Lessons from Neutrinos in the IceCube Deep Core Array

Size: px
Start display at page:

Download "Lessons from Neutrinos in the IceCube Deep Core Array"

Transcription

1 Lessons from Neutrinos in the IceCube Deep Core Array Irina Mocioiu Penn State TeV 2009, July

2 Point sources Diffuse fluxes from astrophysical objects from cosmic ray interactions from dark matter annihilation... Correlations with other observations: cosmic rays, gamma rays... Neutrino Telescopes - AMANDA/ICECUBE : Cerenkov light in ice (South Pole) - ANTARES, NEMO, NESTOR, etc. : Cerenkov light in water (Mediterranean) - RICE: radio Cerenkov in ice (South Pole) - ANITA: radio Cerenkov from ice (balloon at South Pole) - PIERRE AUGER: air showers (Argentina,...) -... What to look for?

3 Lessons for Particle Astrophysics Weak interactions - access to dense, violent envirenoments - test mechanism powering astrophysical sources - cosmic ray acceleration processes - cosmic ray propagation and intergalactic backgrounds -... Lessons for Particle Physics high energies, beyond those accessible in colliders, etc. weak interactions - neutrino interaction cross-sections (in Standard Model!) - neutrino properties - new interactions/particles - dark matter -...

4 How to do it? - measure all you can! - take into account everything you know/can think about! - identify the right observables! energy distributions angular distributtions flavour composition better detector techniques smart tricks, unique signatures, etc. very good simulations correlations with other observables: photons, protons, etc. can distinguish particle physics from astrophysics effects learn about both!

5 Deep Core Array motivation: galactic sources, dark matter annihilation galactic center above horizon at South Pole need to reduce large cosmic muon background dense phototube coverage region in the deep ceter region of IceCube

6 Doug Cowen, Nu2008 Deep Core Array

7 Deep Core Array greatly reduce large cosmic muon background 4π coverage look at downgoing events, galactic sources, galactic center low energy threshold open up the neutrino energy range from 10 Gev to 100 Gev overlap with Super-Kamiokande at low energy and IceCube at high energy

8 Atmospheric Neutinos Cosmic ray π + π 0 30km µ + e + ν e ν µ ν µ Underground ν e, ν e,, ν µ, ν µ,ν τ, ν τ detector background to many searches Lots of them!

9 Atmospheric Neutinos Super-Kamiokande: Expect: N(ν µ + ν µ ) N(ν e + ν e ) isotropic 2 at low energy used zenith angle distributin to prove neutrino oscillations IceCube Deep Core N(ν µ+ ν µ ) N(ν e + ν e ) 10 steep energy spectrum (E 3 ν ) ν e flux not measured at high energies

10 Neutrino oscillations: massive and mixed neutrinos ν e produced together with the electron in weak interactions does not have to be one of the definite mass particles ν 1 or ν 2 ( νe ν µ ) = ( cos θ sin θ sin θ cos θ ) ( ν1 ν 2 ) ( P(ν α ν β ) = sin 2 2θsin 2 m 2 ) ( ) L = sin 2 2θsin m2 L 4E E m 2 ji = m2 j m2 i [ m 2 ] : ev, [L] : km, [E] : GeV

11 Summary of Experimental Results Solar Neutrinos: ν e ν x, x = µ, τ + reactor antineutrinos m 2 sol ev 2 tan 2 θ sol 0.45 Atmospheric Neutrinos: ν µ ν x, x = τ + accelerator neutrinos m 2 atm ev 2 sin 2 2θ atm 1 Reactor antineutrinos: ν e ν e sin 2 2θ reactor < 0.1 for m ev 2

12 Three flavors neutrino oscillations c 12 c 13 s 12 c 13 s 13 e iδ s 12 c 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 c 12 c 23 s 13 e iδ c 12 s 23 s 12 c 23 s 13 e iδ c 23 c 13 We want to measure: θ 13 hierarchy (sign of m 2 atm ) CP violation (δ) m 2 21 = m2 sol, m2 32 = m2 atm θ 12 = θ sol, θ 13 = θ reactor, θ 23 = θ atm, δ large effort to build new accelerator experiments for this purpose use matter effetcs

13 Neutrino Oscillations in the IceCube Deep Core tracks: µ like fully contained events Angular distribution: cos θ (0,1) atmosperic flux normalization cos θ ( 0.9,0) + main oscillation signal ( m 2 32, θ 23) cos θ ( 1, 0.9) + matter effects (θ 13, hierarchy, CP) Energy distribution: E 40GeV: neutrino oscillations 50 GeV E 5 TeV atmospheric neutrino flux E 10 TeV: Earth density profile

14 Normal versus inverted mass hierarchy O. Mena, I. M., S. Razzaque, Phys.Rev.D78, (2008) cos θ ( 1, 0.9) cos θ ( 0.9, 0.8) cos θ ( 0.8, 0.7) Note E µ 0.5E ν

15 Normal versus inverted mass hierarchy χ 2 fit to discriminate between normal and inverted hierarchy Normal 100 Mt yr,θ 23 45, No systematics Inverted 100 Mt yr,θ 23 45, No systematics cp 0 cp sin 2 2Θ sin 2 2Θ 13

16 Normal versus inverted mass hierarchy χ 2 fit to discriminate between normal and inverted hierarchy Normal 100 Mt yr,θ 23 45, 10 systematics Inverted 100 Mt yr,θ 23 45, 10 systematics cp 0 cp sin 2 2Θ sin 2 2Θ 13

17 How about cascades? Electromagnetic cascades: Tau decay: τ e + ν e + ν τ ν e CC interactions: ν e + N e + X Hadronic cascades Tau decay: τ ν τ + X ν τ NC interactions: ν τ + N ν τ + X ν τ CC interactions: ν τ + N τ + X ν e,µ NC and CC interactions

18 ν τ 1 ν µ ν µ 0.8 ν µ ν τ Oscillation probabilities E ν [GeV] large number of ν τ

19 Number of shower events for sin 2 2θ 13 = 0.01 and δ = 0 in bin sizes of 5GeV and c ν (-1,-0.9) atm ν e and ν µ ->ν e ν τ ->ν e Number of events Shower Energy[GeV]

20 ν τ cascades with G. Giordano and O. Mena ν µ ν τ τ e or hadrons dominates present world sample of ν τ events: 9 (DONUT) high statistics ν τ interactions first direct evidence for ν µ ν τ appearance ν τ interaction cross-section non-standard interactions of ν τ experience with cascade detection

21 Outlook IceCube Deep Core galactic sources, dark matter annihilation atmospheric neutrinos high statistics, large energy range better understanding of background for other searches neutrino oscillations mass hierarchy ν τ : oscillations, ν τ interactions, cascade detection

Learning from Atmospheric Neutrinos in the IceCube Deep Core Detector

Learning from Atmospheric Neutrinos in the IceCube Deep Core Detector Learning from Atmospheric Neutrinos in the IceCube Deep Core Detector Irina Mocioiu Pennsylvania State University Miami 2010 IceCube Deep Core mobvabon: look for neutrinos from galacbc sources, dark mager

More information

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Beyond the Standard Model with Neutrinos and Nuclear Physics Solvay Workshop November 30, 2017 Darren R Grant The atmospheric

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes

The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes id 068 The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes Yann Guardincerri1 for the Pierre Auger Collaboration 1 Facultad de Ciencias Exactas

More information

Neutrino Physics: Lecture 1

Neutrino Physics: Lecture 1 Neutrino Physics: Lecture 1 Overview: discoveries, current status, future Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Feb 1, 2010 Plan of the course Omnipresent

More information

IceCube: Dawn of Multi-Messenger Astronomy

IceCube: Dawn of Multi-Messenger Astronomy IceCube: Dawn of Multi-Messenger Astronomy Introduction Detector Description Multi-Messenger look at the Cosmos Updated Diffuse Astrophysical Neutrino Data Future Plans Conclusions Ali R. Fazely, Southern

More information

Neutrino Oscillation Tomography

Neutrino Oscillation Tomography 1 Neutrino Oscillation Tomography (and Neutrino Absorption Tomography) (and Neutrino Parametric-Refraction Tomography) Sanshiro Enomoto University of Washington CIDER Geoneutrino Working Group Meeting,

More information

IceCube Results & PINGU Perspectives

IceCube Results & PINGU Perspectives 1 IceCube Results & PINGU Perspectives D. Jason Koskinen for the IceCube-PINGU Collaboration koskinen@nbi.ku.dk September 2014 Neutrino Oscillation Workshop Otranto, Lecce, Italy 2 IceCube Detector ~1km

More information

High Energy Neutrino Astronomy

High Energy Neutrino Astronomy High Energy Neutrino Astronomy VII International Pontecorvo School Prague, August 2017 Christian Spiering, DESY Zeuthen Content Lecture 1 Scientific context Operation principles The detectors Atmospheric

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 3: Neutrinos in astrophysics and cosmology Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013 Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013 IceCube DeepCore Original IceCube design focused on

More information

Neutrino Astronomy. Ph 135 Scott Wilbur

Neutrino Astronomy. Ph 135 Scott Wilbur Neutrino Astronomy Ph 135 Scott Wilbur Why do Astronomy with Neutrinos? Stars, active galactic nuclei, etc. are opaque to photons High energy photons are absorbed by the CMB beyond ~100 Mpc 10 20 ev protons,

More information

Possible Interpretations of IceCube High Energy Neutrinos

Possible Interpretations of IceCube High Energy Neutrinos Possible Interpretations of IceCube High Energy Neutrinos ~1 km² Geographic South Pole Program on Particle Physics at the Dawn of the LHC13. ICTP-SP. Boris Panes, USP. Nov 12-2015 Based on 1411.5318 and

More information

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos 6-8 February 2017 Hotel do Mar Sesimbra Hands on Neutrinos Hands on Neutrinos 1 I. BRIEF HISTORY OF NEUTRINOs The neutrinowas first postulated by Wolfgang Pauli in 1930 to explain how β particles emitted

More information

Atmospheric Neutrinos and Neutrino Oscillations

Atmospheric Neutrinos and Neutrino Oscillations FEATURE Principal Investigator Takaaki Kajita Research Area Experimental Physics Atmospheric Neutrinos and Neutrino Oscillations Introduction About a hundred years ago Victor Hess aboard a balloon measured

More information

High Energy Neutrino Astrophysics with IceCube

High Energy Neutrino Astrophysics with IceCube High Energy Neutrino Astrophysics with IceCube Konstancja Satalecka, DESY Zeuthen UCM, 25th February 2011 OUTLINE Neutrino properties Cosmic Neutrinos Neutrino detection Ice/Water Cerenkov Detectors Neutrino

More information

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef 1 high energy Quanta from the Universe (why look for neutrinos) Universe contains very high Energy particle accelerators (E = up to 10 6

More information

A Multimessenger Neutrino Point Source Search with IceCube

A Multimessenger Neutrino Point Source Search with IceCube A Multimessenger Neutrino Point Source Search with IceCube Mădălina Chera FLC Group Meeting 04.10.2010 Mădălina Chera Overview 1 Introduction to UHE Cosmic Rays and Neutrino Astrophysics; 2 Motivation

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Neutrino Physics with the IceCube Detector Permalink https://escholarship.org/uc/item/6rq7897p Authors Kiryluk, Joanna

More information

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche SEARCHES OF VERY HIGH ENERGY NEUTRINOS Esteban Roulet CONICET, Centro Atómico Bariloche THE NEUTRINO SKY THE ENERGETIC UNIVERSE multimessenger astronomy γ ν p γ rays (Fermi) ν (Amanda) UHE Cosmic rays

More information

Neutrino induced muons

Neutrino induced muons Neutrino induced muons The straight part of the depth intensity curve at about 10-13 is that of atmospheric neutrino induced muons in vertical and horizontal direction. Types of detected neutrino events:

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 2: Neutrino mixing and oscillations Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER Bhubaneswar,

More information

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS Esteban Roulet CONICET, Bariloche, Argentina THE ENERGETIC UNIVERSE multi-messenger astronomy γ ν p γ rays neutrinos Fermi Amanda UHE

More information

UHE NEUTRINOS AND THE GLASHOW RESONANCE

UHE NEUTRINOS AND THE GLASHOW RESONANCE UHE NEUTRINOS AND THE GLASHOW RESONANCE Raj Gandhi Harish Chandra Research Institute Allahabad (Work in progress with Atri Bhattacharya, Werner Rodejohann and Atsushi Watanabe) NuSKY, ICTP, June 25, 2011

More information

Windows on the Cosmos

Windows on the Cosmos Windows on the Cosmos Three types of information carriers about what s out there arrive on Earth: Electromagnetic Radiation Visible light, UV, IR => telescopes (Earth/Space) Radio waves => Antennae ( Dishes

More information

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

Search for diffuse cosmic neutrino fluxes with the ANTARES detector Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 1 Overview ANTARES description Full sky searches Special region searches Fermi bubbles

More information

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements PHYS 5326 Lecture #6 Wednesday, Feb. 14, 2007 Dr. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements 1. Solar Neutrinos 2. Atmospheric neutrinos 3. Accelerator Based Oscillation Experiments

More information

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA University of Minnesota Minneapolis, Minnesota 5555, USA E-mail: pawloski@physics.umn.edu NOvA is a long-baseline accelerator neutrino experiment that studies neutrino oscillation phenomena governed by

More information

Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration

Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration 1 Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration sign unknown (vacuum) sign known 2 Mass Hierarchy matter Hierarchy important for

More information

The new Siderius Nuncius: Astronomy without light

The new Siderius Nuncius: Astronomy without light The new Siderius Nuncius: Astronomy without light K. Ragan McGill University STARS 09-Feb-2010 1609-2009 four centuries of telescopes McGill STARS Feb. '10 1 Conclusions Optical astronomy has made dramatic

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

Results from T2K. Alex Finch Lancaster University ND280 T2K

Results from T2K. Alex Finch Lancaster University ND280 T2K Results from T2K Alex Finch Lancaster University ND280 T2K 1 Contents T2K Overview Tokai Kamioka Neutrino Oscillations Results Muon neutrino disappearance Electron neutrino appearance Charged Current inclusive

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

TeV Particle Physics and Physics Beyond the Standard Model

TeV Particle Physics and Physics Beyond the Standard Model TeV Particle Physics and Physics Beyond the Standard Model Ivone Albuquerque, Alex Kusenko, Tom Weiler TeV Particle Astrophysics Madison, 28-31 Aug, 2006 TeV Particle Physics and Physics Beyond the Standard

More information

Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine

Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine Mass Hierarchy Observables Matter Effects Feasibility University of Washington Neutrino Mass: Current

More information

Searches for astrophysical sources of neutrinos using cascade events in IceCube

Searches for astrophysical sources of neutrinos using cascade events in IceCube Searches for astrophysical sources of neutrinos using cascade events in IceCube Mike Richman TeVPA 2017 August 8, 2017 Source Searches with IceCube Cascades TeVPA 17 Mike Richman (Drexel University) 1

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Neutrinos in Astrophysics and Cosmology

Neutrinos in Astrophysics and Cosmology Crab Nebula Neutrinos in Astrophysics and Cosmology Introductory Remarks Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany Periodic System of Elementary Particles Quarks Charge -1/3 Charge

More information

New Results for ν µ ν e oscillations in MINOS

New Results for ν µ ν e oscillations in MINOS New Results for ν µ ν e oscillations in MINOS Jelena Ilic Rutherford Appleton Lab 4/28/10 RAL PPD Seminar 1 Neutrino Mixing Mass eigenstates flavour eigenstates Maki-Nakagawa-Sakata: Flavour composition

More information

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory Gonzalo Parente Bermúdez Universidade de Santiago de Compostela & IGFAE for the Pierre Auger Collaboration Particle Physics and Cosmology

More information

Relic Supernova νʻs. Stanley Wojcicki

Relic Supernova νʻs. Stanley Wojcicki Relic Supernova νʻs 53 Relic Supernova νʻs In the whole universe, supernovas occur very frequently They leave behind relic neutrinos 53 Relic Supernova νʻs In the whole universe, supernovas occur very

More information

arxiv: v1 [hep-ex] 20 Jan 2016

arxiv: v1 [hep-ex] 20 Jan 2016 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2018 arxiv:1601.05245v1 [hep-ex] 20 Jan 2016 From DeepCore to PINGU

More information

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration) IceCube and High Energy Neutrinos Stony Brook University, Stony Brook, NY 11794-3800, USA E-mail: Joanna.Kiryluk@stonybrook.edu IceCube is a 1km 3 neutrino telescope that was designed to discover astrophysical

More information

Radio-chemical method

Radio-chemical method Neutrino Detectors Radio-chemical method Neutrino reactions: n+ν e => p+e - p+ν e => n+e + Radio chemical reaction in nuclei: A N Z+ν e => A-1 N(Z+1)+e - (Electron anti-neutrino, right) (Z+1) will be extracted,

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone High-energy neutrino detection with the ANTARES underwater erenkov telescope Supervisor: Prof. Antonio Capone 1 Outline Neutrinos: a short introduction Multimessenger astronomy: the new frontier Neutrino

More information

Neutrinos and Beyond: New Windows on Nature

Neutrinos and Beyond: New Windows on Nature Neutrinos and Beyond: New Windows on Nature Neutrino Facilities Assessment Committee Board on Physics and Astronomy National Research Council December 10, 2002 Charge The Neutrino Facilities Assessment

More information

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser Neutrinos from the Milky Way 18th Symposium on Astroparticle Physics in the Netherlands 23-10-2013 Erwin Visser Outline How are these neutrinos produced? Why look for them? How to look for them The ANTARES

More information

New Results from the MINOS Experiment

New Results from the MINOS Experiment University College London E-mail: annah@hep.ucl.ac.uk The MINOS experiment is a long-baseline neutrino experiment designed to study neutrino behaviour, in particular the phenomenon of neutrino oscillations.

More information

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA EPJ Web of Conferences 116, 11004 (2016) DOI: 10.1051/epjconf/201611611004 C Owned by the authors, published by EDP Sciences, 2016 Results from IceCube Tyce DeYoung a for the IceCube Collaboration Dept.

More information

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events Jutta Schnabel on behalf of the ANTARES collaboration Erlangen Centre for Astroparticle Physics, Erwin-Rommel Str.

More information

Solar neutrinos and the MSW effect

Solar neutrinos and the MSW effect Chapter 12 Solar neutrinos and the MSW effect The vacuum neutrino oscillations described in the previous section could in principle account for the depressed flux of solar neutrinos detected on Earth.

More information

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu PHYS 5326 Lecture #2 Wednesday, Jan. 24, 2007 Dr. 1. Sources of Neutrinos 2. How is neutrino beam produced? 3. Physics with neutrino experiments 4. Characteristics of accelerator based neutrino experiments

More information

KM3NeT. Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA)

KM3NeT. Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA) KM3NeT Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA) International Solvay Institutes 27 29 May 2015, Brussels, Belgium. Maarten de Jong 1 Introduction KM3NeT is a new

More information

1. Introduction on Astroparticle Physics Research options

1. Introduction on Astroparticle Physics Research options Research options Large variety of topics in astro physics and particle physics Cosmic rays (sources, production and acceleration mechanisms) Stability of matter or proton decay (GUTs) Solar neutrinos (the

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

arxiv:astro-ph/ v1 12 Oct 1999

arxiv:astro-ph/ v1 12 Oct 1999 The sun as a high energy neutrino source arxiv:astro-ph/9910208v1 12 Oct 1999 Christian Hettlage, Karl Mannheim Universitätssternwarte, Geismarlandstraße 11, D-37083 Göttingen, Germany and John G. Learned

More information

C. Spiering, CERN School Zeuthen, Sept.2003

C. Spiering, CERN School Zeuthen, Sept.2003 C. Spiering, CERN School Zeuthen, Sept.2003 Neutrinos Cosmic Neutrinos - solar neutrinos (kev MeV) - neutrinos from a Supernova (MeV) - atmospheric Neutrinos (GeV) - extraterrestrial neutrinos (GeV-TeV-PeV)

More information

Neutrino Signals from Dark Matter Decay

Neutrino Signals from Dark Matter Decay Neutrino Signals from Dark Matter Decay Michael Grefe Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany COSMO/CosPA 2010 The University of Tokyo 27 September 2010 Based on work in collaboration with

More information

From DeepCore to PINGU

From DeepCore to PINGU EPJ Web of Conferences 116, 11009 (2016) DOI: 10.1051/epjconf/201611611009 C Owned by the authors, published by EDP Sciences, 2016 From DeepCore to PINGU Measuring atmospheric neutrino oscillations at

More information

(7) Instrumentation in high energy neutrino experiments

(7) Instrumentation in high energy neutrino experiments (7) Instrumentation in high energy neutrino experiments Scientific Objectives Solar Neutrinos & Atmospheric Neutrinos High Energy Neutrino Detection in Ice (AMANDA & ICECUBE) High Energy Neutrino Detection

More information

( Some of the ) Lateset results from Super-Kamiokande

( Some of the ) Lateset results from Super-Kamiokande 1 ( Some of the ) Lateset results from Super-Kamiokande Yoshinari Hayato ( Kamioka, ICRR ) for the SK collaboration 1. About Super-Kamiokande 2. Solar neutrino studies in SK 3. Atmospheric neutrino studies

More information

PoS(EPS-HEP2015)068. The PINGU detector

PoS(EPS-HEP2015)068. The PINGU detector for the IceCube-Gen2 collaboration Universität Mainz, Germany E-mail: tehrhardt@icecube.wisc.edu The world s largest neutrino telescope, the IceCube Neutrino Observatory, is built in one of the planet

More information

Atmospheric muons & neutrinos in neutrino telescopes

Atmospheric muons & neutrinos in neutrino telescopes Atmospheric muons & neutrinos in neutrino telescopes Neutrino oscillations Muon & neutrino beams Muons & neutrinos underground Berlin, 1 October 2009 Tom Gaisser 1 Atmospheric neutrinos Produced by cosmic-ray

More information

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration IceCube & DeepCore Overview and Dark Matter Searches for the IceCube collaboration Content Overview: IceCube DeepCore (DOMs, geometry, deep ice properties, trigger & filter) Dark Matter searches: (current

More information

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Carlos Argüelles in collaboration with Gwen de Wasseige, Anatoli Fedynitch, and Ben Jones Based on JCAP07

More information

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration Searching for Physics Beyond the Standard Model with the IceCube Neutrino Observatory John Kelley for the IceCube Collaboration Wisconsin IceCube Particle Astrophysics Center University of Wisconsin Madison,

More information

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration Outline The H.E.S.S. Experiment The H.E.S.S. Electron Measurement Gamma-Ray Background Hadronic Background

More information

Indirect Searches for Gravitino Dark Matter

Indirect Searches for Gravitino Dark Matter Indirect Searches for Gravitino Dark Matter Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid PLANCK 202 From the Planck Scale to the Electroweak

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis: http://area51.berkeley.edu/manuscripts Goals! Perform an all-sky search

More information

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000 Tau Neutrino Physics Introduction Barry Barish 18 September 2000 ν τ the third neutrino The Number of Neutrinos big-bang nucleosynthesis D, 3 He, 4 He and 7 Li primordial abundances abundances range over

More information

A new IceCube starting track event selection and realtime event stream

A new IceCube starting track event selection and realtime event stream A new IceCube starting track event selection and realtime event stream Sarah Mancina Kyle Jero Advisor: Albrecht Karle Neutrino Parallel TeVPA 2017 Columbus, OH August 8th, 2017 IceCube and Atmospheric

More information

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande Search for Astrophysical Neutrino Point Sources at Super-Kamiokande Yusuke Koshio for Super-K collaboration Kamioka, ICRR, Univ. of Tokyo LNGS, INFN Super-Kamiokande detector Recent results of search for

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

High energy neutrino astronomy with the ANTARES Cherenkov telescope

High energy neutrino astronomy with the ANTARES Cherenkov telescope High energy neutrino astronomy with the ANTARES Cherenkov telescope P.Vernin CEA/Irfu/SPP On behalf of the ANTARES collaboration IWARA 2009 Conference Maresias, Sao Paulo, Brazil, 4-8/10/2009 i r f u saclay

More information

Neutrinos From The Sky and Through the Earth

Neutrinos From The Sky and Through the Earth Neutrinos From The Sky and Through the Earth Kate Scholberg, Duke University DNP Meeting, October 2016 Neutrino Oscillation Nobel Prize! The fourth Nobel for neutrinos: 1988: neutrino flavor 1995: discovery

More information

Solar and atmospheric ν s

Solar and atmospheric ν s Solar and atmospheric ν s Masato SHIOZAWA Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI),

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

John Ellison University of California, Riverside. Quarknet 2008 at UCR

John Ellison University of California, Riverside. Quarknet 2008 at UCR Cosmic Rays John Ellison University of California, Riverside Quarknet 2008 at UCR 1 What are Cosmic Rays? Particles accelerated in astrophysical sources incident on Earth s atmosphere Possible sources

More information

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology 1 The neutrino is neutral. The neutrino only interacts weakly. The neutrino has a small non-zero

More information

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA PIERA SAPIENZA ON BEHALF OF THE KM3NET COLLABORATION FRONTIERS OF RESEARCH ON COSMIC RAY GAMMA - LA PALMA 26-29 AUGUST 2015 OUTLINE MOTIVATION DETECTOR

More information

EeV Neutrinos in UHECR Surface Detector Arrays:

EeV Neutrinos in UHECR Surface Detector Arrays: EeV Neutrinos in UHECR Surface Detector Arrays: OBSERVATORY Challenges & Opportunities Karl-Heinz Kampert Bergische Universität Wuppertal High-Energy neutrino and cosmic ray astrophysics - The way forward

More information

Secondary particles generated in propagation neutrinos gamma rays

Secondary particles generated in propagation neutrinos gamma rays th INT, Seattle, 20 Feb 2008 Ultra High Energy Extragalactic Cosmic Rays: Propagation Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Energy loss processes protons

More information

Chart of Elementary Particles

Chart of Elementary Particles Chart of Elementary Particles Chart of Elementary Particles Better Chart! Better Chart! As of today: Oscillation of 3 massive active neutrinos is clearly the dominant effect: If neutrinos have mass: For

More information

Neutrino oscillation physics potential of Hyper-Kamiokande

Neutrino oscillation physics potential of Hyper-Kamiokande Neutrino oscillation physics potential of Hyper-Kamiokande on behalf of the Hyper-Kamiokande Collaboration Queen Mary University of London E-mail: l.cremonesi@qmul.ac.uk Hyper-Kamiokande (Hyper-K) is a

More information

High Energy Neutrino Astrophysics Latest results and future prospects

High Energy Neutrino Astrophysics Latest results and future prospects High Energy Neutrino Astrophysics Latest results and future prospects C. Spiering, Moscow, August 22, 2013 DETECTION PRINCIPLE Detection Modes Muon track from CC muon neutrino interactions Angular resolution

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

Those invisible neutrinos

Those invisible neutrinos Those invisible neutrinos and their astroparticle physics Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai Bhoutics, IITM, March 31st, 2017 Those invisible neutrinos...

More information

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge An Introduction to Modern Particle Physics Mark Thomson University of Cambridge Science Summer School: 30 th July - 1 st August 2007 1 Course Synopsis Introduction : Particles and Forces - what are the

More information

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Cherenkov 2005 27-29 April 2005 Palaiseau, France Contents: The AMANDA/IceCube detection principles Search for High Energy

More information

Matt Kistler Ohio State University In collaboration with John Beacom

Matt Kistler Ohio State University In collaboration with John Beacom Prospects for Galactic TeV Neutrino Astronomy Matt Kistler Ohio State University In collaboration with John Beacom Photo: HESS Zwicky s Contributions to GLCW8 COSMIC RA YS FROM SUPER-NO VAE By W. BAADE

More information

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations and the Matter Effect Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation

More information

Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES

Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES The IceCube and ANTARES Collaborations htt p : //icecube.wisc.edu/collaboration/authors/icrc17_icecube

More information

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore for the IceCube collaboration Content Overview: IceCube (see IceCube status plenary talk by D. Williams ) DeepCore

More information

Neutrino Experiments with Reactors

Neutrino Experiments with Reactors Neutrino Experiments with Reactors 1 Ed Blucher, Chicago Lecture 2 Reactors as antineutrino sources Antineutrino detection Reines-Cowan experiment Oscillation Experiments Solar Δm 2 (KAMLAND) Atmospheric

More information

Heaven-Sent Neutrino Interactions From TeV to PeV

Heaven-Sent Neutrino Interactions From TeV to PeV Heaven-Sent Neutrino Interactions From TeV to PeV Mauricio Bustamante Niels Bohr Institute, University of Copenhagen UCL HEP Seminar London, December 08, 2017 Two seemingly unrelated questions 1 Where

More information