Simulating chemistry on interstellar dust grains in the laboratory

Size: px
Start display at page:

Download "Simulating chemistry on interstellar dust grains in the laboratory"

Transcription

1 From Stars to Life, April , Gainesville FL Simulating chemistry on interstellar dust grains in the laboratory Nicolas Polfer University of Florida Department of Chemistry

2 Simulating chemistry on interstellar dust grains in the laboratory starting with known molecules (e.g. polycyclic aromatic hydrocarbons) as simple analogues to dust grains

3 Background Polycyclic aromatic hydrocarbons (PAHs) in the ISM emission spectrum from the Orion ionization ridge C-H in-plane C-C stretching C-H out-of-plane Orion ionization ridge mix of lab absorption spectra of PAHs. Ap J 1999, 511, L115. 3

4 Project 1: Formation of H 2 in the Interstellar Medium (ISM) Polycyclic Aromatic Hydrocarbons (PAHs) Hypothesis Photolysis reactions contribute to enhanced H 2 column densities in ISM Aims Experimentally: establish reaction rates and branching ratios for photolysis Theoretically: understand reaction pathway(s) UV/vis -H 2 Rates? Yields? Pathways? 4

5 Project 2: Depletion of metal atoms (Ni, Fe) in the ISM Depletion Factors for Selected Interstellar Elements compared to Solar Gas-Phase Elements Many metals are depleted Hypothesis Gas-phase elements depleted in ISM due to binding to PAHs (dust grains)? Aims Experimentally: measure IR spectra and compare to Theoretically: calculated IR spectra establish binding energies Phys. Scripta 165, T47, 1993 Binding pattern and binding energy?

6 Experimental techniques Temperature Controller 12 K Helium Cycle Cryostat Pump Rotary Feed- Through cryogenic set-up (12 K) simulate ices on dust grains preparation of complexes: - UV lamp irradiation (photolysis) - laser ablation of metal structural interrogation of complexes by infrared spectroscopy (FTIR) Gold (Fe doped)- Constantant TC Copper Sample Mount Resistive Heater CsI 12K Window Ni Rod Ar gas FT PAHs Oven IR Nd-YAG Laser RGA

7 Project 1: Formation of H 2 Classes of PAHs anthracene coronene PAHs with aliphatic (sp 3 ) carbons 1,2-dihydronaphthalene 9,10-dihydroanthracene 5,12-dihydrotetracene 7

8 H 2 Loss of 9,10-dihydroanthracene (9,10-DHA) H 2 One UV photon 9,10-DHA Anthracene

9 Compute dissociation pathway for H atoms removal from C9 and C10 How to confirm experimentally? = 546 nm Density functional theory B3LYP/ G(d,p), Zero Point Energy(ZPE) scaling factor

10 UV-vis absorbance spectrum Hg lamp emission Low-pass filter

11 Identify photolysis tetracene product based on reference IR spectrum Photolysis products Precursor CO 2 bands Intensity after 34 hr UV-photolysis after 12 hr UV-photolysis DHT without photo Wavenumber (cm -1 )

12 Photolysis: confirmation by IR spectroscopy Quantify depletion of precursor and appearance of products * anthracene -H 2 UV (254 nm) dihydroanthracene Ap. J., 2012, 744, 61 * Methanol band Unidentified fragments bands are overlaped by strong precursor bands 12

13 DHA: Branching ratios and rates H % yield One UV photon dihydroanthracene Rate Experiment 40% depletion for x10 14 photons cm -2 s -1 10%? ISM anthracene In dark 10 3 photons cm -2 s -1 ~770 million years At ionization 10 7 photons cm -2 s -1 ~77,000 years

14 dihydroanthracene dihydrotetracene ev = 478 nm H 2 0 ev ev ev B3LYP/ G(d,p)

15 Dihydrotetracene: Branching ratios and rates (cf. 90% for dihydroanthracene) 32% yield -H 2 One UV photon dihydrotetracene Rate Experiment cf. 40% cf. 21 hrs 20% depletion for x10 14 photons cm -2 s -1 68%? ISM tetracene Add one aromatic ring 9 times less efficient dehydrogenation In dark 10 3 photons cm -2 s -1 ~6 billion years At ionization 10 7 photons cm -2 s -1 ~600,000 years

16 Cationic PAHs + coronene VERY different conditions: Gas-phase room temperature

17 Binding pattern and binding energy? Project 2: Metal binding Gas-phase elements depleted in ISM due to binding to PAHs

18 Binding energies of Metal-PAH s (Metal = Ni, Fe, or Fe + ) MPW1PW91/6-31+G(d,p)) (Fe-PAH) + Ni-PAH D 0 / ev Dissociation Energy, D o = E ZPE (Ligand) + E(Ni) -E ZPE (Ni(Ligand)) Fe-PAH* Naphthalene Fluorene Pyrene Coronene *Chem. Phys. 2007, 342, 107 Metal-PAH s

19 Example: Ni on pyrene 0.0 ev ev B C A Pyrene ev ev 0.0 ev

20 Exp. Ni- Pyrene ev ev 0.0 ev A Calc C Calc B Calc Exp.

21 Project 1: Formation of H 2 Summary -Confirm H 2 formation for photolysis from neutral PAHs - BUT rates/yields decrease with size - Cationic PAHs more promising Project 2: Binding of metal atoms - Open questions about accuracy of computations - IR spectroscopy for benchmarking of theory Nathan Roehr Acknowledgements Jan Szczepanski Yi Fu Poster #74 $$$ Opportunity Seed Fund (UF) $$$

22 Proof of H 2 : detection of mass 2 1.2x10-6 H 2 /Ar (0.1%) matrix H 2 Partial Pressure [Torr] x x Matrix Temperature [K] 0.0 H 2 trapped in matrix, detected at m/z Photolyzed dihydroanthracene/ar matrix Photolyzed Ar only matrix H 2 trapped in matrix, detected at m/z 2

Laser Dissociation of Protonated PAHs

Laser Dissociation of Protonated PAHs 100 Chapter 5 Laser Dissociation of Protonated PAHs 5.1 Experiments The photodissociation experiments were performed with protonated PAHs using different laser sources. The calculations from Chapter 3

More information

Excited States Calculations for Protonated PAHs

Excited States Calculations for Protonated PAHs 52 Chapter 3 Excited States Calculations for Protonated PAHs 3.1 Introduction Protonated PAHs are closed shell ions. Their electronic structure should therefore be similar to that of neutral PAHs, but

More information

Protonated Polycyclic Aromatic Hydrocarbons and the Interstellar Medium

Protonated Polycyclic Aromatic Hydrocarbons and the Interstellar Medium 1 Chapter 1 Protonated Polycyclic Aromatic Hydrocarbons and the Interstellar Medium 1.1 Interstellar Molecules Although hydrogen is the most abundant element in the universe, it is other elements that

More information

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium:

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium: ASTR2050 Spring 2005 Lecture 10am 29 March 2005 Please turn in your homework now! In this class we will discuss the Interstellar Medium: Introduction: Dust and Gas Extinction and Reddening Physics of Dust

More information

LABORATORY SPECTROSCOPY OF PROTONATED PAH MOLECULES RELEVANT FOR INTERSTELLAR CHEMISTRY

LABORATORY SPECTROSCOPY OF PROTONATED PAH MOLECULES RELEVANT FOR INTERSTELLAR CHEMISTRY PAHs and the Universe C. Joblin and A.G.G.M. Tielens (eds) EAS Publications Series, 46 (2011) 103-108 www.eas.org LABORATORY SPECTROSCOPY OF PROTONATED PAH MOLECULES RELEVANT FOR INTERSTELLAR CHEMISTRY

More information

Ground State Calculations for Protonated PAHs

Ground State Calculations for Protonated PAHs 15 Chapter 2 Ground State Calculations for Protonated PAHs 2.1 Introduction Ab initio ground electronic state calculations can be used to determine geometries and energies of all possible protonated PAH

More information

Spectroscopic Investigation of Polycyclic Aromatic Hydrocarbons Trapped in Liquid Helium Clusters

Spectroscopic Investigation of Polycyclic Aromatic Hydrocarbons Trapped in Liquid Helium Clusters Spectroscopic Investigation of Polycyclic Aromatic Hydrocarbons Trapped in Liquid Helium Clusters Friedrich Huisken and Serge Krasnokutski Max-Planck-Institut für Strömungsforschung, Bunsenstr. 10, D-37073

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

Astrochemistry (2) Interstellar extinction. Measurement of the reddening

Astrochemistry (2) Interstellar extinction. Measurement of the reddening Measurement of the reddening The reddening of stellar colours casts light on the properties of interstellar dust Astrochemistry (2) Planets and Astrobiology (2016-2017) G. Vladilo The reddening is measured

More information

Christine Joblin Institut de Recherche en Astrophysique et Planétologie Université de Toulouse [UPS] CNRS

Christine Joblin Institut de Recherche en Astrophysique et Planétologie Université de Toulouse [UPS] CNRS Christine Joblin Institut de Recherche en Astrophysique et Planétologie Université de Toulouse [UPS] CNRS Negative ions and molecules in astrophysics Gothenburg and Onsala, Sweden 22-24/08/2011 Outline

More information

Relaxation of energized PAHs

Relaxation of energized PAHs Relaxation of energized PAHs 2018 1 st year PhD student Supervisor: Dr. Christine Joblin May 16, 2018 Mid-Infrared Spectra Emission features 3.3, 6.2, 7.7, 8.6, 11.2, 12.7 µm Vibrational modes of PAHs

More information

8: Composition and Physical state of Interstellar Dust

8: Composition and Physical state of Interstellar Dust 8: Composition and Physical state of Interstellar Dust James Graham UC, Berkeley 1 Reading Tielens, Interstellar Medium, Ch. 5 Mathis, J. S. 1990, AARA, 28, 37 Draine, B. T., 2003, AARA, 41, 241 2 Nature

More information

Chemical Enrichment of the ISM by Stellar Ejecta

Chemical Enrichment of the ISM by Stellar Ejecta Chemical Enrichment of the ISM by Stellar Ejecta Sun Kwok The University of Hong Kong IAU GA Beijing, Special Session 12, August 31, 2012 Molecular synthesis in the late stages of stellar evolution It

More information

Lecture 5. Interstellar Dust: Chemical & Thermal Properties

Lecture 5. Interstellar Dust: Chemical & Thermal Properties Lecture 5. Interstellar Dust: Chemical & Thermal Properties!. Spectral Features 2. Grain populations and Models 3. Thermal Properties 4. Small Grains and Large Molecules -------------------------------------------------

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)? How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

More information

Cosmic Evolution, Part II. Heavy Elements to Molecules

Cosmic Evolution, Part II. Heavy Elements to Molecules Cosmic Evolution, Part II Heavy Elements to Molecules First a review of terminology: Element Atom Electro- magnetic Electrons Nucleus Electromagnetic Strong Nuclear Compound Molecule Protons Neutrons Neutral

More information

Physics 224 The Interstellar Medium

Physics 224 The Interstellar Medium Physics 224 The Interstellar Medium Lecture #11: Dust Composition, Photoelectric Heating, Neutral Gas Outline Part I: Dust Heating & Cooling continued Part III: Dust Emission & Photoelectric Heating Part

More information

kev e - and H + ECR source Shock wave Molecular ices 3 C 2 H 2 C 6 H 6 2 C 3 H 3 Dust impact Europa

kev e - and H + ECR source Shock wave Molecular ices 3 C 2 H 2 C 6 H 6 2 C 3 H 3 Dust impact Europa B Sivaraman kev e - and H + Shock wave Molecular ices ECR source 3 C 2 H 2 C 6 H 6 Europa Dust impact 2 C 3 H 3 C 6 H 6 Temperature, K 273 K 70 / 80 90 K 50 60 K < 20 K New molecules (ISM) C 60 - C 70

More information

Unscrambling the Egg. Yvonne Pendleton NASA Ames Research Center. JWST Workshop Nov. 14, 2017

Unscrambling the Egg. Yvonne Pendleton NASA Ames Research Center. JWST Workshop Nov. 14, 2017 Unscrambling the Egg Yvonne Pendleton NASA Ames Research Center JWST Workshop Nov. 14, 2017 From interstellar dust to new stars and planets Comparisons between material forming new planetary systems and

More information

Class 3. The PAH Spectrum, what does it tell us??

Class 3. The PAH Spectrum, what does it tell us?? Class 3 The PAH Spectrum, what does it tell us?? PAH Vibrations! CH str! CC str! CC str /CH ip! CH oop! 3! 4! 5! 6! 7! 8! 9! 10! 15! Wavelength (µm)! NASA Ames! Astrochemisty Lab! Vibration - S. Langhoff!

More information

Interstellar Dust and Extinction

Interstellar Dust and Extinction University of Oxford, Astrophysics November 12, 2007 Outline Extinction Spectral Features Emission Scattering Polarization Grain Models & Evolution Conclusions What and Why? Dust covers a range of compound

More information

An Investigation of Precursors of Combustion Generated Soot Particles in Premixed Ethylene Flames Based on Laser-Induced Fluorescence

An Investigation of Precursors of Combustion Generated Soot Particles in Premixed Ethylene Flames Based on Laser-Induced Fluorescence 7 th Annual CE-CERT-SJTU Student Symposium An Investigation of Precursors of Combustion Generated Soot Particles in Premixed Ethylene Flames Based on Laser-Induced Fluorescence Chen Gu Problems of Fossil

More information

Hydrogenation of solid hydrogen cyanide HCN and methanimine CH 2 NH at low temperature

Hydrogenation of solid hydrogen cyanide HCN and methanimine CH 2 NH at low temperature Hydrogenation of solid hydrogen cyanide HCN and methanimine CH 2 NH at low temperature P. Theule, F. Borget, F. Mispelaer, G. Danger, F. Duvernay, J. C. Guillemin, and T. Chiavassa 5 534,A64 (2011) By

More information

Visible and IR Absorption Spectroscopy. Andrew Rouff and Kyle Chau

Visible and IR Absorption Spectroscopy. Andrew Rouff and Kyle Chau Visible and IR Absorption Spectroscopy Andrew Rouff and Kyle Chau The Basics wavelength= (λ) original intensity= Ι o sample slab thickness= dl Final intensity= I f ε = molar extinction coefficient -di=

More information

Beyond the Visible -- Exploring the Infrared Universe

Beyond the Visible -- Exploring the Infrared Universe Beyond the Visible -- Exploring the Infrared Universe Prof. T. Jarrett (UCT) Infrared Window Telescopes ISM -- Galaxies Infrared Window Near-infrared: 1 to 5 µm Mid-infrared: 5 to 50 µm

More information

Cosmic Evolution, Part II. Heavy Elements to Molecules

Cosmic Evolution, Part II. Heavy Elements to Molecules Cosmic Evolution, Part II Heavy Elements to Molecules Heavy elements molecules First a review of terminology: Electromagnetic Electrons Element Atom Nucleus Compound Molecule Electromagnetic Strong Nuclear

More information

Supplementary Information for Theoretical. determination of adsorption and ionisation. energies of polycyclic aromatic hydrocarbons

Supplementary Information for Theoretical. determination of adsorption and ionisation. energies of polycyclic aromatic hydrocarbons Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Supplementary Information for Theoretical determination of adsorption and ionisation

More information

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs Energy mosquito lands on your arm = 1 erg Firecracker = 5 x 10 9 ergs 1 stick of dynamite = 2 x 10 13 ergs 1 ton of TNT = 4 x 10 16 ergs 1 atomic bomb = 1 x 10 21 ergs Magnitude 8 earthquake = 1 x 10 26

More information

Cryochemistry in the inert and interstellar media

Cryochemistry in the inert and interstellar media Cryochemistry in the inert and interstellar media Serge A. Krasnokutski Friedrich Schiller University of Jena, 07740 Jena, Germany MPI for Astronomy, Königstuhl 17,69117 Heidelberg, Germany Holes in heaven

More information

ANALYZING ASTRONOMICAL OBSERVATIONS WITH THE NASA AMES PAH DATABASE

ANALYZING ASTRONOMICAL OBSERVATIONS WITH THE NASA AMES PAH DATABASE PAHs and the Universe C. Joblin and A.G.G.M. Tielens (eds) EAS Publications Series, 46 (2011) 117-122 www.eas.org ANALYZING ASTRONOMICAL OBSERVATIONS WITH THE NASA AMES PAH DATABASE J. Cami 1, 2 Abstract.

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium Physics and Chemistry of the Interstellar Medium Sun Kwok The University of Hong Kong UNIVERSITY SCIENCE BOOKS Sausalito, California * Preface xi The Interstellar Medium.1.1 States of Matter in the ISM

More information

Dust. The four letter word in astrophysics. Interstellar Emission

Dust. The four letter word in astrophysics. Interstellar Emission Dust The four letter word in astrophysics Interstellar Emission Why Dust Dust attenuates and scatters UV/optical/NIR Amount of attenuation and spectral shape depends on dust properties (grain size/type)

More information

INVESTIGATION OF THE ULTRAVIOLET, VISIBLE, AND NEAR-INFRARED ABSORPTION SPECTRA OF HYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR CATIONS

INVESTIGATION OF THE ULTRAVIOLET, VISIBLE, AND NEAR-INFRARED ABSORPTION SPECTRA OF HYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR CATIONS The Astrophysical Journal, 628:555 566, 2005 July 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. INVESTIGATION OF THE ULTRAVIOLET, VISIBLE, AND NEAR-INFRARED ABSORPTION

More information

Hydrogen Abstraction/Acetylene Addition Revealed

Hydrogen Abstraction/Acetylene Addition Revealed Hydrogen Abstraction/Acetylene Addition Revealed Dorian S. N. Parker, Ralf I. Kaiser,* Tyler P. Troy, and Musahid Ahmed* University of Hawaii at Manoa, USA Lawrence Berkeley National Laboratory, USA Angew.

More information

Astrochimistry Spring 2013 Lecture 4: Interstellar PAHs NGC HST

Astrochimistry Spring 2013 Lecture 4: Interstellar PAHs NGC HST Astrochimistry Spring 2013 Lecture 4: Interstellar PAHs NGC 7023 - HST Julien Montillaud 8th February 2013 Outline I. From Unidentified to Aromatic Infrared Bands (7 p.) I.1 Historical background I.2 Observational

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium Interstellar Medium Physics 113 Goderya Chapter(s): 10 Learning Outcomes: A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of

More information

Chapter 3. Infrared Reflectance Spectra of Tholins

Chapter 3. Infrared Reflectance Spectra of Tholins 3-1 Chapter 3. Infrared Reflectance Spectra of Tholins at Cryogenic Temperatures 3.1. Introduction Infrared spectroscopy is one of the cornerstone techniques for molecular structure determination. Because

More information

Interstellar Medium by Eye

Interstellar Medium by Eye Interstellar Medium by Eye Nebula Latin for cloud = cloud of interstellar gas & dust Wide angle: Milky Way Summer Triangle (right) α&β Centauri, Coal Sack Southern Cross (below) Dust-Found in the Plane

More information

The Interstellar Medium

The Interstellar Medium The Interstellar Medium Fall 2014 Lecturer: Dr. Paul van der Werf Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium 528 doney@strw.leidenuniv.nl Class Schedule

More information

Chapter 12: The Lives of Stars. How do we know it s there? Three Kinds of Nebulae 11/7/11. 1) Emission Nebulae 2) Reflection Nebulae 3) Dark Nebulae

Chapter 12: The Lives of Stars. How do we know it s there? Three Kinds of Nebulae 11/7/11. 1) Emission Nebulae 2) Reflection Nebulae 3) Dark Nebulae 11/7/11 Chapter 12: The Lives of Stars Space is Not Empty The Constellation Orion The Orion Nebula This material between the stars is called the Interstellar Medium It is very diffuse and thin. In fact

More information

Taking fingerprints of stars, galaxies, and interstellar gas clouds

Taking fingerprints of stars, galaxies, and interstellar gas clouds - - Taking fingerprints of stars, galaxies, and interstellar gas clouds Absorption and emission from atoms, ions, and molecules Periodic Table of Elements The universe is mostly hydrogen H and helium He

More information

INDEX OF SUBJECTS 6, 14, 23, 50, 95, 191 4, 191, 234

INDEX OF SUBJECTS 6, 14, 23, 50, 95, 191 4, 191, 234 INDEX OF SUBJECTS Abundances, elemental Abundances, ionic AGB stars (see Stars, AGB) Age, nebulae Asymptotic Giant Branch (AGB) Be stars (see Stars, Be) Bipolar structure, nebulae Carbon stars Carbon stars,

More information

Lecture 18 - Photon Dominated Regions

Lecture 18 - Photon Dominated Regions Lecture 18 - Photon Dominated Regions 1. What is a PDR? 2. Physical and Chemical Concepts 3. Molecules in Diffuse Clouds 4. Galactic and Extragalactic PDRs References Tielens, Ch. 9 Hollenbach & Tielens,

More information

Astronomy 106, Fall September 2015

Astronomy 106, Fall September 2015 Today in Astronomy 106: molecules to molecular clouds to stars Aromatic (benzene-ring) molecules in space Formation of molecules, on dust-grain surfaces and in the gas phase Interstellar molecular clouds

More information

Status of the Diffuse Interstellar Band Problem

Status of the Diffuse Interstellar Band Problem Status of the Diffuse Interstellar Band Problem Ben McCall Department of Chemistry and Department of Astronomy University of Illinois at Urbana-Champaign APO DIB Collaboration: Tom Fishman (Chicago), Scott

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

Supporting Information

Supporting Information Supporting Information Han et al. 10.1073/pnas.1212690110 SI Materials and Methods Aging of Soot by O 3. Soot particles were deposited on the ZnSe crystal. The sample in the in situ reactor was purged

More information

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O HW2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The polarization of light passing though the dust grains shows that: 1) A) the dust grains

More information

LABORATORY INFRARED SPECTROSCOPY OF GASEOUS NEGATIVELY CHARGED POLYAROMATIC HYDROCARBONS

LABORATORY INFRARED SPECTROSCOPY OF GASEOUS NEGATIVELY CHARGED POLYAROMATIC HYDROCARBONS The Astrophysical Journal, 787:17 (11pp), 214 June 1 C 214. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:1.188/4-637x/787/2/17 LABORATORY INFRARED SPECTROSCOPY OF GASEOUS

More information

The Interstellar Medium (ch. 18)

The Interstellar Medium (ch. 18) The Interstellar Medium (ch. 18) The interstellar medium (ISM) is all the gas (and about 1% dust) that fills our Galaxy and others. It is the raw material from which stars form, and into which stars eject

More information

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom Periodic Table of Elements Taking Fingerprints of Stars, Galaxies, and Other Stuff Absorption and Emission from Atoms, Ions, and Molecules Universe is mostly (97%) Hydrogen and Helium (H and He) The ONLY

More information

Dust: Grain Populations, Extinction Curves, and Emission Spectra Monday, January 31, 2011

Dust: Grain Populations, Extinction Curves, and Emission Spectra Monday, January 31, 2011 Dust: Grain Populations, Extinction Curves, and Emission Spectra Monday, January 31, 2011 CONTENTS: 1. Introduction 2. The Extinction Curve and Abundance Constraints A. Formalities B. Features 3. Infrared

More information

Lowest Energy Vibrational Modes of Nine Naphthalene Derivatives; Experiment and Theory

Lowest Energy Vibrational Modes of Nine Naphthalene Derivatives; Experiment and Theory Lowest Energy Vibrational Modes of Nine Naphthalene Derivatives; Experiment and Theory Marie-Aline Martin-Drumel*, O. Pirali, Y. Loquais, C. Falvo, P. Parneix & Ph. Bréchignac ISMO, CNRS, University of

More information

THE MID-INFRARED LABORATORY SPECTRA OF NAPHTHALENE (C 10 H 8 ) IN SOLID H 2 O

THE MID-INFRARED LABORATORY SPECTRA OF NAPHTHALENE (C 10 H 8 ) IN SOLID H 2 O The Astrophysical Journal, 607:346 360, 2004 May 20 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE MID-INFRARED LABORATORY SPECTRA OF NAPHTHALENE (C 10 H 8 ) IN SOLID

More information

Taking fingerprints of stars, galaxies, and interstellar gas clouds. Absorption and emission from atoms, ions, and molecules

Taking fingerprints of stars, galaxies, and interstellar gas clouds. Absorption and emission from atoms, ions, and molecules Taking fingerprints of stars, galaxies, and interstellar gas clouds Absorption and emission from atoms, ions, and molecules 1 Periodic Table of Elements The universe is mostly hydrogen H and helium He

More information

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

Possible Extra Credit Option

Possible Extra Credit Option Possible Extra Credit Option Attend an advanced seminar on Astrophysics or Astronomy held by the Physics and Astronomy department. There are seminars held every 2:00 pm, Thursday, Room 190, Physics & Astronomy

More information

Astrochemistry the summary

Astrochemistry the summary Astrochemistry the summary Astro 736 Nienke van der Marel April 27th 2017 Astrochemistry When the first interstellar molecules were discovered, chemists were very surprised. Why? Conditions in space are

More information

Mélanie Ouellette. Thesis submitted to the Faculty of Graduate & Postdoctoral Studies

Mélanie Ouellette. Thesis submitted to the Faculty of Graduate & Postdoctoral Studies GAS-PHASE ION CHEMISTRY OF HYDROXY AND AMINO- SUBSTITUTED INTERSTELLAR POLYCYCLIC AROMATIC HYDROCARBONS AND PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS Mélanie Ouellette Thesis submitted to the Faculty

More information

PDR Modelling with KOSMA-τ

PDR Modelling with KOSMA-τ PDR Modelling with KOSMA-τ M. Röllig, V. Ossenkopf-Okada, C. Bruckmann; Y. Okada, N. Schneider, U. Graf, J. Stutzki I. Physikalisches Institut, Universität zu Köln The KOSMA-τ PDR Code 1-D, spherical geometry

More information

Astronomy. Astrophysics. Evolution of polycyclic aromatic hydrocarbons in photodissociation regions. Hydrogenation and charge states

Astronomy. Astrophysics. Evolution of polycyclic aromatic hydrocarbons in photodissociation regions. Hydrogenation and charge states A&A 552, A5 (23) DOI:.5/4-3/222757 c ESO 23 Astronomy & Astrophysics Evolution of polycyclic aromatic hydrocarbons in photodissociation regions Hydrogenation and charge states J. Montillaud,2,3, C. Joblin,2,

More information

Exploring ISM dust with IRSIS. Emmanuel DARTOIS IAS-CNRS

Exploring ISM dust with IRSIS. Emmanuel DARTOIS IAS-CNRS Exploring ISM dust with IRSIS Emmanuel DARTOIS IAS-CNRS IRSIS meeting 05-12-2007 Overview Intestellar ice mantles Hydrocarbons in the galaxy and outside Polycyclic Aromatic Hydrocarbons (PAHs) Interstellar

More information

Formation and evolution of a complex organic molecule : from interstellar ices to asteroids

Formation and evolution of a complex organic molecule : from interstellar ices to asteroids Formation and evolution of a complex organic molecule : from interstellar ices to asteroids V. Vinogradoff, S. Bernard, Duvernay F., C. Le Guillou, Chiavassa T., L. Remusat Molecules in Interstellar ices

More information

Vacuum-Ultraviolet-Excited and CH 2 Cl 2 /H 2 O-Amplified Ionization- Coupled Mass Spectrometry for Oxygenated Organics Analysis

Vacuum-Ultraviolet-Excited and CH 2 Cl 2 /H 2 O-Amplified Ionization- Coupled Mass Spectrometry for Oxygenated Organics Analysis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Supporting Information for Vacuum-Ultraviolet-Excited and CH 2 Cl 2 /H 2 O-Amplified Ionization- Coupled Mass Spectrometry

More information

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space Chapter 15 Star Birth Star-Forming Clouds Stars form in dark clouds of dusty gas in interstellar space The gas between the stars is called the interstellar medium Visible light (Hubble Space Telescope)

More information

Electronic Transition Spectra of Thiophenoxy and Phenoxy Radicals in Hollow cathode discharges

Electronic Transition Spectra of Thiophenoxy and Phenoxy Radicals in Hollow cathode discharges Electronic Transition Spectra of Thiophenoxy and Phenoxy Radicals in Hollow cathode discharges Tokyo Univ. Science Mitsunori ARAKI, Hiromichi WAKO, Kei NIWAYAMA and Koichi TSUKIYAMA 2014/06/16 2015/2/20

More information

Electronic and optical properties of PAH families: a (time-dependent) DFT study

Electronic and optical properties of PAH families: a (time-dependent) DFT study Electronic and optical properties of PAH families: a (time-dependent) DFT study Giancarlo Cappellini1 Giuliano Malloci 1 1 Alessandro Mattoni1 Giacomo Mulas2 CNR-IOM 2 SLACS UniCA Cagliari Cagliari SIF-L'Aquila

More information

Chapter 16: Star Birth

Chapter 16: Star Birth Chapter 16 Lecture Chapter 16: Star Birth Star Birth 16.1 Stellar Nurseries Our goals for learning: Where do stars form? Why do stars form? Where do stars form? Star-Forming Clouds Stars form in dark clouds

More information

IR Spectroscopy and physicochemical effects on astrophysical ices produced by energetic ions collisions

IR Spectroscopy and physicochemical effects on astrophysical ices produced by energetic ions collisions IR Spectroscopy and physicochemical effects on astrophysical ices produced by energetic ions collisions Ana Lucia de Barros Physics Department Centro Federal de Educação Tecnológica Celso Suckow da Fonseca

More information

The Interstellar Medium

The Interstellar Medium http://www.strw.leidenuniv.nl/~pvdwerf/teaching/ The Interstellar Medium Lecturer: Dr. Paul van der Werf Fall 2014 Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth Star Birth 16.1 Stellar Nurseries Our goals for learning: Where do stars form? Why do stars form? Where do stars form? Star-Forming

More information

GAS PHASE CHEMICAL KINETICS : EXPERIMENTAL ADVANCES AND PROSPECTS

GAS PHASE CHEMICAL KINETICS : EXPERIMENTAL ADVANCES AND PROSPECTS GAS PHASE CHEMICAL KINETICS : EXPERIMENTAL ADVANCES AND PROSPECTS Sébastien Le Picard France Astrophysique de Laboratoire Institut de Physique de Rennes Université de Rennes 1 Gas phase chemistry in the

More information

THE INTERSTELLAR MEDIUM

THE INTERSTELLAR MEDIUM THE INTERSTELLAR MEDIUM An IR view of dust clouds In particular, light from polycyclic aromatic hydrocarbons (PAH s) Little bit of carbon out there, forms hydrocarbons like car exhaust Associated with

More information

Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space. The gas between the stars is called the interstellar medium.

Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space. The gas between the stars is called the interstellar medium. Star Birth Chapter 16 Lecture 16.1 Stellar Nurseries The Cosmic Perspective Our goals for learning: Where do stars form? Why do stars form? Seventh Edition Star Birth Where do stars form? Star-Forming

More information

Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules

Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules pubs.acs.org/cr Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules Karin I. O berg* Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge,

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z52074 Wiley-VCH 2003 69451 Weinheim, Germany Kinetic and Thermodynamic Control via Chemical Bond Rearrangement on Si(001) Surface Chiho Hamai, Akihiko

More information

Present Understanding of Comet Nucleus Physical and Chemical Composition

Present Understanding of Comet Nucleus Physical and Chemical Composition Present Understanding of Comet Nucleus Physical and Chemical Composition Murthy S. Gudipati Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Keck Study Comet June 5, 2017

More information

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS Proceedings of the 3rd Annual ISC Research Symposium ISCRS 9 April 14, 9, Rolla, Missouri PHOTO-DISSOCIATION OF CO GAS BY USING TWO LASERS Zhi Liang MAE department/zlch5@mst.edu Dr. Hai-Lung Tsai MAE department/tsai@mst.edu

More information

Supporting Information. Dissociative Water Adsorption by Al 3 O 4 + in the Gas Phase. Linnéstrasse 2, D Leipzig, Germany.

Supporting Information. Dissociative Water Adsorption by Al 3 O 4 + in the Gas Phase. Linnéstrasse 2, D Leipzig, Germany. Supporting Information Dissociative Water Adsorption by Al 3 O 4 + in the Gas Phase Matias R. Fagiani, 1,2, Xiaowei Song, 1,2 Sreekanta Debnath, 1,2 Sandy Gewinner, 2 Wieland Schöllkopf, 2 Knut R. Asmis,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supplementary Information Engineering the Intermediate Band States in Amorphous

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012132 TITLE: Fuels Combustion Research: Supercritical Fuel Pyrolysis DISTRIBUTION: Approved for public release, distribution

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

The Dusty Universe. Joe Weingartner George Mason University Dept of Physics and Astronomy

The Dusty Universe. Joe Weingartner George Mason University Dept of Physics and Astronomy The Dusty Universe Joe Weingartner George Mason University Dept of Physics and Astronomy To astronomers, dust means: sub micron solid grains (1 micron = 1 m = 10 6 m = one millionth of a meter) Typical

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

The Ecology of Stars

The Ecology of Stars The Ecology of Stars We have been considering stars as individuals; what they are doing and what will happen to them Now we want to look at their surroundings And their births 1 Interstellar Matter Space

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

A. G. G. M. TIELENS SRON, Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, The Netherlands

A. G. G. M. TIELENS SRON, Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, The Netherlands THE ASTROPHYSICAL JOURNAL, 560:261È271, 2001 October 10 ( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. THEORETICAL MODELING OF INFRARED EMISSION FROM NEUTRAL AND CHARGED

More information

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia Astrochemical Models Eric Herbst Departments of Chemistry and Astronomy University of Virginia Chemical Models Gas-phase reactions 1000 s of reactions Grain-surface reactions Abundances, columns, spectra

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

FAR AND MID INFRARED SPECTROSCOPY OF COMPLEX ORGANIC MATTER OF ASTROCHEMICAL INTEREST: COAL, HEAVY PETROLEUM FRACTIONS, AND ASPHALTENES

FAR AND MID INFRARED SPECTROSCOPY OF COMPLEX ORGANIC MATTER OF ASTROCHEMICAL INTEREST: COAL, HEAVY PETROLEUM FRACTIONS, AND ASPHALTENES 1 FAR AND MID INFRARED SPECTROSCOPY OF COMPLEX ORGANIC MATTER OF ASTROCHEMICAL INTEREST: COAL, HEAVY PETROLEUM FRACTIONS, AND ASPHALTENES Franco Cataldo 1,2, D. A. García Hernández 3,4, Arturo Manchado

More information

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps ION ANALYZERS MASS ANALYSER sample Vacuum pumps Mass analysers - separate the ions according to their mass-to-charge ratio MASS ANALYSER Separate the ions according to their mass-to-charge ratio in space

More information

Observing Habitable Environments Light & Radiation

Observing Habitable Environments Light & Radiation Homework 1 Due Thurs 1/14 Observing Habitable Environments Light & Radiation Given what we know about the origin of life on Earth, how would you recognize life on another world? Would this require a physical

More information

E. Rauls. Department of Theoretical Physics, Faculty of Natural Sciences, University of Paderborn, D Paderborn, Germany;

E. Rauls. Department of Theoretical Physics, Faculty of Natural Sciences, University of Paderborn, D Paderborn, Germany; The Astrophysical Journal, 679:531Y536, 2008 May 20 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A CATALYZED ROUTES TO MOLECULAR HYDROGEN FORMATION AND HYDROGEN ADDITION

More information