High Energy Neutrino Astrophysics with IceCube

Size: px
Start display at page:

Download "High Energy Neutrino Astrophysics with IceCube"

Transcription

1 High Energy Neutrino Astrophysics with IceCube Konstancja Satalecka, DESY Zeuthen UCM, 25th February 2011

2 OUTLINE Neutrino properties Cosmic Neutrinos Neutrino detection Ice/Water Cerenkov Detectors Neutrino Astrophysics Recent results from IceCube Summary & Outlook

3 Neutrinos they are very small. They have no charge and have no mass And do not interact at all. The earth is just a silly ball To them, through which they simply pass... John Updike, Cosmic Gall

4 NEUTRINO PROPERTIES Neutrinos they are very small. They have no charge and have no mass + helicity: we observe only left handed neutrinos (or right handed anti-neutrinos) νlh νrh

5 NEUTRINO PROPERTIES Neutrinos they are very small. They have no charge and have no mass Neutrinos oscillate! Two flavors case: P(να νβ) = sin 2 (2θ)sin 2 (L Δm 2 /4E) ( [ νe ( ) ν1 νμ = ν2 ντ ν3 ) ] Δm 2 21 = ev 2 Δm 2 32 = ev 2 flavor eigenstates mixing matrix mass eigenstates At least two neutrinos have to be massive!

6 NEUTRINO PROPERTIES Neutrinos they are very small. They have no charge and have no mass And do not interact at all. only weakly ν µ ν µ ν µ µ Z 0 W + P u d u u u P u d u u u Neutral Current (NC) Interaction d Charged Current (CC) Interaction u very small cross sections = very big volumes needed for detection

7 NEUTRINO PROPERTIES Neutrinos they are very small. They have no charge and have no mass And do not interact at all. only weakly The earth is just a silly ball To them, through which they simply pass......or not, depending on the energy! For E > 50 TeV the mean free path of neutrino becomes comparable with Earth s diameter.

8 NEUTRINO PROPERTIES Neutrinos they are very small. They have no charge and have no mass And do not interact at all. only weakly The earth is just a silly ball To them, through which they simply pass... or not, depending on the energy.

9 COSMIC NEUTRINOS CνB 300 ν/cm3 1s after BB dn! /de!!gev -1 sr -1 s -1 cm -2 " log(e! /GeV)

10 COSMIC NEUTRINOS missing solar neutrinos first evidence for oscillations Sun CνB dn! /de!!gev -1 sr -1 s -1 cm -2 " log(e! /GeV)

11 COSMIC NEUTRINOS Super Novae Sun CνB dn! /de!!gev -1 sr -1 s -1 cm -2 " % of the explosion s energy goes into neutrinos log(e! /GeV)

12 COSMIC NEUTRINOS Super Novae Sun CνB dn! /de!!gev -1 sr -1 s -1 cm -2 " hadronic accelerators? log(e! /GeV) Active Galactic Nuclei

13 COSMIC NEUTRINOS Super Novae Sun Cosmic CνB dn! /de!!gev -1 sr -1 s -1 cm -2 " Rays Active Galactic log(e! /GeV) Nuclei

14 COSMIC NEUTRINOS Super Novae Sun Cosmic CνB dn! /de!!gev -1 sr -1 s -1 cm -2 " Rays Active Galactic log(e! /GeV) Nuclei

15 COSMIC NEUTRINOS Super Novae Sun Cosmic CνB dn! /de!!gev -1 sr -1 s -1 cm -2 " Rays sources??? Active Galactic log(e! /GeV) Nuclei

16 COSMIC NEUTRINOS Super Novae Sun Cosmic CνB Gamma dn! /de!!gev -1 sr -1 s -1 cm -2 " Rays Ray Bursts????????? Active Galactic log(e! /GeV) Nuclei

17 COSMIC NEUTRINOS Super Novae Sun Cosmic CνB Gamma dn! /de!!gev -1 sr -1 s -1 cm -2 " Rays Ray Bursts Active Galactic log(e! /GeV) Nuclei

18 COSMIC RAYS protons, nuclei from He up to Fe power-law spectrum transition form galactic to extragalactic sources ~10 15 ev (knee) CR interact with atmosphere and produce hadronic cascades atmospheric neutrinos GZK cutoff at ~10 20 ev p+γcmb Δ + p+π 0 or n+π + ±. π ± μ ± νμ e ± νμ νe guaranteed source of UHE neutrinos! LHC GZK = Greisen (1966), Zatsepin & Kuzmin (1966)

19 pictur COSMIC RAYS sources? acceleration of hadrons to Ultra High Energies: p+p or p+γ π 0 π ±... π ± μ ± νμ e ± νμ νe π 0 γ γ ( Mpc distance (GZK cutoff: ~ few10 charged particles are deflected in magnetic fields γ-rays are absorbed on the Extragalactic Background Light (EBL) ν are perfect messengers: point straight to their origin don t get absorbed ν e - γ ray e + γ EBL p

20 EXPERIMENTAL TECHNIQUES 10 9 ev to ev Cherenkov photons in water/ice (IceCube, ANTARES, NESTOR, NEMO) v-induced cascade! µ acoustic pancake coherent radio signal ev to ev Coherent radio pulses in ice, salt and Moon regolith (ANITA, RICE) optical Cherenkov signal > ev Acoustic waves in water/ice and salt (SPATS - feasibility study) µ to ev Extensive air showers (AUGER)

21 CHERENKOV EFFECT IN ICE/WATER detector (PMTs) Cherenkov cone muon interaction ν μ + N μ + N neutrino Infrequently, a cosmic neutrino interacts with an ice/water nucleus A muon (or electron, tau) is produced The arrival time of the Cherenkov photons is measured at a grid of PMTs Goals: detect ν of all flavors at energies ev to ev

22 NEUTRINO TELESCOPES: ICECUBE Digital Optical Module

23 !"#$%&"'()*"+%,)-"./ South Pole!"#$%& IceCube AMANDA (until 2009) '(()*+,(! "#$%&'(!)*%+,#-. /*.-0$.!1%23!4'*5-6*

24 12-)'5+2*"#)- 12-)'3"%,4 <)92:%"'=+>-:2*#-)!"#$?)+"9&'=+>-:2*#-)8 %&'"()"*+, #% - 6#7+8'!13'6#9)%:!"#$%"&'()*+"%,*#-)'./0 ;-:-"8'3#$+ CC for νμ only!"#$%&'()*$+,"-. /*.-0#.(1$23(4&*5-6* 7

25 2$340"+/56+738$7&.,98,7$ :$8/ $7&;+$0*<% 8/+4,"+$7!"#$%&'()&!"*+,-./-/0%&)"1$ ;+$0*<&:$9/-34"/+%!"#$%&$'() #! * NC for all flavors CC for νe and low E νt!"#$%&'()*$+,"-. /*.-0#.(1$23(4&*5-6* 78

26 NEUTRINO DETECTION: BACKGROUND down-going atmospheric muons detector Elevation Number of events data MC atm. µ MC atm. " MC total Muons induced by atmospheric νμ (signal or background) up-going ANTARES Coll. arxiv: Atmospheric muons (background) down-going 10 up-going cosmic neutrino up-going atmospheric neutrino sin! Fig. 4: Distribution of the sine of the elevation angle fo main background: atmospheric μ (99.999% of triggered events) ( background atmospheric ν (residual background rejection: select only events coming from below (up-going)

27 SCIENCE WITH ν TELESCOPES Astrophysics Origin of the cosmic rays (AGN, SNR,...) GRBs Uncovering invisible phenomena Physics beyond the Standard Model Search for Dark Matter Search for Magnetic Monopoles Neutrino-oscillations Quantum gravity, Planck scale Physics, test of Lorentz invariance Standard Model Physics Cross sections at high energies High pt muons from cosmic rays (charm production)

28 COSMIC MUON ANISOTROPY Zhang J.L. et al.: proceedings of the 31st ICRC, Łódź (Poland, 2009) Northern Hemisphere: TIBET 5 o directional resolution 5 TeV median energy Also observed by MILAGRO, ARGO... ) Abbasi R. et al.: Astrophys. J. 718 L194 (2010) Southern Hemisphere: Preliminary IC40 map 12 billion downward going muon events 3 o directional resolution 20 TeV median energy Not compatible with the Compton-Getting effect (relative motion of Solar System) Large scale + Local magnetic fields (e.g. solar magnetotail)? Propagation of cosmic rays from nearby sources (recent SN, pulsars)?

29 ATMOSPHERIC NEUTRINOS 10-5 of triggered events are muons induced by an atmospheric neutrino energy resolution 0.3 in logeν preliminary unfolded energy spectrum of 17,682 atmospheric ν (IC40) highest energy atmospheric ν: ~250 TeV many from decay of charm mesons powerful tool to test HE hadronic interaction models arxiv: v2

30 DIFFUSE NEUTRINO FLUX diffuse flux from unresolved neutrino point sources (νμ + anti-νμ) ANTARES CR dn/de~e -2.7 shock acceleration: dn/de~e -2.0 dominant at HE arxiv: v2 1 yr of IC40 = 5 x sensitivity of 3 yrs AMANDA-II close to discovery!!! in UHE (>10 6 GeV) IC 86 might reach discovery level in 5-8 yrs

31 NEUTRINO POINT SOURCES s -1 ] -2 dn/de [TeV cm Strings Sensitivity d 40 Strings Discovery Potential d 40 Strings Sensitivity d 40 Strings Source List 90% UL 86 Strings Sensitivity 365 d ANTARES Sensitivity 365 d 2 E sin(!) Abbasi R., et al., Astrophys. J. 701, L47 (2009) Abbasi R., et al., Phys. Rev. Lett. 103, (2009) sensitivity (90% C.L.) for a full sky search for steady point sources of E -2.0 spectrum (νμ+anti-νμ) extension to Southern Hemisphere: UHE energy (>100 s TeV) event selection background reduction ~10 5 IC86 point source detection in ~3-5 yrs (depending on the location in the sky)

32 NEUTRINO POINT SOURCES Abbasi R., et al., Astrophys. J. 701, L47 (2009) Abbasi R., et al., Phys. Rev. Lett. 103, (2009) sky map of statistical significance from the full sky search of IC40 no significant localized excess found :( extension to Southern Hemisphere possible by UHE events selection (E>100 s TeV)

33 NEUTRINO POINT SOURCES Search for time-variable sources: flare searches: special algorithms looking for neutrino flux enhancement (on-line and off-line) on-line possibility to send alerts for follow-up observations: to VHE gamma-ray telescopes: Neutrino Target of Opportunity (NToO), main target: AGN to optical telescopes: Optical Follow-Up (OFU), main target: SN and GRBs simultaneous data guaranteed!!! MultiWavelength analysis: use data from other telescopes (optical, X-ray, gamma-ray...) to identify periods of possible neutrino flares (off-line)

34 NToO TEST RUN IN 2006 AMANDA-II + MAGIC-I 5 sources (2 gal. + 3 extragal.) 5 alerts sent (single ν events) 2 follow-up observations no coincidences with gamma-ray flares found Ackermann et al.,icrc 30th, Vol.3, 1257 (2007) AMANDA-II MAGIC-I feasibility of the set-up was proven program will be continued with MAGIC-II and IceCube improvement: algorithm looking for neutrino flares to alert MAGIC Franke et al., ICRC 31 th, (2009)

35 INDIRECT DARK MATTER SEARCH Ackermann M., et al., Astropart. Phys. 24, 459 (2006) Abbasi R., et al., Phys. Rev. Lett. 102, (2009) non baryonic cold Dark Matter: Weakly Interacting Massive Particles (WIMPs) MSSM candidate: neutralino χ interacts only weakly, stable (R-parity conservation) χ can accumulate in the Sun (gravitational attraction) χ anti-χ annihilation produces neutrinos (indirect search) muon flux from Sun measured by IceCube can give us the annihilation rate annihilation rate can be translated in to spin-dependent χ-p cross section σsd (dominates in Sun) requires models for solar DM distribution & annihilation mode, equilibrium between capture and annihilation assumed complementary to the direct DM searches, sensitive to spin-independent σid IC80 + DC6 lower E threshold and sample low neutralino mass region

36 SUMMARY & OUTLOOK Neutrinos they are very small... but powerful tools for discovering the secrets of Nature! After > 20 years first generation neutrino telescopes have set limits to astrophysical neutrinos The hunt for cosmic neutrinos has just begun! IceCube is completed: diffuse searches will cross the W&B bound point source searches will be improved by a factor 2-3 The KM3NeT consortium is ready to construct a cubic-kilometer scale underwater neutrino telescope (expected improvement in angular resolution: factor 2-3 compared to IceCube) Projects are underway to build detectors 100 times larger using techniques (radio, acoustic) that exploit the advantage of much larger attenuation lengths If the predictions from the measured γ-ray fluxes are correct the detection of neutrinos from sources with hard spectra up to O(10 TeV) may become possible with a few years of data

37 BACK-UP

38 NEUTRINO TELESCOPES: ANTARES 12 lines x 25 storeys x 3 PMTs = 885 PMTs Completed 30th May 2008 L12 and IL07 acoustic detection system caveats: high background (bio-luminescence) string move with sea currents

39 Data of (341 days) 750 multi-line neutrino candidates scrambled Latest results: Antares

40 KM3NeT A research facility in the Mediterranean Sea Multi-cubic kilometer size neutrino telescope Cabled observatory for Earth and Marine sciences Conceptual design ready (2008), Technical design ready (2010), Construction phase starts 2013 Prototyping with different alternative designs (layout, optical modules, etc.) Optimization (physics/costs) in progress Standard OM Expected exclusion limits: KM3NeT IceCube OM with many PMTs From U. Katz, Zeuthen 2010 Observed Galactic TeV-! sources (SNR, unidentified, microquasars) F. Aharonian et al. Rep. Prog. Phys. (2008) Abdo et al., MILAGRO, Astrophys. J. 658 L33-L36 (2007)

41 MULTI KM 3 DETECTORS: ACOUSTIC DETECTION Goal: detection of neutrinos with E > ev ~100 km 3 detector needed optical is too expensive Principle: energy deposit in cascade heated volume expands bipolar pressure pulse Feasibility study at South Pole (SPATS): negligible refraction of acoustic waves deeper than 200 m promises: good neutrino direction and energy reconstruction good separation from background events arxiv: Similar effort by ANTARES in water (AMADEUS)

42 MULTI KM 3 DETECTORS: RADIO DETECTION ANITA searches for the radio pulses from electromagnetic cascades induced by UHE neutrinos in the polar icecap Baloon flights around the Antarctic best sensitivity in energy range between ev and ev arxiv: v3 Alternative design: detect radio pulses produced by UHE neutrino interaction in ice with an array of radio receivers (RICE, AURA IceRay) arxiv:

43 Multi-km 3 detectors: Extensive Air Showers Search for young horizontal and Earth skimming air showers ~0.3 GZK events expected per year (large theoretical uncertainty) Assuming a!"(e) = k E!2 " flux Auger obtained a 90% C.L. limit on the diffuse single-flavour neutrino flux of: k < !7 GeV cm!2 s!1 sr!1 (using down-going showers) The limit for Earth-skimming up-going neutrinos is: k < !8 GeV cm!2 s!1 sr! to ev The P. Auger Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Neutrino Physics with the IceCube Detector Permalink https://escholarship.org/uc/item/6rq7897p Authors Kiryluk, Joanna

More information

High Energy Neutrino Astronomy

High Energy Neutrino Astronomy High Energy Neutrino Astronomy VII International Pontecorvo School Prague, August 2017 Christian Spiering, DESY Zeuthen Content Lecture 1 Scientific context Operation principles The detectors Atmospheric

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

Lessons from Neutrinos in the IceCube Deep Core Array

Lessons from Neutrinos in the IceCube Deep Core Array Lessons from Neutrinos in the IceCube Deep Core Array Irina Mocioiu Penn State TeV 2009, July 15 2009 Point sources Diffuse fluxes from astrophysical objects from cosmic ray interactions from dark matter

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory Gonzalo Parente Bermúdez Universidade de Santiago de Compostela & IGFAE for the Pierre Auger Collaboration Particle Physics and Cosmology

More information

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA EPJ Web of Conferences 116, 11004 (2016) DOI: 10.1051/epjconf/201611611004 C Owned by the authors, published by EDP Sciences, 2016 Results from IceCube Tyce DeYoung a for the IceCube Collaboration Dept.

More information

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope Dottorato di Ricerca in Fisica - XXVIII ciclo Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope Chiara Perrina Supervisor: Prof. Antonio Capone 25 th February 2014

More information

High energy neutrino astronomy with the ANTARES Cherenkov telescope

High energy neutrino astronomy with the ANTARES Cherenkov telescope High energy neutrino astronomy with the ANTARES Cherenkov telescope P.Vernin CEA/Irfu/SPP On behalf of the ANTARES collaboration IWARA 2009 Conference Maresias, Sao Paulo, Brazil, 4-8/10/2009 i r f u saclay

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone High-energy neutrino detection with the ANTARES underwater erenkov telescope Supervisor: Prof. Antonio Capone 1 Outline Neutrinos: a short introduction Multimessenger astronomy: the new frontier Neutrino

More information

Kurt Woschnagg UC Berkeley

Kurt Woschnagg UC Berkeley Neutrino Astronomy at the South Pole Latest results from IceCube Kurt Woschnagg UC Berkeley SLAC Summer Institute August 3, 2011 Neutrinos as Cosmic Messengers Neutrinos and the Origin of Cosmic Rays Cosmic

More information

IceCube: Dawn of Multi-Messenger Astronomy

IceCube: Dawn of Multi-Messenger Astronomy IceCube: Dawn of Multi-Messenger Astronomy Introduction Detector Description Multi-Messenger look at the Cosmos Updated Diffuse Astrophysical Neutrino Data Future Plans Conclusions Ali R. Fazely, Southern

More information

NEUTRINO ASTRONOMY AT THE SOUTH POLE

NEUTRINO ASTRONOMY AT THE SOUTH POLE NEUTRINO ASTRONOMY AT THE SOUTH POLE D.J. BOERSMA The IceCube Project, 222 West Washington Avenue, Madison, Wisconsin, USA E-mail: boersma@icecube.wisc.edu A brief overview of AMANDA and IceCube is presented,

More information

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche SEARCHES OF VERY HIGH ENERGY NEUTRINOS Esteban Roulet CONICET, Centro Atómico Bariloche THE NEUTRINO SKY THE ENERGETIC UNIVERSE multimessenger astronomy γ ν p γ rays (Fermi) ν (Amanda) UHE Cosmic rays

More information

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program Nora Linn Strotjohann for the DESY Real-Time Group GROWTH Meeting at Caltech, July 26th 2016 The IceCube Neutrino

More information

A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector

A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector The IceCube Collaboration E-mail: tessa.carver@unige.ch In 2012 the IceCube detector observed the first clear

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS Esteban Roulet CONICET, Bariloche, Argentina THE ENERGETIC UNIVERSE multi-messenger astronomy γ ν p γ rays neutrinos Fermi Amanda UHE

More information

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration) IceCube and High Energy Neutrinos Stony Brook University, Stony Brook, NY 11794-3800, USA E-mail: Joanna.Kiryluk@stonybrook.edu IceCube is a 1km 3 neutrino telescope that was designed to discover astrophysical

More information

Neutrino Astronomy. Ph 135 Scott Wilbur

Neutrino Astronomy. Ph 135 Scott Wilbur Neutrino Astronomy Ph 135 Scott Wilbur Why do Astronomy with Neutrinos? Stars, active galactic nuclei, etc. are opaque to photons High energy photons are absorbed by the CMB beyond ~100 Mpc 10 20 ev protons,

More information

KM3NeT. P. Piattelli, INFN SciNeGHE 2010, Trieste, september

KM3NeT. P. Piattelli, INFN SciNeGHE 2010, Trieste, september KM3NeT, INFN SciNeGHE 2010, Trieste, september 8 10 2010 Overview Introduction The KM3NeT Technical Design Report KM3NeT physics performances New developments Summary 2 Motivations for High Energy neutrino

More information

The new Siderius Nuncius: Astronomy without light

The new Siderius Nuncius: Astronomy without light The new Siderius Nuncius: Astronomy without light K. Ragan McGill University STARS 09-Feb-2010 1609-2009 four centuries of telescopes McGill STARS Feb. '10 1 Conclusions Optical astronomy has made dramatic

More information

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM Detection of transient sources with the ANTARES telescope Manuela Vecchi CPPM Multimessenger Astronomy CRs astronomy feasible at energies higher than 1019 ev extragalactic origin UHECRs horizon limited

More information

Mediterranean Neutrino Telescopes

Mediterranean Neutrino Telescopes Mediterranean Neutrino Telescopes New Views of the Universe Chicago, December 2005 Juande D. Zornoza (IFIC UW-Madison) Advantages: Neutrino Astronomy Neutrino Astronomy is a quite recent and very promising

More information

Mass Composition Study at the Pierre Auger Observatory

Mass Composition Study at the Pierre Auger Observatory OBSERVATORY Mass Composition Study at the Pierre Auger Observatory Laura Collica for the Auger Milano Group 4.04.2013, Astrosiesta INAF Milano 1 Outline The physics: The UHECR spectrum Extensive Air Showers

More information

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore for the IceCube collaboration Content Overview: IceCube (see IceCube status plenary talk by D. Williams ) DeepCore

More information

IceCube Results & PINGU Perspectives

IceCube Results & PINGU Perspectives 1 IceCube Results & PINGU Perspectives D. Jason Koskinen for the IceCube-PINGU Collaboration koskinen@nbi.ku.dk September 2014 Neutrino Oscillation Workshop Otranto, Lecce, Italy 2 IceCube Detector ~1km

More information

Ultra- high energy cosmic rays

Ultra- high energy cosmic rays Ultra- high energy cosmic rays Tiina Suomijärvi Institut de Physique Nucléaire Université Paris Sud, Orsay, IN2P3/CNRS, France Atélier CTA, IAP, Paris, 30-31 June 2014 Outline Pierre Auger Observatory:

More information

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results (http://www.amanda.uci.edu) Peter Steffen DESY Zeuthen, Germany TAUP 2003 The AMANDA Collaboration ª 150 members New Zealand Japan

More information

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Beyond the Standard Model with Neutrinos and Nuclear Physics Solvay Workshop November 30, 2017 Darren R Grant The atmospheric

More information

A Multimessenger Neutrino Point Source Search with IceCube

A Multimessenger Neutrino Point Source Search with IceCube A Multimessenger Neutrino Point Source Search with IceCube Mădălina Chera FLC Group Meeting 04.10.2010 Mădălina Chera Overview 1 Introduction to UHE Cosmic Rays and Neutrino Astrophysics; 2 Motivation

More information

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

Search for diffuse cosmic neutrino fluxes with the ANTARES detector Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 1 Overview ANTARES description Full sky searches Special region searches Fermi bubbles

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration IceCube & DeepCore Overview and Dark Matter Searches for the IceCube collaboration Content Overview: IceCube DeepCore (DOMs, geometry, deep ice properties, trigger & filter) Dark Matter searches: (current

More information

an introduction What is it? Where do the lectures fit in?

an introduction What is it? Where do the lectures fit in? AstroParticle Physics an introduction What is it? Where do the lectures fit in? What is AstroParticle Physics? covers a wide range of research at the intersection of particle physics : dark matter and

More information

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef 1 high energy Quanta from the Universe (why look for neutrinos) Universe contains very high Energy particle accelerators (E = up to 10 6

More information

High Energy Neutrino Astrophysics Latest results and future prospects

High Energy Neutrino Astrophysics Latest results and future prospects High Energy Neutrino Astrophysics Latest results and future prospects C. Spiering, Moscow, August 22, 2013 DETECTION PRINCIPLE Detection Modes Muon track from CC muon neutrino interactions Angular resolution

More information

First Light with the HAWC Gamma-Ray Observatory

First Light with the HAWC Gamma-Ray Observatory , for the HAWC Collaboration Wisconsin IceCube Particle Astrophysics Center (WIPAC) and Department of Physics, University of Wisconsin Madison, Madison, WI 53706, USA E-mail: westerhoff@wisc.edu The High-Altitude

More information

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere for the HAWC collaboration E-mail: miguel@psu.edu Observations of high energy gamma rays are an

More information

Gustav Wikström. for the IceCube collaboration

Gustav Wikström. for the IceCube collaboration Results and prospects of Dark Matter searches in IceCube for the IceCube collaboration Direct detection situation: Spin dependent WIMP proton cross section Big gap! 2 IceCube 22 string & AMANDA 7 yr limit

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

arxiv: v1 [astro-ph.he] 28 Jan 2013

arxiv: v1 [astro-ph.he] 28 Jan 2013 Measurements of the cosmic ray spectrum and average mass with IceCube Shahid Hussain arxiv:1301.6619v1 [astro-ph.he] 28 Jan 2013 Abstract Department of Physics and Astronomy, University of Delaware for

More information

neutrino astronomy francis halzen university of wisconsin

neutrino astronomy francis halzen university of wisconsin neutrino astronomy francis halzen university of wisconsin http://icecube.wisc.edu 50,000 year old sterile ice instead of water we built a km 3 neutrino detector 3 challenges: drilling optics of ice atmospheric

More information

The Pierre Auger Observatory Status - First Results - Plans

The Pierre Auger Observatory Status - First Results - Plans The Pierre Auger Observatory Status - First Results - Plans Andreas Haungs for the Pierre Auger Collaboration Forschungszentrum Karlsruhe Germany haungs@ik.fzk.de Andreas Haungs Pierre Auger Observatory

More information

Neutrino Astronomy at the South Pole AMANDA and IceCube

Neutrino Astronomy at the South Pole AMANDA and IceCube 1 Neutrino Astronomy at the South Pole AMANDA and IceCube Ignacio Taboada University of California - Berkeley Topics in Astroparticle and Underground Physics Zaragoza. Sept 10-14, 2005 2 The IceCube Collaboration

More information

Christian Spiering, DESY

Christian Spiering, DESY Christian Spiering, DESY EPS-ECFA 2009 Cracow, July 2009 C. Spiering, Planck 09 1. No black holes from LHC which would eat the Earth! C. Spiering, Planck 09 2. Cross section @ high energies TOTEM @ CMS

More information

High Energy Astrophysics with underwater neutrino detectors. Marco Anghinolfi INFN, Genova, Italia

High Energy Astrophysics with underwater neutrino detectors. Marco Anghinolfi INFN, Genova, Italia High Energy Astrophysics with underwater neutrino detectors Marco Anghinolfi INFN, Genova, Italia Outline of the talk Neutrino astronomy The potential sources The ANTARES detector and the first physics

More information

Dr. John Kelley Radboud Universiteit, Nijmegen

Dr. John Kelley Radboud Universiteit, Nijmegen arly impressive. An ultrahighoton triggers a cascade of particles mulation of the Auger array. The Many Mysteries of Cosmic Rays Dr. John Kelley Radboud Universiteit, Nijmegen Questions What are cosmic

More information

High Energy Emission. Brenda Dingus, LANL HAWC

High Energy Emission. Brenda Dingus, LANL HAWC High Energy Emission from GRBs Brenda Dingus, LANL HAWC What are GRBs? Cosmological distance Typical observed z>1 Energy released is up to few times the rest mass of Sun (if isotropic) in a few seconds

More information

RESULTS FROM AMANDA. Carlos de los Heros Division of High Energy Physics Uppsala University. CRIS04 Catania, Italy, May 31-June 4

RESULTS FROM AMANDA. Carlos de los Heros Division of High Energy Physics Uppsala University. CRIS04 Catania, Italy, May 31-June 4 RESULTS FROM AMANDA Carlos de los Heros Division of High Energy Physics Uppsala University CRIS04 Catania, Italy, May 31-June 4 The AMANDA/ICECUBE Collaborations Bartol Research Institute UC Berkeley UC

More information

Galactic Sources with Milagro and HAWC. Jordan Goodman for the HAWC and Milagro Collaborations

Galactic Sources with Milagro and HAWC. Jordan Goodman for the HAWC and Milagro Collaborations Galactic Sources with Milagro and HAWC Jordan Goodman for the HAWC and Milagro Collaborations Snowpack 2010 Milagro and HAWC Milagro was a first generation wide-field gamma-ray telescope: Proposed in 1990

More information

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Cherenkov 2005 27-29 April 2005 Palaiseau, France Contents: The AMANDA/IceCube detection principles Search for High Energy

More information

(7) Instrumentation in high energy neutrino experiments

(7) Instrumentation in high energy neutrino experiments (7) Instrumentation in high energy neutrino experiments Scientific Objectives Solar Neutrinos & Atmospheric Neutrinos High Energy Neutrino Detection in Ice (AMANDA & ICECUBE) High Energy Neutrino Detection

More information

EeV Neutrinos in UHECR Surface Detector Arrays:

EeV Neutrinos in UHECR Surface Detector Arrays: EeV Neutrinos in UHECR Surface Detector Arrays: OBSERVATORY Challenges & Opportunities Karl-Heinz Kampert Bergische Universität Wuppertal High-Energy neutrino and cosmic ray astrophysics - The way forward

More information

Neutrino Astronomy fast-forward

Neutrino Astronomy fast-forward Neutrino Astronomy fast-forward Marek Kowalski (DESY & Humboldt University Berlin) TeVPA 2017, Columbus, Ohio Credit: M. Wolf/NSF The promised land The Universe is opaque to EM radiation for ¼ of the spectrum,

More information

Recent results from the Pierre Auger Observatory

Recent results from the Pierre Auger Observatory Recent results from the Pierre Auger Observatory Esteban Roulet, for the Pierre Auger Collaboration CONICET, Centro Atómico Bariloche, Bustillo 9500, Bariloche, 8400, Argentina E-mail: roulet@cab.cnea.gov.ar

More information

Extremely High Energy Neutrinos

Extremely High Energy Neutrinos Extremely High Energy Neutrinos A. Ringwald http://www.desy.de/ ringwald DESY 6 th National Astroparticle Physics Symposium February 3, 2006, Vrije Universiteit, Amsterdam, Netherlands Extremely high energy

More information

Cosmic Rays. M. Swartz. Tuesday, August 2, 2011

Cosmic Rays. M. Swartz. Tuesday, August 2, 2011 Cosmic Rays M. Swartz 1 History Cosmic rays were discovered in 1912 by Victor Hess: he discovered that a charged electroscope discharged more rapidly as he flew higher in a balloon hypothesized they were

More information

Lake Baikal: from Megaton to Gigaton. Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration

Lake Baikal: from Megaton to Gigaton. Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration Lake Baikal: from Megaton to Gigaton Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration TAUP09, Rome, July 2009 Outline Status of the Baikal Detector Selected Results obtained from NT200

More information

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY (Neutrino 2008, Christchurch, NZ) Esteban Roulet (Bariloche) the Auger Collaboration: 17 countries, ~100 Institutions, ~400 scientists Argentina, Australia,

More information

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Universidade Federal do Rio de Janeiro, Brazil E-mail: haris@if.ufrj.br Aquiring data continuously from 004, the Pierre Auger

More information

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration Searching for Physics Beyond the Standard Model with the IceCube Neutrino Observatory John Kelley for the IceCube Collaboration Wisconsin IceCube Particle Astrophysics Center University of Wisconsin Madison,

More information

Windows on the Cosmos

Windows on the Cosmos Windows on the Cosmos Three types of information carriers about what s out there arrive on Earth: Electromagnetic Radiation Visible light, UV, IR => telescopes (Earth/Space) Radio waves => Antennae ( Dishes

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

IceCube: Ultra-high Energy Neutrinos

IceCube: Ultra-high Energy Neutrinos IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University for the IceCube collaboration Neutrino2012 at Kyoto June 8 th 2012 1 Ultra-high Energy Neutrinos: PeV and above

More information

SELECTED RESULTS OF THE ANTARES TELESCOPE AND PERSPECTIVES FOR KM3NET. D. Dornic (CPPM) on behalf the ANTARES Coll.

SELECTED RESULTS OF THE ANTARES TELESCOPE AND PERSPECTIVES FOR KM3NET. D. Dornic (CPPM) on behalf the ANTARES Coll. SELECTED RESULTS OF THE ANTARES TELESCOPE AND PERSPECTIVES FOR KM3NET D. Dornic (CPPM) on behalf the ANTARES Coll. MORIOND VHEPU @ La Thuile, March 2017 Neutrino telescopes: science scope Low$Energy$$

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

Very High-Energy Gamma- Ray Astrophysics

Very High-Energy Gamma- Ray Astrophysics Very High-Energy Gamma- Ray Astrophysics David A. Williams Santa Cruz Institute for Particle Physics UC Santa Cruz Quarknet July 12, 2013 Detecting High Energy Gamma Rays High Sensitivity HESS, MAGIC,

More information

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR)

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR) Gamma-rays, neutrinos and AGILE Fabrizio Lucarelli (ASI-SSDC & INAF-OAR) Outlook 2 Overview of neutrino astronomy Main IceCube results Cosmic neutrino source candidates AGILE search for γ-ray counterparts

More information

Mariola Lesiak-Bzdak. Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube

Mariola Lesiak-Bzdak. Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube Mariola Lesiak-Bzdak Stony Brook University for IceCube Collaboration Geographic South Pole" Outline: } Motivation

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 3: Neutrinos in astrophysics and cosmology Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh Ultra High Energy Cosmic Rays What we have learnt from HiRes and Auger Andreas Zech Observatoire de Paris (Meudon) / LUTh École de Chalonge, Paris, Outline The physics of Ultra-High Energy Cosmic Rays

More information

Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos

Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos Sources of Neutrinos Low energy neutrinos (10 th of MeV) Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos High energy neutrinos (10 th of GeV) Produced in high

More information

IceCube 79 Solar WIMP Search. Matthias Danninger

IceCube 79 Solar WIMP Search. Matthias Danninger IceCube 79 Solar WIMP Search Overview about indirect solar Dark Matter analysis IC79-detector in analysis side by side: IC86 sens. study vs. IC79 analysis... cut level 0 final level IC79+DeepCore Dark

More information

(Mini-review on neutrino telescopes) Alexander Kappes EPS July 2011, Grenoble, France

(Mini-review on neutrino telescopes) Alexander Kappes EPS July 2011, Grenoble, France Status of Neutrino Astronomy (Mini-review on neutrino telesopes) Alexander Kappes EPS 2011 21. July 2011, Grenoble, Frane Outline Introdution Neutrino telesopes Current status - Sensitivities of neutrino

More information

Recent Results from the ANTARES experiment

Recent Results from the ANTARES experiment Recent Results from the ANTARES experiment Manuela Vecchi on behalf of the ANTARES Collaboration University of Roma La Sapienza and INFN ICATPP09- Como: October 6th 2009 Outline -astronomy: what, where,

More information

Neutrino & γ-ray astronomy

Neutrino & γ-ray astronomy Neutrino & γ-ray astronomy Looking for signals directly from cosmic-ray sources Q: why is this needed? Berlin, 2 Oct 2009 Tom Gaisser 1 Werner Hofmann, TeV PA 2009 R. Chaves ICRC 2009 The Galactic Plane

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES

Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES The IceCube and ANTARES Collaborations htt p : //icecube.wisc.edu/collaboration/authors/icrc17_icecube

More information

Status of the MAGIC telescopes

Status of the MAGIC telescopes SNOWPAC 2010 Status of the MAGIC telescopes Pierre Colin for the MAGIC collaboration Max-Planck-Institut für physik (Munich) Status of the MAGIC telescopes MAGIC-1 MAGIC-2 Outline: Recent results of the

More information

Recent Results from ANTARES and prospects for KM3NeT. Aart Heijboer. Nikhef, Amsterdam On behalf of the ANTARES and KM3NeT collaborations

Recent Results from ANTARES and prospects for KM3NeT. Aart Heijboer. Nikhef, Amsterdam On behalf of the ANTARES and KM3NeT collaborations Recent Results from ANTARES and prospects for KM3NeT Aart Heijboer Nikhef, Amsterdam On behalf of the ANTARES and KM3NeT collaborations European Neutrino Telescopes 2 * and ANTARES ANTARES KM3NeT * * Münster

More information

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA PIERA SAPIENZA ON BEHALF OF THE KM3NET COLLABORATION FRONTIERS OF RESEARCH ON COSMIC RAY GAMMA - LA PALMA 26-29 AUGUST 2015 OUTLINE MOTIVATION DETECTOR

More information

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration Cosmic Neutrinos in IceCube Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration HEM KICP UChicago 6/9/2014 1 Outline IceCube capabilities The discovery analysis with updated

More information

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser Neutrinos from the Milky Way 18th Symposium on Astroparticle Physics in the Netherlands 23-10-2013 Erwin Visser Outline How are these neutrinos produced? Why look for them? How to look for them The ANTARES

More information

Searches for astrophysical sources of neutrinos using cascade events in IceCube

Searches for astrophysical sources of neutrinos using cascade events in IceCube Searches for astrophysical sources of neutrinos using cascade events in IceCube Mike Richman TeVPA 2017 August 8, 2017 Source Searches with IceCube Cascades TeVPA 17 Mike Richman (Drexel University) 1

More information

Search for neutralino dark matter with the AMANDA neutrino telescope

Search for neutralino dark matter with the AMANDA neutrino telescope Search for neutralino dark matter with the AMANDA neutrino telescope D. Hubert and A. Davour for the IceCube Collaboration dhubert@vub.ac.be Vrije Universiteit Brussel, Belgium Outline Indirect detection

More information

C. Spiering, CERN School Zeuthen, Sept.2003

C. Spiering, CERN School Zeuthen, Sept.2003 C. Spiering, CERN School Zeuthen, Sept.2003 Neutrinos Cosmic Neutrinos - solar neutrinos (kev MeV) - neutrinos from a Supernova (MeV) - atmospheric Neutrinos (GeV) - extraterrestrial neutrinos (GeV-TeV-PeV)

More information

Searching for the Origin of Cosmic Rays with IceCube

Searching for the Origin of Cosmic Rays with IceCube Searching for the Origin of Cosmic Rays with IceCube Stefan Westerhoff University of Wisconsin-Madison Fall 2010 Physics Seminar Wichita State University September 29, 2010 1 2 3 Outline Cosmic Rays and

More information

Search for Point-like. Neutrino Telescope

Search for Point-like. Neutrino Telescope Search for Point-like Sources with the ANTARES Neutrino Telescope Francisco Salesa Greus IFIC (CSIC Universitat de València, Spain) On behalf of the ANTARES collaboration Outline Neutrino astronomy. The

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Recent highlights from VERITAS

Recent highlights from VERITAS Recent highlights from VERITAS K. Ragan McGill University RICAP 2011, Rome, 26-May-2011 K. Ragan VERITAS RICAP '11 1 Outline Very high-energy (VHE) gamma-ray astrophysics Ground-based observations with

More information

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium Cherenkov Telescope Array Status Report Salvatore Mangano (CIEMAT) On behalf of the CTA consortium Outline Very-High-Energy Gamma-Ray Astronomy Cherenkov Telescope Array (CTA) Expected Performance of CTA

More information

PoS(NEUTEL2017)079. Blazar origin of some IceCube events

PoS(NEUTEL2017)079. Blazar origin of some IceCube events Blazar origin of some IceCube events Sarira Sahu Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-543, 04510 México DF, México. Astrophysical

More information

Neutrino induced muons

Neutrino induced muons Neutrino induced muons The straight part of the depth intensity curve at about 10-13 is that of atmospheric neutrino induced muons in vertical and horizontal direction. Types of detected neutrino events:

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive air showers are the cascades that develop in the atmosphere

More information

Multi-Messenger Astonomy with Cen A?

Multi-Messenger Astonomy with Cen A? Multi-Messenger Astonomy with Cen A? Michael Kachelrieß NTNU, Trondheim [] Outline of the talk 1 Introduction 2 Dawn of charged particle astronomy? Expectations vs. Auger data Effects of cluster fields

More information