Radioresistance of adenine to cosmic rays

Size: px
Start display at page:

Download "Radioresistance of adenine to cosmic rays"

Transcription

1 Radioresistance of adenine to cosmic rays Gabriel Vignoli Muniz ; Christian F. Mejía ; Rafael Martinez; Basile Auge; Hermann Rothard; Alicja Domaracka and Philippe Boduch muniz@ganil.fr Centre de Recherche sur les Ions, les Matériaux et la Photonique CEA/CNRS/ENSICAEN/Université de Caen-Basse Normandie Caen, France

2 Introduction The presence of complex organic molecules (COM) such as nucleobases and amino acids in carbonaceous meteorites on Earth is a strong indication of its existence in outer space.. Detection of glycine (amino acid) in the coma of comet 67P/Churyumov- Gerasimenko by the Rosetta space mission. Some groups have reported formation of COM under simulated astrophysical environments. Stability of COM under irradiation of galactic cosmic rays and solar wind is not yet well understood.

3 Objective To simulate and study effects of cosmic rays (swift heavy ions) of COM by using the beam line at GANIL and GSI. First results: irradiation of adenine.

4 Adenine C 5 H 5 N 5 A purine nucleobase An integral part of the composition of biomolecules of unique importance such as DNA and RNA A molecule that is evolutionarily preserved in all living beings, including viruses.

5 Experimental methodology Adenine sample prepared for irradiation. Low temperature (~ 12 K) mbar.

6 Swift Heavy Ions Cosmic rays analogues Cosmic rays are ions with a broad energy range from few MeV/n to TeV/n. Stopping power [kev µm -1 ] 7x10 3 6x10 3 5x10 3 4x10 3 3x10 3 2x10 3 1x S e S n S e +S n IRRSUD GANIL UNILAC SME GSI GANIL Flux [ ions cm -2 s -1 sr -1 (MeV/n) -1 ] 2.5x10-6 Flux Fe 2.0x x x x10-7 * Energy [MeV per nucleon] Energy [MeV per nucleon] * Simulated flux of iron in the interstellar medium (ISM) from Shen et al Astron. Astrophys. 2004; 415:

7 Complex molecules have complex IR spectra. Solid adenine spectrum at 12K 0.5 Adenine cm -1 Absorbance α band Wavenumbers [cm -1 ] N 2. 3 = Abs( ν ) dν A

8 Summary of performed experiments Ion Beam Energy (MeV/u) Electronic stopping power (kev.µm -1 ) Nuclear stopping power (kev.µm -1 ) Thickness (µm) Penetration depth (µm) Xe x x Kr x Ca x C ,00 x

9 Results IR spectra evolution Xe 23+ (92 MeV) Fluence [ions.cm -2 ] 0 5 x x x x Absorbance cm Wavenumber (cm -1 )

10 Results IR spectra evolution Absorbance Xe 23+ (92 MeV) New molecules produced by fragmention of adenine. Fluence [ions.cm -2 ] 914 cm x x x x Absorbance Spectrum Fit 2044 cm cm cm cm cm cm cm cm cm cm -1 R-NC C 2 H 4 N 4 R-CN HCN CN Wavenumber (cm -1 ) Wavenumbers (cm -1 )

11 Results - IR spectra evolution Normalized peak area 914 cm Xe x x x x10 13 Fluence [ions cm -2 ] Kr 33+ Ca 10+ C 4+ Sample Destruction cross section (x10-13 cm 2 ) S e [x10 3 kev µm -1 ] Xe ± Kr ± Ca ± C ±

12 Results Cross section as a function of stopping power. Destruction cross section (cm 2 ) Xe 23+ (92 MeV) IRRSUD - GANIL Kr 33+ (720 MeV) - SME - GANIL C 4+ (12 MeV) - IRRSUD - GANIL Electrons (5 kev) Evans et al Ca 10+ (190 MeV) Unilac - GSI σ = Α S n e A = (4 ± 2) x n = (1.17 ± 0.05) Se [kev.µm -1 ] σ = 4 x S e 1.17 Results obtained by our group show that the destruction cross section obeys a electronic stopping power law with: 1 n 1.5

13 Results Destruction cross section Flux : E 0 = 400 MeV/n * σ [cm 2 ] 10-9 H He O C Mg Si Fe S Al Ca X Φ [ion cm -2 s -1 sr -1 ] 10-2 H He O C Mg Si Fe S Al Ca = Energy [MeV per nucleon] Energy [MeV per nucleon] * Shen et al Astron. Astrophys. 2004; 415:

14 Results = Destruction rate (Φ x σ) [ s -1 sr -1 (MeV/n) -1 ] Destruction rate H E 0 = 400 MeV/n He O C Mg Si Fe S Al Ca Energy [MeV per nucleon]

15 Results Half-life of solid adenine exposed to cosmic rays in the ISM. The average time of survival of a DC is around 10 Myears. This is indeed close to the order magnitude of the half-life of adenine evaluated in this work.

16 Results Comparision between different sources of radiation The radiation G yield is defined as the number of adenine molecule destroyed per 100 ev absorbed. Projectile Radiation yield G (ev -1 ) Reference Xe 23+ (92 MeV) This work Kr 33+ (820 MeV) This work Ca 10+ (192 MeV) 9.70 This work C 4+ (12 MeV) 8.29 This work Electrons (5 kev) 1.98 (Evans et al., 2011) UV photons (10.2 ev) (Guan et al., 2010; Saïagh et al., 2014)

17 Results Half-life of solid adenine exposed to different source of radiation in distinct regions. UV photons Cosmic Rays Region Half-life (Myears) UV flux (cm -2 s -1 ) Region Half-life (Myears) ISM 1.0 x 10 8 ISM 10 Dense Clouds (DC) 1.0 x 10 3 Dense Clouds (DC) 10

18 Conclusions The adenine molecule destruction cross sections as a function of the deposited energy follow a power law: A S e n with n = 1.17 The destruction of solid adenine by cosmic rays are dominated by iron and protons. The half-life of adenine was estimated in different region of space: ISM (0.45 Myears) and DCs (10 Myears).

19 Outlooks Irradiation of the all nucleobases that composes DNA and RNA. (Thymine, Uracil, Guanine and Cytosine). Improvement of the methodology of preparation of solid nucleobases : films more uniform. Irradiation of Pyridine, a important heterocyclic biomolecule using complementary techniques: IR spectroscopy and time of flight. Absorbance Cytosine Ni 8+ (18 MeV) Fluence [ions cm -2 ] x x x Data under analysis Wavenumbers [cm -1 ]

20 Thank You for your attention! Q&A

Cosmic Ray effects in astrophysical ices and complex organic molecules

Cosmic Ray effects in astrophysical ices and complex organic molecules Cosmic Ray effects in astrophysical ices and complex organic molecules Hermann Rothard (CNRS) (rothard@ganil.fr) Centre de Recherche sur les Ions, les Matériaux et la Photonique (Normandie Univ. CEA CNRS

More information

Magnetospheric Ion Implantation in the Icy Moons of Giant Planets

Magnetospheric Ion Implantation in the Icy Moons of Giant Planets Magnetospheric Ion Implantation in the Icy Moons of Giant Planets Giovanni Strazzulla INAF Osservatorio Astrofisico di Catania NWO visitor (May-July 2012) gianni@oact.inaf.it; http://web.ct.astro.it/weblab/

More information

IR Spectroscopy and physicochemical effects on astrophysical ices produced by energetic ions collisions

IR Spectroscopy and physicochemical effects on astrophysical ices produced by energetic ions collisions IR Spectroscopy and physicochemical effects on astrophysical ices produced by energetic ions collisions Ana Lucia de Barros Physics Department Centro Federal de Educação Tecnológica Celso Suckow da Fonseca

More information

Cytogenetic signature of heavy charged particles: impact of LET and track structure

Cytogenetic signature of heavy charged particles: impact of LET and track structure Cytogenetic signature of heavy charged particles: impact of LET and track structure Ewa Gudowska-Nowak 1, Thilo Elsässer 2, Joanna Deperas-Standylo 3, Ryonfa Lee 2, Elena Nasonova 2,3, Sylvia Ritter 2,

More information

arxiv: v1 [astro-ph.ga] 3 Apr 2012

arxiv: v1 [astro-ph.ga] 3 Apr 2012 Mon. Not. R. Astron. Soc. 000, 1 13 (2005) Printed 4 April 2012 (MN LATEX style file v2.2) Formation of unsaturated hydrocarbons in interstellar ice analogs by cosmic rays arxiv:1204.0564v1 [astro-ph.ga]

More information

DOSIMETRY ON THE FOTON M2/BIOPAN-5 SATELLITE

DOSIMETRY ON THE FOTON M2/BIOPAN-5 SATELLITE DOSIMETRY ON THE FOTON M2/BIOPAN-5 SATELLITE B. Dudás, J. K. Pálfalvi, J. Szabó Hungarian Academy of Sciences KFKI Atomic Energy Research Institute, P. O. B. 49, H-1525 Budapest, Hungary INTRODUCTION A

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

Cosmic Evolution, Part II. Heavy Elements to Molecules

Cosmic Evolution, Part II. Heavy Elements to Molecules Cosmic Evolution, Part II Heavy Elements to Molecules First a review of terminology: Element Atom Electro- magnetic Electrons Nucleus Electromagnetic Strong Nuclear Compound Molecule Protons Neutrons Neutral

More information

Laboratory Simulations of Space Weathering Effects Giovanni Strazzulla INAF Osservatorio Astrofisico di Catania, Italy

Laboratory Simulations of Space Weathering Effects Giovanni Strazzulla INAF Osservatorio Astrofisico di Catania, Italy Laboratory Simulations of Space Weathering Effects Giovanni Strazzulla INAF Osservatorio Astrofisico di Catania, Italy gianni@oact.inaf.it http://web.ct.astro.it/weblab/ 1 NNNNNNNN kev-mev ions ELECTRONS

More information

Cosmic Evolution, Part II. Heavy Elements to Molecules

Cosmic Evolution, Part II. Heavy Elements to Molecules Cosmic Evolution, Part II Heavy Elements to Molecules Heavy elements molecules First a review of terminology: Electromagnetic Electrons Element Atom Nucleus Compound Molecule Electromagnetic Strong Nuclear

More information

CRaTER Science Requirements

CRaTER Science Requirements CRaTER Science Requirements Lunar Reconnaissance Orbiter CRaTER Preliminary Design Review Justin Kasper (CRaTER Proj. Sci.) Outline Energy deposition Classical ionizing radiation Nuclear fragmentation

More information

chemical evolution in open space: An experimental approach

chemical evolution in open space: An experimental approach The 16.09.2015, Trieste, IT chemical evolution in open space: An experimental approach M.B. Simakov, E.A. Kuzicheva, N.B. Gontareva Group of Exobiology Institute of Cytology, RAS RUSSIAN ASTROBIOLOGY CENTER

More information

Present Understanding of Comet Nucleus Physical and Chemical Composition

Present Understanding of Comet Nucleus Physical and Chemical Composition Present Understanding of Comet Nucleus Physical and Chemical Composition Murthy S. Gudipati Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Keck Study Comet June 5, 2017

More information

Lecture 18 - Photon Dominated Regions

Lecture 18 - Photon Dominated Regions Lecture 18 - Photon Dominated Regions 1. What is a PDR? 2. Physical and Chemical Concepts 3. Molecules in Diffuse Clouds 4. Galactic and Extragalactic PDRs References Tielens, Ch. 9 Hollenbach & Tielens,

More information

Chemical and physical effects induced by heavy cosmic ray analogues on frozen methanol and water ice mixtures

Chemical and physical effects induced by heavy cosmic ray analogues on frozen methanol and water ice mixtures doi:10.1093/mnras/stu1208 Chemical and physical effects induced by heavy cosmic ray analogues on frozen methanol and water ice mixtures A. L. F. de Barros, 1 E. F. da Silveira, 2 H. Rothard, 3 T. Langlinay

More information

Origin of Life: I Monomers to Polymers

Origin of Life: I Monomers to Polymers Origin of Life: I Monomers to Polymers Synthesis of Monomers Life appears early on Earth (3-4 Gyr ago) Conditions: Liquid water Earth in HZ Reducing or Neutral atmosphere NH 3, CH 4, H 2 O, H 2 or CO 2,

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

The role of cosmic rays in the formation of interstellar and circumstellar molecules

The role of cosmic rays in the formation of interstellar and circumstellar molecules The role of cosmic rays in the formation of interstellar and circumstellar molecules Maria Elisabetta Palumbo INAF Osservatorio Astrofisico di Catania mepalumbo@oact.inaf.it http://www.oact.inaf.it/weblab/

More information

Ion interactions with pure and mixed water clusters

Ion interactions with pure and mixed water clusters Journal of Physics: Conference Series OPEN ACCESS Ion interactions with pure and mixed water clusters To cite this article: R Maisonny et al 213 J. Phys.: Conf. Ser. 438 127 View the article online for

More information

Space weathering of asteroidal surfaces

Space weathering of asteroidal surfaces Space weathering of asteroidal surfaces Giovanni Strazzulla 1 & Rosario Brunetto 2 1 INAF Osservatorio Astrofisico di Catania, Italy gianni@oact.inaf.it 2 Institut d'astrophysique Spatiale, UMR 8617, Orsay,

More information

ESF EXCHANGE GRANT REPORT PROJECT WORK:

ESF EXCHANGE GRANT REPORT PROJECT WORK: ESF EXCHANGE GRANT REPORT PROJECT WORK: Studies of biomolecular cluster formation in the presence of ionising electrons Researcher: Dr. Samuel Eden, Open University, UK Exchange grant reference: 1783 ESF

More information

Dust. The four letter word in astrophysics. Interstellar Emission

Dust. The four letter word in astrophysics. Interstellar Emission Dust The four letter word in astrophysics Interstellar Emission Why Dust Dust attenuates and scatters UV/optical/NIR Amount of attenuation and spectral shape depends on dust properties (grain size/type)

More information

Heavy ion irradiation of solids : electron ejection, sputtering, and effects on astrophysical ices. Hermann Rothard (CNRS)

Heavy ion irradiation of solids : electron ejection, sputtering, and effects on astrophysical ices. Hermann Rothard (CNRS) Heavy ion irradiation of solids : electron ejection, sputtering, and effects on astrophysical ices Hermann Rothard (CNRS) (rothard@ganil.fr) CIMAP Centre de Recherche sur les Ions, les Materiaux et la

More information

Lomonosov Moscow State University. NUCLEON Chemical Composition and Energy Spectra of Cosmic Rays at TeV

Lomonosov Moscow State University. NUCLEON Chemical Composition and Energy Spectra of Cosmic Rays at TeV Lomonosov Moscow State University NUCLEON Chemical Composition and Energy Spectra of Cosmic Rays at 1-1000 TeV D. Podorozhny for Sources of Galactic cosmic rays APC, Paris - December 11-14, 2018 NUCLEON

More information

Origin of Life: I Monomers to Polymers"

Origin of Life: I Monomers to Polymers Origin of Life: I Monomers to Polymers Questions What two kinds of molecules are essential for all life on Earth? What building blocks are these two molecules made of? Synthesis of Monomers Life arose

More information

Interstellar Dust and Extinction

Interstellar Dust and Extinction University of Oxford, Astrophysics November 12, 2007 Outline Extinction Spectral Features Emission Scattering Polarization Grain Models & Evolution Conclusions What and Why? Dust covers a range of compound

More information

Radiation Transport Tools for Space Applications: A Review

Radiation Transport Tools for Space Applications: A Review Radiation Transport Tools for Space Applications: A Review Insoo Jun, Shawn Kang, Robin Evans, Michael Cherng, and Randall Swimm Mission Environments Group, February 16, 2008 5 th Geant4 Space Users Workshop

More information

Laser Dissociation of Protonated PAHs

Laser Dissociation of Protonated PAHs 100 Chapter 5 Laser Dissociation of Protonated PAHs 5.1 Experiments The photodissociation experiments were performed with protonated PAHs using different laser sources. The calculations from Chapter 3

More information

R&D of emulsion technology to study fragment interaction to improve ion therapy

R&D of emulsion technology to study fragment interaction to improve ion therapy FJPPL 07 11 May@KEK R&D of emulsion technology to study fragment interaction to improve ion therapy Imad Laktineh (Lyon)/ Kimio Niwa (Nagoya University) Toshiyuki Toshito (KEK) Japanese-French collaboration

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Nucleosynthesis and stellar lifecycles. A. Ruzicka

Nucleosynthesis and stellar lifecycles. A. Ruzicka Nucleosynthesis and stellar lifecycles A. Ruzicka Stellar lifecycles A. Ruzicka Outline: 1. What nucleosynthesis is, and where it occurs 2. Molecular clouds 3. YSO & protoplanetary disk phase 4. Main Sequence

More information

Lecture 14 Cosmic Rays

Lecture 14 Cosmic Rays Lecture 14 Cosmic Rays 1. Introduction and history 2. Locally observed properties 3. Interactions 4. Demodulation and ionization rate 5. Midplane interstellar pressure General Reference MS Longair, High

More information

Physics with Exotic Nuclei

Physics with Exotic Nuclei Physics with Exotic Nuclei Hans-Jürgen Wollersheim NUclear STructure, Astrophysics and Reaction Outline Projectile Fragmentation A Route to Exotic Nuclei Fragmentation Cross Sections Nuclear Reaction Rates

More information

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae I Outline of scenarios for neutron capture nucleosynthesis (Red Giants, Supernovae) and implications for laboratory

More information

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu PHYS 5326 Lecture #2 Wednesday, Jan. 24, 2007 Dr. 1. Sources of Neutrinos 2. How is neutrino beam produced? 3. Physics with neutrino experiments 4. Characteristics of accelerator based neutrino experiments

More information

Lunar Exploration Initiative. Ionizing Radiation on the Moon David A. Kring

Lunar Exploration Initiative. Ionizing Radiation on the Moon David A. Kring Briefing Topic: Ionizing Radiation on the Moon David A. Kring Ionizing Radiation on the Moon Low-E solar wind particles (dominant source) High-E galactic cosmic rays (smaller source) Solar flare particles

More information

A diamond detector for Space Research and Therapy. Radek Pleskac (GSI Darmstadt)

A diamond detector for Space Research and Therapy. Radek Pleskac (GSI Darmstadt) A diamond detector for Space Research and Therapy Radek Pleskac (GSI Darmstadt) Finland France Germany India Poland Romania Russia Slovenia Spain Sweden UK Overview Biophysics Space Research Some Examples

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

Role of Cosmic Dust Analogues in prebiotic chemistry

Role of Cosmic Dust Analogues in prebiotic chemistry Role of Cosmic Dust Analogues in prebiotic chemistry John Robert Brucato INAF - Astrophysical Observatory of Arcetri, Florence Italy SIA - Italian Astrobiology Society jbrucato@arcetri.astro.it Dust is

More information

IAC-08-A MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR

IAC-08-A MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR IAC-08-A1.4.06 MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR Lawrence W. Townsend The University of Tennessee, Knoxville, Tennessee, United States of America ltownsen@tennessee.edu

More information

Monomers are atoms or small molecules that bond together to form more complex structures such as polymers.

Monomers are atoms or small molecules that bond together to form more complex structures such as polymers. Monomers are atoms or small molecules that bond together to form more complex structures such as polymers. There are four main types of monomer, including sugars, amino acids, fatty acids, and nucleotides.

More information

Observing Habitable Environments Light & Radiation

Observing Habitable Environments Light & Radiation Homework 1 Due Thurs 1/14 Observing Habitable Environments Light & Radiation Given what we know about the origin of life on Earth, how would you recognize life on another world? Would this require a physical

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

First results of the UHV system 'LIFE' (Light Irradiation Facility for Exochemistry)

First results of the UHV system 'LIFE' (Light Irradiation Facility for Exochemistry) Osservatorio Astronomico di Palermo (INAF-OAPa) First results of the UHV system '' (Light Irradiation Facility for Exochemistry) Antonio Jimenez-Escobar Angela Ciaravella Cesare Cecchi-Pestellini Giuliana

More information

Diffuse Interstellar Medium

Diffuse Interstellar Medium Diffuse Interstellar Medium Basics, velocity widths H I 21-cm radiation (emission) Interstellar absorption lines Radiative transfer Resolved Lines, column densities Unresolved lines, curve of growth Abundances,

More information

Fragmentation and space radioprotection

Fragmentation and space radioprotection Fragmentation and space radioprotection C. La Tessa 1,2, E. Tracino 3, C. Schuy 2, M. Rovituso 2, C. Lobascio 3, A. Menicucci 4, E. Daly 4, M. Sivertz 1, A. Rusek 1, M. Durante 2 1 BNL (USA) 2 GSI (Germany)

More information

Applications of Nuclear Analytical Techniques in Geoscience

Applications of Nuclear Analytical Techniques in Geoscience Applications of Nuclear Analytical Techniques in Geoscience J. Aspiazu a,1, J. López a, J. Ramírez a, M. E. Montero b, P. Villaseñor a a Intituto Nacional de Investigaciones Nucleares (ININ), Carretera

More information

Spallation, multifragmentation and radioactive beams

Spallation, multifragmentation and radioactive beams Spallation, multifragmentation and radioactive beams Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 25, 2011 NUCS 342 (Lecture 26) March 25, 2011 1 / 35 Outline 1 Energy

More information

CRaTER Pre-Environmental Review (I-PER) Science Requirements Update

CRaTER Pre-Environmental Review (I-PER) Science Requirements Update CRaTER Pre-Environmental Review (I-PER) Science Requirements Update Justin C Kasper Smithsonian Astrophysical Observatory September 10-11, 2007 Outline Instrument Overview Verification Methods Science

More information

Evaluation of Various Material Properties to Shield from Cosmic Radiation Using FLUKA Transport Code

Evaluation of Various Material Properties to Shield from Cosmic Radiation Using FLUKA Transport Code Evaluation of Various Material Properties to Shield from Cosmic Radiation Using FLUKA Transport Code Roman Savinov GRADUATE SEMINAR CAL POLY April 7, 2016 Presentation Outline Thesis Statement Background

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

The origin of the light elements in the early Universe

The origin of the light elements in the early Universe 1 HUBERT REEVES* The origin of the light elements in the early Universe Shortly after World War II, George Gamov and his collaborators (Alpher et al. 148) considered the possibility that all chemical elements

More information

Cosmic Rays. This showed that the energy of cosmic rays was many times that of any other natural or artificial radiation known at that time.

Cosmic Rays. This showed that the energy of cosmic rays was many times that of any other natural or artificial radiation known at that time. Cosmic Rays 1. Discovery As long ago as 1900, C. T. R. Wilson and others found that the charge on an electroscope always 'leaked' away in time, and this could never be prevented, no matter how good the

More information

" There's life Jim...but we don't KNOW it (yet): a journey through the chemically controlled cosmos from star birth to the formation of life"

 There's life Jim...but we don't KNOW it (yet): a journey through the chemically controlled cosmos from star birth to the formation of life " There's life Jim...but we don't KNOW it (yet): a journey through the chemically controlled cosmos from star birth to the formation of life" 30 th May 2007, Stockholm Observatory with support from the

More information

Possible Extra Credit Option

Possible Extra Credit Option Possible Extra Credit Option Attend an advanced seminar on Astrophysics or Astronomy held by the Physics and Astronomy department. There are seminars held every 2:00 pm, Thursday, Room 190, Physics & Astronomy

More information

Estec final presentation days 2018

Estec final presentation days 2018 Estec final presentation days 2018 Background VESPER Facility Conclusion & Outlook Jovian environment Radiation Effects VESPER history VESPER status Overview Experimental Results External Campaign Summary

More information

RussianSEE test approach: available standards, test variables, difficulties and future trends

RussianSEE test approach: available standards, test variables, difficulties and future trends RussianSEE test approach: available standards, test variables, difficulties and future trends 2 Outline The Branch of URSC ISDE Roscosmos testing aids Test facility Heavy ions Protons Laser Standards and

More information

Surface analysis techniques

Surface analysis techniques Experimental methods in physics Surface analysis techniques 3. Ion probes Elemental and molecular analysis Jean-Marc Bonard Academic year 10-11 3. Elemental and molecular analysis 3.1.!Secondary ion mass

More information

Full file at https://fratstock.eu

Full file at https://fratstock.eu VanMeter: Microbiology for the Healthcare Professional Chapter 02: Chemistry of Life Test Bank MULTIPLE CHOICE 1. The atomic number equals the number of a. Protons b. Neutrons c. Electrons d. Protons and

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

Status Report: Multi-Channel TCT

Status Report: Multi-Channel TCT Status Report: Multi-Channel TCT J. Becker, D. Eckstein, R. Klanner, G. Steinbrück University of Hamburg 1. Introduction 2. Set-up and measurement techniques 3. First results from single-channel measurements

More information

Spectroscopy on Mars!

Spectroscopy on Mars! Spectroscopy on Mars! Pathfinder Spirit and Opportunity Real World Friday H2A The Mars Pathfinder: Geological Elemental Analysis On December 4th, 1996, the Mars Pathfinder was launched from earth to begin

More information

Life of stars, formation of elements

Life of stars, formation of elements Life of stars, formation of elements Recap life of sun Life of massive stars Creation of elements Formation of stars Profs. Jack Baldwin & Horace Smith will teach course for the remainder of the term to

More information

The Interstellar Medium

The Interstellar Medium http://www.strw.leidenuniv.nl/~pvdwerf/teaching/ The Interstellar Medium Lecturer: Dr. Paul van der Werf Fall 2014 Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium

More information

Fission Fragment characterization with FALSTAFF at NFS

Fission Fragment characterization with FALSTAFF at NFS EPJ Web of Conferences 42, 01001 (2013) DOI: 10.1051/ epjconf/ 20134201001 C Owned by the authors, published by EDP Sciences, 2013 Fission characterization with FALSTAFF at NFS D. Doré 1, F. Farget 2,

More information

Cosmogenic neutrinos II

Cosmogenic neutrinos II Cosmogenic neutrinos II Dependence of fluxes on the cosmic ray injection spectra and the cosmological evolution of the cosmic ray sources Expectations from the cosmic ray spectrum measured by the Auger

More information

The Super-FRS Project at GSI

The Super-FRS Project at GSI 2 m A G A T A The Super-FRS Project at GSI FRS facility The concept of the new facility The Super-FRS and its branches Summary Martin Winkler for the Super-FRS working group CERN, 3.1.22 Energy Buncher

More information

TIGER: Progress in Determining the Sources of Galactic Cosmic Rays

TIGER: Progress in Determining the Sources of Galactic Cosmic Rays TIGER: Progress in Determining the Sources of Galactic Cosmic Rays Martin H. Israel APS May 3, 2009 B. F. Rauch, K. Lodders, M. H. Israel, W. R. Binns, L. M. Scott Washington University in St. Louis J.

More information

Chemistry (

Chemistry ( Question 2.1: (i) Calculate the number of electrons which will together weigh one gram. (ii) Calculate the mass and charge of one mole of electrons. Answer 2.1: (i) Mass of one electron = 9.10939 10 31

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy Thomas Niedermayr, I. D. Hau, S. Terracol, T. Miyazaki, S. E. Labov and S. Friedrich Former colleagues: M. F. Cunningham, J. N.

More information

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications arxiv: 1706.00391 accepted by PRD Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications Bing T. Zhang Peking University, Penn State University Collaborator: Kohta

More information

Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications

Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications E. R. Benton 1, A. C. Lucas 1, O. I. Causey 1, S. Kodaira 2 and H. Kitamura 2 1 E. V. Benton Radiation Physics

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

Galactic cosmic rays from NUCLEON to HERO. (in Moscow State University) Lomonosov Moscow State University

Galactic cosmic rays from NUCLEON to HERO. (in Moscow State University) Lomonosov Moscow State University Lomonosov Moscow State University Galactic cosmic rays from NUCLEON to HERO (in Moscow State University) D. Podorozhny for Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016 Ionization Calorimeter

More information

Thermal and Non-Thermal X-Rays from the Galactic Center

Thermal and Non-Thermal X-Rays from the Galactic Center Thermal and Non-Thermal X-Rays from the Galactic Center V. Dogiel, P.N.Lebedev Institue of Physics In collaboration with: A. Bamba, K.-S. Cheng, D. Chernyshov, A. Ichimura, (alphabetical order) H. Inoue,

More information

Interaction of charged particles and photons with matter

Interaction of charged particles and photons with matter Interaction of charged particles and photons with matter Robert Miyaoka, Ph.D. Old Fisheries Center, Room 200 rmiyaoka@u.washington.edu Passage of radiation through matter depends on Type of radiation

More information

PHITS calculation of the radiation field in HIMAC BIO

PHITS calculation of the radiation field in HIMAC BIO PHITS calculation of the radiation field in HIMAC BIO Ondřej Ploc, Yukio Uchihori, Hisashi Kitamura, Lembit Sihver National Institute of Radiological Sciences, Chiba, Japan Nuclear Physics Institute, Prague,

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

Hydrogenation of solid hydrogen cyanide HCN and methanimine CH 2 NH at low temperature

Hydrogenation of solid hydrogen cyanide HCN and methanimine CH 2 NH at low temperature Hydrogenation of solid hydrogen cyanide HCN and methanimine CH 2 NH at low temperature P. Theule, F. Borget, F. Mispelaer, G. Danger, F. Duvernay, J. C. Guillemin, and T. Chiavassa 5 534,A64 (2011) By

More information

Characterization of heavy charged particle fields using fluorescent nuclear track detectors

Characterization of heavy charged particle fields using fluorescent nuclear track detectors PTCOG 53, Shanghai June 12, 2014 Characterization of heavy charged particle fields using fluorescent nuclear track detectors Grischa M. Klimpki 1, P. Incardona 2, H. Mescher 1, T. Pfeiler 1, M.S. Akselrod

More information

Energy calibration of the threshold of Medipix for ATLAS

Energy calibration of the threshold of Medipix for ATLAS Energy calibration of the threshold of Medipix for ATLAS Céline Lebel Université de Montréal lebel@lps.umontreal.ca presenting for the Institut of Experimental and Applied Physics of the Czech Technical

More information

Today in Astronomy 106: the long molecules of life

Today in Astronomy 106: the long molecules of life Today in Astronomy 106: the long molecules of life Wet chemistry of nucleobases Nuances of polymerization Replication or mass production of nucleic acids Transcription Codons The protein hemoglobin. From

More information

Particle Astrophysics

Particle Astrophysics Particle Astrophysics Particle Astrophysics Spring 2015 1 Discovery of cosmic rays! Cosmic rays were discovered in 1912 by Hess! he showed that the intensity of penetrating radiation increased with altitude!

More information

HIGH INTENSITY ION BEAMS AT GANIL. ECOS facility meeting, may 16th 2013 GANIL - F. Chautard

HIGH INTENSITY ION BEAMS AT GANIL. ECOS facility meeting, may 16th 2013 GANIL - F. Chautard HIGH INTENSITY ION BEAMS AT GANIL ECOS facility meeting, may 16th 2013 GANIL - F. Chautard The first beam of GANIL was sent to an experimental room in 1983. Since then, the variety (116) and intensity

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

[2] State in what form the energy is released in such a reaction.... [1]

[2] State in what form the energy is released in such a reaction.... [1] (a) The following nuclear reaction occurs when a slow-moving neutron is absorbed by an isotope of uranium-35. 0n + 35 9 U 4 56 Ba + 9 36Kr + 3 0 n Explain how this reaction is able to produce energy....

More information

Comet Science Goals II

Comet Science Goals II Comet Science Goals II {questions for goals} Don Brownlee Did the events postulated by the Nice Hypothesis really happen? Were there wide-spread solar system wide impact events that were coeval with the

More information

Simulation of Radiation Effects on NGST. Bryan Fodness, Thomas Jordan, Jim Pickel, Robert Reed, Paul Marshall, Ray Ladbury

Simulation of Radiation Effects on NGST. Bryan Fodness, Thomas Jordan, Jim Pickel, Robert Reed, Paul Marshall, Ray Ladbury Simulation of Radiation Effects on NGST Bryan Fodness, Thomas Jordan, Jim Pickel, Robert Reed, Paul Marshall, Ray Ladbury 1 Outline Introduction to Project Goals and Challenges Approach Preliminary Results

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics II. Core-collapse supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008

More information

Simulating chemistry on interstellar dust grains in the laboratory

Simulating chemistry on interstellar dust grains in the laboratory From Stars to Life, April 3-6 2013, Gainesville FL Simulating chemistry on interstellar dust grains in the laboratory Nicolas Polfer University of Florida Department of Chemistry http://www.cosmotography.com/images/cosmic_nurseries.html

More information

LECTURE 6: INTERACTION OF RADIATION WITH MATTER

LECTURE 6: INTERACTION OF RADIATION WITH MATTER LCTUR 6: INTRACTION OF RADIATION WITH MATTR All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Interlude The concept of cross-section

More information

Molecular depth profiling with reactive ions, or why chemistry matters in sputtering.

Molecular depth profiling with reactive ions, or why chemistry matters in sputtering. Molecular depth profiling with reactive ions, or why chemistry matters in sputtering. L. Houssiau, N. Mine, N. Wehbe Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP),

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

Astrochemistry (2) Interstellar extinction. Measurement of the reddening

Astrochemistry (2) Interstellar extinction. Measurement of the reddening Measurement of the reddening The reddening of stellar colours casts light on the properties of interstellar dust Astrochemistry (2) Planets and Astrobiology (2016-2017) G. Vladilo The reddening is measured

More information

Introduction to REX-ISOLDE concept and overview of (future) European projects

Introduction to REX-ISOLDE concept and overview of (future) European projects Introduction to REX-ISOLDE concept and overview of (future) European projects Thanks to: Y. Blumenfeld, P. Butler, M. Huyse, M. Lindroos, K. Riisager, P. Van Duppen Energetic Radioactive Beam Facilities

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Nucleosynthesis in core-collapse supernovae Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe, p-process shock wave heats falling matter shock

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information