NEO Sample Return Mission

Size: px
Start display at page:

Download "NEO Sample Return Mission"

Transcription

1 Cannes, 5 Juin 2008 M.A. Barucci & M. Yoshikawa MARCO POLO NEO Sample Return Mission This mission, prepared by a joint European Japanese team, is supported by more than 450 confirmed scientists.

2 Joint Assessment Study (ESA-JAXA) ESA Science Team: M.A. Barucci (LESIA, Paris Observatory, F), M. Yoshikawa (JSPEC/JAXA, J), D. Koschny (ESTEC/ESA, NL), H. Boehnhardt (MPI, Lindau, D), J.R. Brucato (INAF-OAC, Naples, I), M. Coradini (ESA, Paris, F), E. Dotto (INAF-OAR, Rome, I), I.A. Franchi (Open University, UK), S.F. Green (Open University, UK), F), J.-L. Josset (SPACE-X, CH), P. Michel (OCA, Nice, F), J. Kawagushi (JSPEC/JAXA, J), K. Muinonen (Univ. Helsinki Observatory, FI), J. Oberst (DLR, Berlin, D), H. Yano (JSPEC/JAXA, J) and R. Binzel (MIT, USA)

3 A NEO-SR mission is in the priority of CV 1. What are the conditions for Planet formation and the emergence of Life? 2. How does the Solar System work?

4 In the early solar nebula, the dust accreted to form planetesimals and the planetesimals accreted to form planetary embryos. In the asteroid belt this process was stopped when Jupiter formed. CAIs?? D C Chondrules Eucrites Differentiation HED differentiation Planetesimal Differentiation Planetary Accretion Mesosiderites Earth Mars Angrites Pallasites

5 Asteroids and Comets in the Inner Solar System NEO IEO SOURCE

6 Origin of the Life: The planets of the inner Solar System experienced an intense influx of (organic-rich) cometary and asteroidal material for several hundred million years after they formed. The earliest evidence for life on Earth coincides with the decline of this enhanced bombardment. The complex organics in this influx appears to contain a left-handedness - offering a tantalising possibility that they may be related to the origin of life.

7 Main questions: 1) What were the initial conditions and evolution history of the solar nebula? 2) Which were the properties of the building blocks of the terrestrial planets? 3) How did major events (e.g. agglomeration, heating,.. ) influenced the history of planetesimals? 4) Do primitive classe objects contain presolar material yet unknown in meteoritic samples? 5) What are the organics in primitive materials? 6) How NEO organics can shed light on the origin of molecules necessary for life? 7) What is the role of NEO impacts in the origin and evolution of life on Earth?

8 The accessibility of NEOs NEA ACCESSIBILITY H-PLOT Sample Update 02/2007: 3238 objects with H<22 PHAETHON EPHAISTOS P/ENCKE delta-v (km/sec) Mercury EROS 2001SG FG3 2002AT4 OLJATO Asteroid Main Belt Jupiter WILSON-HARRINGTON 4 2 Venus 1993JU3 Mars ITOKAWA NEA population (H<22) short-period comets dormant comets NEAs visited SR mission targets 0 EARTH aphelion distance (AU)

9 Baseline Marco Polo to 4015 Wilson-Harrington (C type) Launcher : Soyuz Fregat (indirect injection):

10 Other possible scenarios, all involving Soyuz Fregat

11 Target: 1989 UQ (C type) Launch, 22/09/2017 Earth swing by, 20/09/2018 Venus swing by, 05/03/2019 Arrival, 20/12/2020 Science operations 1.62 years Departure, 18/07/2022 Venus swing by, 25/06/2023 Earth arrival, 19/11/2023 Total mission duration: 6.2 years

12 MARCO POLO Proposal Mission scenario mapping cruise phase spacecraft ERC sampling system landing and sampling propulsion module Lander NEO science phase remote sensing package Launch in situ analyses TTC relay re-entry phase Earth return phase Operations

13 Scientific objectives of MARCO POLO What were the initial conditions and evolution history of the solar nebula? Do primitive classe objects contain presolar material yet unknown in meteoritic samples? Which were the properties of the building blocks of terrestrial planets? Composition of primitive material What was the role of NEO impacts in the origin of life? How did composition vary with geological context? How did space weathering and collisions affect NEO composition? Interior Elemental/Isotopical composition Nature of organics Mineralogy Surface morphology Mass, gravity density Internal structure Sample collection & return Orbiter Lander

14 Hi-Res Camera Radio Science V-NIR Spectrometer MIR Spectrometer γ-rays Spectrometer X-rays Spectrometer & Solar Monitor SCIENCE Dust Environment Orbital & Rotational Evolution Morphology, Topography Macroscale Dust & Regolith Size,Shape,Mass,Gravity,Density Internal Structure, Stratigraphy Macroscale Mineralogy Macroscale Elemental composition Space weathering Detailed stratigraphy Microscale analyses Dust Monitor Laser Altimeter Radar Neutron Counter Neutral Particle Detector LANDER

15 MARCO POLO is a flexible mission with several possible options and several possible high interest targets. The various phases of the mission are scientifically autonomous. The completion of each of them separately will lead to a major improvement of our knowledge. Highest priority : Returned Samples of inestimable scientific value - most primitive organic materials - earliest fundamental planetary building blocks Minimum achievement : first remote sensing data from a primitive body Additional opportunity : In situ data, if a Lander (Philae heritage) is added, will also represent a premier in asteroid science.

16 MARCO POLO SPACECRAFT Marco Polo Spacecraft Hayabusa Spacecraft 5.0 m 2.2 m 4.2 m 1.8 m 1.0 m 1.4 m 1.4 m 4.0 m 1.1 m >1.5 m 1.0 m Minerva hopper Lander: Philae heritage >5.0 m 50m Obstacles of equivalent-size as the spacecraft are what MP must avoid as a long arm for sampling as the size of solar arrays is needed 10m

17 Extendible Boom Candidates Several options (e. g. from DLR, ISAS, Spain) exist for the extendible boom to be deployed and retracted for the touch-and-go sampling with high TRL including the space-flown heritages. Verification tests and modification for asteroid sampling are now in progress. System Coilable Mast High-Rigidity Mast Bi-STEM SPINAR Robotic Arm Axial Strength Strong Strong Moderate Weak Strong (Depending on design) 5m Extension and Retraction Capable Capable Capable Capable in principle Capable Weight Light Heavy Moderate Ligh Heavy Stored Volume Small Large Small Small Large Space-flown Heritages SFU-SAP (ISAS) Geotail, (ISAS) AKEBONO (ISAS) SFU-2D/HV (ISAS) HALCA (ISAS) HST Voyager Mars Path Finder ISAS Sounding Rocket CANADARM (CSA) MER (NASA)

18 Corer Projectile Development Experimental Set-Up Allows the collection of samples with stratigraphic integrity Porous Asteroid/ Comet Analogs Dual Corer Concept sand pumice Hayabusa Sampling Horn Pumice board

19 Sticky Pad (tested in micro-gravity environment) Capacity: 10g up /1s to 100 g Grain size: µm cm Increasing the applied force increases the contact with the simulant and thus increases the yield of each sample. A: 67N; B:111N; C:160N; D:200N Johns Hopkins University Applied Physics Laboratory

20 Sample acquisition and transfer system ERC EA SC Car SH BC LM Sampling and transfer mechanisms and units: Rotary Corer (RC) with shutter: Corer = Sample Vessel (3 x) Extendable Arm (EA) for sampling SH & Back Cover (BC) on Carousel (Car): Lift mechanism (LM) supports SH and back cover on Carousel: Back Cover Sample Container- Lock RC CDF Marco Polo Study

21 Laboratory investigation: High spatial resolution and analytical precision are needed: High precision analyses - including trace element abundances to ppb levels and isotopic ratios approaching ppm levels of precision High spatial resolution - a few microns or less Requires very specific sample selection and preparation. Requires large, complex instruments e.g. high mass resolution instruments (large magnets, high voltage), bright sources (e.g. Synchrotron) and usually requires multi-approach studies

22 Mineralogical, Chemical and Isotopic Characterization of Primitive Materials Identify Early Solar System Chronology Search for Unique Pre-solar Grains Astrobiological Significance

23 Conclusion: MARCO POLO has the potential to revolutionize our understanding of primitive materials essential to understand the conditions for planet formation and emergence of life. It can provide us important information needed to develop strategies to protect the Earth from the potential hazards represented by NEO collisions. Moreover sample return mission to NEOs will be pathfinder for sample returns from high gravity bodies and, later on, for human missions that might use asteroid resources to facilitate human exploration and the development of space. Current Status for the Mission Oct. 2007: Selected by ESA on COSMIC VISION program for a joint assessment study (JAXA-ESA) April 14: Final ESA CDF study May 2008: ESA ITT for a phase A Industrial Study June 2008: Declaration of Interest in Science Instrumentation Sept. 2009: Selection for Definition Phase

NEO Sample Return Mission «Marco Polo»

NEO Sample Return Mission «Marco Polo» M.A. Barucci NEO Sample Return Mission «Marco Polo» Proposal to ESA COSMIC VISION This proposal, prepared by a joint European Japanese team, is supported by 440 confirmed scientists. Moscow, October 3rd,

More information

MARCO POLO Near Earth Asteroid Sample Return Mission

MARCO POLO Near Earth Asteroid Sample Return Mission MARCO POLO Mission Science Study Team: M.A. Barucci (F), H. Boehnhardt (D), J.R. Brucato (I), E. Dotto (I), I.A. Franchi (UK), S.F. Green (UK), J.-L. Josset (CH), P. Michel (F), K. Muinonen (FIN), J. Oberst

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

MARCOPOLO-R: ESA SAMPLE RETURN MISSION TO THE POTENTIALLY HAZARDOUS ASTEROID 2008 EV5

MARCOPOLO-R: ESA SAMPLE RETURN MISSION TO THE POTENTIALLY HAZARDOUS ASTEROID 2008 EV5 MARCOPOLO-R: ESA SAMPLE RETURN MISSION TO THE POTENTIALLY HAZARDOUS ASTEROID 2008 EV5 M.A. Barucci (Paris Observatory LESIA, F) MP-R ESA SST: M.A. Barucci, P. Michel, H. Böhnhardt, J.R. Brucato, E. Dotto,

More information

ASTEX An In-Situ Exploration Mission to two Near-Earth-Asteroids

ASTEX An In-Situ Exploration Mission to two Near-Earth-Asteroids ASTEX An In-Situ Exploration Mission to two Near-Earth-Asteroids A. Nathues 1, H. Boehnhardt 1, A. W. Harris 2, W. Goetz 1,C. Gritzner 3, C. Jentsch 4, N. Schmitz 2, S. Schaeff 6, F. Weischede 5, A. Wiegand

More information

A Lander for Marco Polo

A Lander for Marco Polo A Lander for Marco Polo Hermann Boehnhardt MPI for Solar System Research Katlenburg-Lindau, Germany Lutz Richter DLR, Institute for Space Systems Bremen, Germany The ROSETTA Lander PHILAE passive lander

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

PHOOTPRINT. An ESA mission study. previously: MMSR (Martian Moon Sample Return)

PHOOTPRINT. An ESA mission study. previously: MMSR (Martian Moon Sample Return) An ESA mission study previously: MMSR (Martian Moon Sample Return) D. Koschny (Study Scientist, ESA/ESTEC) And the MMSR Science Definition Team MMSR-RSSD-HO-007/1.0 - Page 1 MMSR-RSSD-HO-007/1.0 - Page

More information

ESA Robotic Science Missions Overview

ESA Robotic Science Missions Overview 10 th ASTRA WS ESA Robotic Science Missions Overview P. Falkner, European Space Agency 10 th ASTRA Workshop, ESTEC, 11. Nov. 2008 1 Contents Science Missions Overview Focus Future CV missions Exploration

More information

Europe-Japan Space Science Collaboration. Saku Tsuneta Institute of Space and Astronautical Science Japan Aerospace Exploration Agency

Europe-Japan Space Science Collaboration. Saku Tsuneta Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Europe-Japan Space Science Collaboration Saku Tsuneta Institute of Space and Astronautical Science Japan Aerospace Exploration Agency March 7, 2018 JAXA recent science missions HAYABUSA 2003-2010 Asteroid

More information

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist ROSETTA One Comet Rendezvous and two Asteroid Fly-bys Rita Schulz Rosetta Project Scientist Giotto Mission 1986 1P/Halley DS-1 Mission 2001 19P/Borrelly Stardust Mission 2004 81P/ Wild 2 Deep Impact Mission

More information

Spin-off Rosetta Lander for Marco Polo

Spin-off Rosetta Lander for Marco Polo Spin-off Rosetta Lander for Marco Polo S. Ulamec, J. Biele DLR, Cologne, Germany The Rosetta Lander Philae is the first ever built device to land on a comet Rosetta was launched 2004; landing is planned

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

Overview of the Jovian Exploration Technology Reference Studies

Overview of the Jovian Exploration Technology Reference Studies Overview of the Jovian Exploration Technology Reference Studies The Challenge of Jovian System Exploration Peter Falkner & Alessandro Atzei Solar System Exploration Studies Section ESA/ESTEC Peter.Falkner@esa.int,

More information

Sampling Systems for Hayabusa and follow-on missions: Scientific Rationale, Operational Considerations, and Technological Challenges

Sampling Systems for Hayabusa and follow-on missions: Scientific Rationale, Operational Considerations, and Technological Challenges International Marco Polo Symposium and other Small Body Sample Return Missions Sampling Systems for Hayabusa and follow-on missions: Scientific Rationale, Operational Considerations, and Technological

More information

Comet Science Goals II

Comet Science Goals II Comet Science Goals II {questions for goals} Don Brownlee Did the events postulated by the Nice Hypothesis really happen? Were there wide-spread solar system wide impact events that were coeval with the

More information

Technology Reference Studies

Technology Reference Studies In the proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 Technology Reference Studies P.

More information

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS : SCIENCE WITH DIRECTED AERIAL ROBOT EXPLORERS (DARE) DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION 1 NEW ARCHITECTURE FOR PLANETARY EXPLORATION KEY ELEMENTS: Long-Duration Planetary Balloon Platforms

More information

Planetary probes: ESA Perspective Jean-Pierre Lebreton

Planetary probes: ESA Perspective Jean-Pierre Lebreton Planetary probes: ESA Perspective Jean-Pierre Lebreton ESA s Huygens Project Scientist/Mission Manager ESA s EJSM & TSSM Cosmic Vision Study Scientist Solar System Missions Division Research and Scientific

More information

ROSETTA: ESA's Comet Orbiter and Lander Mission. Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany

ROSETTA: ESA's Comet Orbiter and Lander Mission. Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany ROSETTA: ESA's Comet Orbiter and Lander Mission Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany ROSETTA in a Nutshell Science goal: Understanding the origin

More information

OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE

OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE OCTOBER 3, 2012 GORDON JOHNSTON PROGRAM EXECUTIVE OSIRIS-REx Science Objectives 1. Return and analyze a sample of pristine carbonaceous

More information

ESA UNCLASSIFIED For Official Use. BepiColombo à Exploring Mercury

ESA UNCLASSIFIED For Official Use. BepiColombo à Exploring Mercury BepiColombo à Exploring Mercury ESA / JAXA BepiColombo Mercury Mercury has always been something of a puzzle for planetary scientists. Its close position to the Sun means it is very difficult to observe.

More information

BepiColombo Mission to Mercury

BepiColombo Mission to Mercury BepiColombo Mission to Mercury Updates Mission & MPO Payload Scientific Objectives Origin and evolution of a planet close to the parent star Mercury as a planet: form, interior, geology, composition Origin

More information

Science benefits for Marco Polo with surface station

Science benefits for Marco Polo with surface station Science benefits for Marco Polo with surface station S. Ulamec and J. Biele DLR, Germany Why to have a Lander on a Sample Return Mission The prime scientific objective of Marco Polo is to return samples

More information

Hayabusa's Adventure around a Tiny Asteroid Itokawa

Hayabusa's Adventure around a Tiny Asteroid Itokawa Hayabusa's Adventure around a Tiny Asteroid Itokawa COSPAR Capacity Building Workshop on Planetary Science July 23 - Aug. 3, 2007 Montevideo, Uruguay M. Yoshikawa, A. Fujiwara, J. Kawaguchi (JAXA) Hayabusa

More information

NASA Planetary Science Programs

NASA Planetary Science Programs NASA Planetary Science Programs James L. Green NASA, Planetary Science Division February 19, 2015 Presentation at OPAG 1 Outline Mission events Passed FY15 Budget elements President s FY16 Budget Discovery

More information

Advanced Probes for Planetary Surface and Subsurface Exploration

Advanced Probes for Planetary Surface and Subsurface Exploration Workshop on Space Robotics, ICRA 2011 Advanced Probes for Planetary Surface and Subsurface Exploration Takashi Kubota (JAXA/ISAS/JSPEC) Hayato Omori, Taro Nakamura (Chuo Univ.) JAXA Space Exploration Program

More information

Theme 2: Outer Solar System Tracing the origin of the Solar System

Theme 2: Outer Solar System Tracing the origin of the Solar System Theme 2: Outer Solar System Tracing the origin of the Solar System Essential for our understanding of the formation and evolution of our own Solar System Exploration of the outer solar system has traditionally

More information

Cometary Science. Jessica Sunshine. Department of Astronomy University of Maryland

Cometary Science. Jessica Sunshine. Department of Astronomy University of Maryland Cometary Science Jessica Sunshine Department of Astronomy University of Maryland Slide 1 Major Cometary Goals: Last Decadal Survey Building Blocks of the Solar System Where in the solar system are the

More information

Hayabusa and Hayabusa2 - Challenges for Sample Return from Asteroids -

Hayabusa and Hayabusa2 - Challenges for Sample Return from Asteroids - Hayabusa and Hayabusa2 - Challenges for Sample Return from Asteroids - 14th BroadSky Workshop : Opening Up Ways to Deep Space Cleveland, Ohio, USA October 18, 2016 Makoto Yoshikawa (JAXA) Lunar and Planetary

More information

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ Asteroid Impact Mission (AIM) ESA s NEO Exploration Precursor Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ SBAG Jan 2013 HSF Precursor Missions Application driven

More information

Chapter 15: The Origin of the Solar System

Chapter 15: The Origin of the Solar System Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

More information

ESA s Juice: Mission Summary and Fact Sheet

ESA s Juice: Mission Summary and Fact Sheet ESA s Juice: Mission Summary and Fact Sheet JUICE - JUpiter ICy moons Explorer - is the first large-class mission in ESA's Cosmic Vision 2015-2025 programme. Planned for launch in 2022 and arrival at Jupiter

More information

OSIRIS-REx Asteroid Sample Return Mission. Lucy F. Lim Assistant Project Scientist

OSIRIS-REx Asteroid Sample Return Mission. Lucy F. Lim Assistant Project Scientist OSIRIS-REx Asteroid Sample Return Mission Lucy F. Lim Assistant Project Scientist WHAT IS OSIRIS-REX? OSIRIS-REx is a PI-led New Frontiers sample return mission to return at least 60 g (and as much as

More information

Lunar Exploration Requirements and Data Acquisition Architectures

Lunar Exploration Requirements and Data Acquisition Architectures Lunar Exploration Requirements and Data Acquisition Architectures J. Plescia P. Spudis B. Bussey Johns Hopkins University / Applied Physics Laboratory 2005 International Lunar Conference The Vision and

More information

NASA: BACK TO THE MOON

NASA: BACK TO THE MOON NASA: BACK TO THE MOON Don Campbell Cornell University "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him

More information

Payloads. Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018

Payloads. Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018 Payloads Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018 1 Outline Biography Natural Sciences (mostly Physics ) Bachelor degree (U. of Cambridge) M.Sc. in Spacecraft Technology

More information

Tracing the origin of the Solar System. Michel Blanc OAMP, Marseille

Tracing the origin of the Solar System. Michel Blanc OAMP, Marseille Tracing the origin of the Solar System Michel Blanc OAMP, Marseille This talk was prepared with highly appreciated contributions from : Yann Alibert, Antonella Barucci, Willy Benz, Dominique Bockelée-Morvan,Scott

More information

HERA MISSION & CM16 lessons learned

HERA MISSION & CM16 lessons learned HERA MISSION HERA MISSION & CM16 lessons learned (CM16) Schedule criticality for 2020 launch Prepare Asteroid mission with launch opportunities in 2023 (with back-up in 2024 and 2025) (CM16) Payload selection

More information

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008 Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or 2018 2007 Solar Probe Study & Mission Requirements Trajectory study and mission design trades were conducted in the fall

More information

Planetary Protection at ESA Issues & Status

Planetary Protection at ESA Issues & Status Planetary Protection at ESA Issues & Status Gerhard Kminek Planetary Protection Officer, ESA NASA Planetary Protection Subcommittee Meeting 12-13 November 2013, GSFC Selected Missions BepiColombo Launch

More information

MarcoPolo-R near earth asteroid sample return mission

MarcoPolo-R near earth asteroid sample return mission MarcoPolo-R near earth asteroid sample return mission The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Barucci, Maria Antonietta,

More information

SBAG Special Action Team Report: ARM Connections to Priority Small Body Science and Exploration Goals

SBAG Special Action Team Report: ARM Connections to Priority Small Body Science and Exploration Goals SBAG Special Action Team Report: Connections to Priority Small Body Science and Exploration Goals Submitted September 26, 2016 I. Introduction I.A. Charge: In a memo dated June 28, 2016, Dr. Michele Gates,

More information

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope)

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope) Asteroids Titius-Bode Law (1766) 2 The distances between the planets gets bigger as you go out. Johann Daniel Titius ( 1729 1796) Johann Elert Bode (1747-1826) updated May 16, 2013 Titius & Bode came up

More information

James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations

James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations The European Lunar Lander James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations 1 International Context Apollo/Luna Era 1990-2006 2007-2012 2013-2020 Next Decade HITEN CLEMENTINE

More information

Solar System. Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc.

Solar System. Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc. Solar System Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc. Comparative Planetology Compares planets and other solar system bodies to help understand how they

More information

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

More information

Hayabusa Status and Proximity Operation. As of September 2nd, 2005

Hayabusa Status and Proximity Operation. As of September 2nd, 2005 Hayabusa Status and Proximity Operation As of September 2nd, 2005 2005/9/2 0 What is Hayabusa? World s First Round-trip Interplanetary Flight HAYABUSA Challenge to Asteroid Sample Return Touch-down + Dimensions

More information

James L. Green Director, Planetary Science NASA

James L. Green Director, Planetary Science NASA James L. Green Director, Planetary Science NASA 1 Year of the Solar System Planetary Science Mission Events 2010 * September 16 Lunar Reconnaissance Orbiter in PSD * November 4 EPOXI encounters Comet Hartley

More information

ASTR 4800: Space Science - Practice & Policy Today s Topic: Science Goes to the Moon & Planets. Next class: Visit by Richard Truly, former NASA

ASTR 4800: Space Science - Practice & Policy Today s Topic: Science Goes to the Moon & Planets. Next class: Visit by Richard Truly, former NASA ASTR 4800: Space Science - Practice & Policy Today s Topic: Science Goes to the Moon & Planets. Next class: Visit by Richard Truly, former NASA Administrator & Shuttle Pilot Read: readings noted on class

More information

The Main Points. Asteroids. Lecture #22: Asteroids 3/14/2008

The Main Points. Asteroids. Lecture #22: Asteroids 3/14/2008 Lecture #22: Asteroids Discovery/Observations Where are they? How many are there? What are they like? Where did they come from? Reading: Chapter 12.1 Astro 102/104 1 The Main Points Asteroids are small,

More information

An Overview of BepiColombo Thermal Analysis

An Overview of BepiColombo Thermal Analysis An Overview of BepiColombo Thermal Analysis Presented by Ian Renouf, Astrium UK ESTEC 9-10 th Summary About BepiColombo Thermal Design Issues Required Thermal Analysis Thermal Modelling Issues Proposed

More information

Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach. Angioletta Coradini Istituto Nazionale di Astrofisica

Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach. Angioletta Coradini Istituto Nazionale di Astrofisica Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach Angioletta Coradini Istituto Nazionale di Astrofisica Goals of the Study The primary goal of the present study is

More information

This asteroid was visited by the NEAR Shoemaker probe, which orbited it, taking extensive photographs of its

This asteroid was visited by the NEAR Shoemaker probe, which orbited it, taking extensive photographs of its Chapter 9 Part 1 Asteroids and Comets Why is there an asteroid belt? This asteroid was visited by the NEAR Shoemaker probe, which orbited it, taking extensive photographs of its surface, and, on February

More information

Asteroid Redirect Mission: Candidate Targets. Paul Chodas, NEO Program Office, JPL

Asteroid Redirect Mission: Candidate Targets. Paul Chodas, NEO Program Office, JPL Asteroid Redirect Mission: Candidate Targets Paul Chodas, NEO Program Office, JPL Small Bodies Assessment Group Meeting #12, January 7, 2015 NEA Discovery Rates Are Increasing Overall discovery rate of

More information

MarcoPolo- R. NASA Contribu-on Andrew Cheng European Science Leads: Antonella Barucci and Patrick Michel 1/8/2014 1

MarcoPolo- R. NASA Contribu-on Andrew Cheng European Science Leads: Antonella Barucci and Patrick Michel 1/8/2014 1 MarcoPolo- R NASA Contribu-on Andrew Cheng andrew.cheng@jhuapl.edu European Science Leads: Antonella Barucci and Patrick Michel 1/8/2014 1 MarcoPolo- R Sample Return MP- R is a medium- class mission complefng

More information

SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS. 7 th Annual Meeting of the NASA Institute for Advanced Concepts

SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS. 7 th Annual Meeting of the NASA Institute for Advanced Concepts SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS 7 th Annual Meeting of the NASA Institute for Advanced Concepts DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS 1 MARS

More information

Hayabusa at Itokawa: first visit to a rubble pile asteroid, or

Hayabusa at Itokawa: first visit to a rubble pile asteroid, or Hayabusa at Itokawa: first visit to a rubble pile asteroid, or How do we know it s a rubble pile, and what does that mean? A. F. Cheng, O Barnouin-Jha, N. Hirata, H. Miyamoto, R. Nakamura, H. Yano and

More information

OSIRIS-REx. Asteroid Sample Return Mission. Dante S. Lauretta Deputy Principal Investigator

OSIRIS-REx. Asteroid Sample Return Mission. Dante S. Lauretta Deputy Principal Investigator OSIRIS-REx Asteroid Sample Return Mission Dante S. Lauretta Deputy Principal Investigator 2 OSIRIS-REX MISSION OBJECTIVES MAP ONE TO ONE WITH NASA KEY QUESTIONS NASA Key Questions How did life begin and

More information

Europe to the Moon. BHF 10 Feb 2005 SPC

Europe to the Moon. BHF 10 Feb 2005 SPC Europe to the Moon V162 lift-off on 27 September 2003 at 23:14:39 UTC The launch was perfect SMART-1 separated at 23:56:03 into a GTO (656 x 35,881 km): perfect injection 100 s later telemetry was received

More information

IAA Pre-Summit Conference, Washington, DC, 9 January 2014

IAA Pre-Summit Conference, Washington, DC, 9 January 2014 Sanjay S. Limaye, Luidmilla Zasova, Colin F. Wilson, Richard C. Ghail, A.C. Vandaele, W. J. Markiewicz, Thomas Widemann, Takeshi Imamura, Franck Montmessin, Emmanuel. Marcq, James A. Cutts, James Head

More information

European Venus Explorer

European Venus Explorer European Venus Explorer An in-situ Venus explorer proposed in Dec 2010 as a Cosmic Vision M3 mission, for launch in 2020 2025 Colin Wilson co - P.I. Univ. of Oxford & Eric Chassefière P.I. Univ. Paris

More information

Stardust and Hayabusa Missions. Mike Zolensky NASA JSC

Stardust and Hayabusa Missions. Mike Zolensky NASA JSC Stardust and Hayabusa Missions Mike Zolensky NASA JSC 150 km from nucleus ΔV= 6.1 km/s January 2, 2004 Wild 2 (81P) A Jupiter family comet captured into present orbit in 1973 after a 0.006 AU Jupiter encounter

More information

Moonstruck: Illuminating Early Planetary History

Moonstruck: Illuminating Early Planetary History Moonstruck: Illuminating Early Planetary History G. Jeffrey Taylor Hawai`i Institute of Geophysics and Planetology University of Hawai`i at Manoa Jeff Taylor Lunar Science 1 View of the Earth and Moon

More information

Main Event: Comets by Paul Jenkins

Main Event: Comets by Paul Jenkins Main Event: Comets by Paul Jenkins Most people realise that comets come from the Oort Cloud, a huge ball of objects surrounding the solar system but which has a bias of objects towards the plane of the

More information

BepiColombo MPO Science Operations Planning Drivers IWPSS-2013

BepiColombo MPO Science Operations Planning Drivers IWPSS-2013 BepiColombo MPO Science Operations Planning Drivers IWPSS-2013 Sara de la Fuente sfuente@sciops.esa.int BepiColombo MPO Science Ground Segment ESA, ESAC, Villanueva de la Cañada, Madrid, 28691, Spain Summary

More information

Asteroid Impact Mission (AIM)

Asteroid Impact Mission (AIM) Asteroid Impact Mission (AIM) Andrés Gálvez, ESA HQ, Paris, France Ian Carnelli, ESA HQ, Paris, France Carlos Corral, ESTEC, Noordwijk, The Netherlands & the AIDA team (JHU/APL, NASA, OCA. DLR) NEO mission

More information

ASTEX. Near-Earth Asteroid Mission Concept Study. MPI for Solar System Research, Katlenburg-Lindau, Germany 2

ASTEX. Near-Earth Asteroid Mission Concept Study. MPI for Solar System Research, Katlenburg-Lindau, Germany 2 Near-Earth Asteroid Mission Concept Study A. Nathues 1, H. Boehnhardt 1, A. W. Harris 2, W. Goetz 1, C. Jentsch 3, Z. Kachri 4, S. Schaeff 5, N. Schmitz 2, F. Weischede 6, and A. Wiegand 5 1 MPI for Solar

More information

ILWS Update April 2005

ILWS Update April 2005 CLUSTER Space Plasma Missions in the Science Programme of ESA ILWS Update April 2005 Hermann J. Opgenoorth ESA ESTEC Solar and Solar Terrestrial Missions Division (SCI-SH) Research and Scientific Support

More information

Asteroids February 23

Asteroids February 23 Asteroids February 23 Test 2 Mon, Feb 28 Covers 6 questions from Test 1. Added to score of Test 1 Telescopes Solar system Format similar to Test 1 Missouri Club Fri 9:00 1415 Fri, last 10 minutes of class

More information

Development of Orbit Analysis System for Spaceguard

Development of Orbit Analysis System for Spaceguard Development of Orbit Analysis System for Spaceguard Makoto Yoshikawa, Japan Aerospace Exploration Agency (JAXA) 3-1-1 Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan yoshikawa.makoto@jaxa.jp Tomohiro

More information

Cosmic Vision : The scientific priorities for astrophysics and fundamental physics

Cosmic Vision : The scientific priorities for astrophysics and fundamental physics Cosmic Vision 2015-2025: The scientific priorities for astrophysics and fundamental physics Fabio Favata ESA, Astronomy & Fundamental Physics Mission Coordinator Grand themes 1. What are the conditions

More information

The ROSETTA/CNSR Mission

The ROSETTA/CNSR Mission The ROSETTA/CNSR Mission 88-009 A possible application of electric propulsion to interplanetary missions A. Atzei, 0/SCI, ESA/ESTEC, Noordwijk, The Netherlands 1. SUMMARY AND INTRODUCTION 4000 kg, including

More information

DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon. September 20, 2017 ISAS/JAXA

DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon. September 20, 2017 ISAS/JAXA DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon September 20, 2017 ISAS/JAXA 1 DESTINY + Overview This mission is to acquire the compact deep space explorer technology, fly-by

More information

DEFLECTING HAZARDOUS ASTEROIDS FROM COLLISION WITH THE EARTH BY USING SMALL ASTEROIDS

DEFLECTING HAZARDOUS ASTEROIDS FROM COLLISION WITH THE EARTH BY USING SMALL ASTEROIDS DEFLECTING HAZARDOUS ASTEROIDS FROM COLLISION WITH THE EARTH BY USING SMALL ASTEROIDS N. Eismont (1), M. Boyarsky (1), A. Ledkov (1), B.Shustov (2), R. Nazirov (1), D. Dunham (3) and K. Fedyaev (1) (1)

More information

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Pk_43-Pk_50, 2014 Original Paper Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail By Jun MATSUMOTO 1), Ryu FUNASE

More information

E X O M A R S. The ESA/NASA ExoMars Programme

E X O M A R S. The ESA/NASA ExoMars Programme The ESA/NASA ExoMars Programme 1 International Scene Recognising that a Mars Sample Return (MSR) mission is very challenging, and that its and that its undertaking will likely exceed the financial capabilities

More information

HERA MISSION. ESA UNCLASSIFIED - For Official Use

HERA MISSION. ESA UNCLASSIFIED - For Official Use HERA MISSION ESA UNCLASSIFIED - For Official Use HERA/AIM mission scenario! First ever investigation of deflection test! Detailed analysis of impact crater (before/after impact or after only depending

More information

ISIS Impactor for Surface and Interior Science

ISIS Impactor for Surface and Interior Science ISIS Impactor for Surface and Interior Science ISIS Mission Concept!! Send an independent, autonomous impactor spacecraft to the target of the OSIRIS-REx mission!! Launch as secondary payload with InSight!!

More information

1 Solar System Debris and Formation

1 Solar System Debris and Formation 1 Solar System Debris and Formation Chapters 14 and 15 of your textbook Exercises: Do all Review and Discussion and all Conceptual Self-Test 1.1 Solar System Debris Asteroids small rocky bodies Most under

More information

NASA s Planetary Science Program Status

NASA s Planetary Science Program Status NASA s Planetary Science Program Status Presentation to VEXAG James L. Green Director, Planetary Science Division October 28, 2009 1 Outline MSL status Announcements of Opportunity R&A International Agreements

More information

Contents. Summer School Alpbach 2008 Team Red

Contents. Summer School Alpbach 2008 Team Red Contents 1. Scientific Motivation and Goals 2. Mission Scenario 3. Close to Comet Operations 4. Sampling System 5. Planetary Protection 6. Budgets 7. Conclusion Scientific Motivation Scientific Objectives

More information

BepiColombo Mission to Mercury - コロンボ. October Jan van Casteren, Mauro Novara.

BepiColombo Mission to Mercury - コロンボ. October Jan van Casteren, Mauro Novara. ベピ - コロンボ BepiColombo Mission to Mercury October 2010 Jan van Casteren, Mauro Novara http://www.esa.int/science/bepicolombo June 2010 1 BepiColombo Scientific Objectives Origin and evolution of a planet

More information

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller SOLAR ORBITER Linking the Sun and Inner Heliosphere Outline Science goals of Solar Orbiter Focus of HELEX joint mission Mission requirements Science payload Status update Top level scientific goals of

More information

Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process?

Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process? Planet formation in the Solar System Lecture 16 How did it happen? How long did it take? Where did it occur? Was there more than 1 process? Planet formation How do planets form?? By what mechanism? Planet

More information

Rosetta Mission Status Update. Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL)

Rosetta Mission Status Update. Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL) Rosetta Mission Status Update Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL) Wake Up Rosetta, Please! Hibernating since June 2011 Wakeup by timer on: 2014-Jan-20

More information

Technology Goals for Small Bodies

Technology Goals for Small Bodies Technology Goals for Small Bodies Carolyn Mercer Julie Castillo-Rogez Members of the Steering Committee 19 th Meeting of the NASA Small Bodies Assessment Group June 14, 2018 College Park, MD 1 Technology

More information

Solution for Homework# 3. Chapter 5 : Review & Discussion

Solution for Homework# 3. Chapter 5 : Review & Discussion Solution for Homework# 3 Chapter 5 : Review & Discussion. The largest telescopes are reflecting telescopes, primarily because of 3 distinct disadvantages of the refracting telescope. When light passes

More information

A Survey of the Planets Earth Mercury Moon Venus

A Survey of the Planets Earth Mercury Moon Venus A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)

More information

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei The Sun, with all the planets revolving around it, and depending on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei What We Will Learn Today Where

More information

SBAG GOALS Origin of the Solar System Theme

SBAG GOALS Origin of the Solar System Theme SBAG GOALS Origin of the Solar System Theme Objective 1.2. Study small bodies to understand the origin of the Solar System Objective 1.1.2 Find and characterize new samples from small bodies Presented

More information

PRESS KIT: Scientific work of the Royal Observatory of Belgium on the Mars Express mission

PRESS KIT: Scientific work of the Royal Observatory of Belgium on the Mars Express mission PRESS KIT: Scientific work of the Royal Observatory of Belgium on the Mars Express mission Royal Observatory of Belgium Avenue Circulaire, 3 - Ringlaan 3 1180 BRUXELLES BRUSSEL Contact : Véronique Dehant,

More information

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Todays Topics Astronomical Detectors Radio Telescopes Why we need space telescopes? Hubble Space Telescopes Future Space Telescopes Astronomy

More information

HAYABUSA (MUSES-C) RENDEZVOUS AND PROXIMITY OPERATION

HAYABUSA (MUSES-C) RENDEZVOUS AND PROXIMITY OPERATION IAC-05-A3.5.A.01 HAYABUSA (MUSES-C) RENDEZVOUS AND PROXIMITY OPERATION Jun ichiro Kawaguchi, Akira Fujiwara and Tono Uesugi The Institute of Space and Astronautical Science (ISAS)/ JAXA, 3-1-1 Yoshinodai,

More information

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars Mars: Overview General properties Telescopic observations Space missions Atmospheric Characteristics Reading: Chapters 7.1 (Mars), 9.4, 10.4 Lecture #19: Mars The Main Point Changes in the Martian surface

More information

Lunar Discovery and Exploration program

Lunar Discovery and Exploration program Lunar Discovery and Exploration program Space Policy Directive-1 (December 11, 2017) amends the National Space Policy to include the following paragraph: Lead an innovative and sustainable program of exploration

More information

Solar Sailing as an Enabling Technology

Solar Sailing as an Enabling Technology Dr. Eur Ing Malcolm Macdonald 22 April 2009 at the European Week of Astronomy and Space Science Solar Sailing as an Enabling Technology www.strath.ac.uk/space malcolm.macdonald.102@strath.ac.uk Overview

More information

NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before Mission Plans

NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before Mission Plans mars.jpl.nasa.gov NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before - 2020 Mission Plans 5 min read original Payload for NASA's Mars 2020 Rover This diagram shows the science

More information

UK lunar exploration: Current activities and future possibilities

UK lunar exploration: Current activities and future possibilities UK lunar exploration: Current activities and future possibilities October 2007 Professor Alan Smith Director, Mullard Space Science Laboratory On behalf of: The British National Space Centre and The Science

More information

Study Guide for Test 2. Chapter How does refraction allow a lens to bring parallel rays of light to a focus?

Study Guide for Test 2. Chapter How does refraction allow a lens to bring parallel rays of light to a focus? Study Guide for Test 2 1. What is refraction? Chapter 6 2. How does refraction allow a lens to bring parallel rays of light to a focus? 3. Can a mirror also be used to bring parallel rays of light to a

More information