang a, G. Tuttle a, C.M. Soukoulis b,

More information

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR LC45-summer, 1 1. 1.1, 7.1, 7., 7.5, 7.11, 7.1, 7.15, 7.1 1.1. TIR and FTIR a) B considering the electric field component in medium B in Figure 1. (b), eplain how ou can adjust the amount of transmitted

More information

arxiv: v1 [cond-mat.supr-con] 8 Sep 2010

arxiv: v1 [cond-mat.supr-con] 8 Sep 2010 Tuning the Resonance in High Temperature Superconducting Terahertz Metamaterials Hou-Tong Chen, Hao Yang, Ranjan Singh, John F. O Hara, Abul K. Azad, Stuart A. Trugman, Q. X. Jia, and Antoinette J. Taylor

More information

Subcell misalignment in vertically cascaded metamaterial absorbers

Subcell misalignment in vertically cascaded metamaterial absorbers Subcell misalignment in vertically cascaded metamaterial absorbers Qin Chen, 1,2,* Fuhe Sun, 1 and Shichao Song 1 1 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics,

More information

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL. Title Polarization characteristics of photonic crystal fib Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori CitationOptics Express, 19(4): 3799-3808 Issue Date 2011-02-14 Doc URL http://hdl.handle.net/2115/45257

More information

File Name: Supplementary Information Description: Supplementary Figures, Supplementary Table, Supplementary Notes and Supplementary References

File Name: Supplementary Information Description: Supplementary Figures, Supplementary Table, Supplementary Notes and Supplementary References Description of Supplementary Files File Name: Supplementary Information Description: Supplementary Figures, Supplementary Table, Supplementary Notes and Supplementary References Supplementary Figure 1.

More information

Broadband Absorption in the Cavity Resonators with Changed Order

Broadband Absorption in the Cavity Resonators with Changed Order Broadband Absorption in the Cavity Resonators with Changed Order Agata Roszkiewicz Institute of Fundamental Technological Research, Polish Academy of Sciences, Adolfa Pawińskiego 5b, 02-106 Warsaw, Poland

More information

Design and characterization of broadband acoustic composite metamaterials

Design and characterization of broadband acoustic composite metamaterials Design and characterization of broadband acoustic composite metamaterials Bogdan-Ioan Popa* and Steven A. Cummer Department of Electrical and Computer Engineering, Duke Universit, Durham, North Carolina

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Lab 9: Polarization Phy208 Spring 2008

Lab 9: Polarization Phy208 Spring 2008 Lab 9: Polarization Ph208 Spring 2008 Name Section This sheet is the lab document our TA will use to score our lab. It is to be turned in at the end of lab. To receive full credit ou must use complete

More information

Dynamically Tunable Electromagnetically Induced Transparency in Graphene and Split-Ring Hybrid Metamaterial

Dynamically Tunable Electromagnetically Induced Transparency in Graphene and Split-Ring Hybrid Metamaterial DOI 10.1007/s11468-017-0530-4 Dynamically Tunable Electromagnetically Induced Transparency in Graphene and Split-Ring Hybrid Metamaterial Zhong Huang 1 & Yunyun Dai 2 & Guangxu Su 1 & Zhendong Yan 1 &

More information

DoD MURI on Metamaterials

DoD MURI on Metamaterials DoD MURI on metamaterials filed as C:\word\serc\darpa\JBP_teleconf_070303.doc at 7 March 2003 page 1 of 11 DoD MURI on Metamaterials Report of the Imperial College London group to the 7 March teleconference

More information

Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film Invited Paper Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film Li Huang 1*, Beibei Zeng 2, Chun-Chieh Chang 2 and Hou-Tong Chen 2* 1 Physics

More information

DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE

DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE Progress In Electromagnetics Research M, Vol. 31, 59 69, 2013 DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE Fang Fang

More information

Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence

Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence Sher-Yi Chiam 1,, Andrew A. Bettiol 1, Mohammed Bahou 2, JiaGuang Han 1, Herbert O. Moser 2 and Frank

More information

Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell

Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell O. Buchnev, 1,2 J. Y. Ou, 1,2 M. Kaczmarek, 3 N. I. Zheludev, 1,2 and V. A. Fedotov 1,2,* 1 Optoelectronics Research

More information

Progress In Electromagnetics Research M, Vol. 20, 81 94, 2011

Progress In Electromagnetics Research M, Vol. 20, 81 94, 2011 Progress In Electromagnetics Research M, Vol. 2, 8 94, 2 PHOTONIC BAND STRUCTURES AND ENHANCE- MENT OF OMNIDIRECTIONAL REFLECTION BANDS BY USING A TERNARY D PHOTONIC CRYSTAL IN- CLUDING LEFT-HANDED MATERIALS

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

High transmittance left-handed materials involving symmetric split-ring resonators

High transmittance left-handed materials involving symmetric split-ring resonators Photonics and Nanostructures Fundamentals and Applications 5 (2007) 149 155 www.elsevier.com/locate/photonics High transmittance left-handed materials involving symmetric split-ring resonators N. Katsarakis

More information

Homogenous Optic-Null Medium Performs as Optical Surface Transformation

Homogenous Optic-Null Medium Performs as Optical Surface Transformation Progress In Electromagnetics Research, Vol. 151, 169 173, 2015 Homogenous Optic-Null Medium Performs as Optical Surface Transformation Fei Sun 1 and Sailing He1, 2, * Abstract An optical surface transformation

More information