Stars and Stellar Evolution

Size: px
Start display at page:

Download "Stars and Stellar Evolution"

Transcription

1 Stars and Stellar Evolution

2

3 Stars and Stellar Evolution K.S. de Boer and W. Seggewiss 17 avenue du Hoggar Parc d activités de Courtabeuf, B.P Les Ulis Cedex A, France

4 Cover image: The stellar association LH 95 in the Large Magellanic Cloud showing star formation, young stars and old stars. HST-ACS image, courtesy of D. Gouliermis and NASA/ESA ISBN This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad-casting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the French and German Copyright laws of March 11, 1957 and September 9, 1965, respectively. Violations fall under the prosecution act of the French and German Copyright Laws. c EDP Sciences, 2008

5 Contents 1 Introduction Historical background History of the characterization of stars History of the ideas about the evolution of stars Stellar evolution - the importance of gravity Relevance of stars for astrophysics Elementary astronomy and classical physics Classical observations The Planck function Spectral lines, metallicity, and gas conditions The surface parameters of stars The Hertzsprung-Russell Diagram, HRD Observational HRDs: M V with SpT or B V Physical HRD: luminosity L and effective temperature T eff Spectral energy distributions Relation between M V, M bol, and L Caution with mass - luminosity - temperature relations Surface parameters and size of a star Names of star types from location in the HRD Summary Stellar atmosphere: Continuum radiation + structure Introduction Radiation theory Definitions Radiative intensity Mean intensity, radiative flux Radiation density and radiation pressure The equation of radiation transport Exploring the equation of radiation transport a: No background intensity: Iν 0 = b: background intensity: Iν Graphic representation of the cases Thermodynamic equilibrium The radiative transfer in stellar atmospheres Effects of geometry Including all frequencies Continuity equation Special cases and approximations Atmospheres in LTE Plane parallel atmosphere iii

6 iv Limb darkening Gray atmosphere; Rosseland mean Structure of stellar atmospheres Temperature structure Pressure structure Opacity and the absorption coefficients Absorption due to ionization Total absorption cross section for hydrogen Absorption due to ionization of helium Absorption due to ionization of metals The H ion Absorption due to dissociation Free-free transitions Scattering Total absorption coefficient Effects of gas density on opacity Emission and the emission coefficient The spectral continuum and the Planck function Effects for the CMD Backwarming, blanketing Electron density and opacity effects Stellar atmosphere: Spectral structure Spectral lines Line profile Lorentz profile Pressure broadening Doppler broadening The Voigt profile Shape and strength of spectral lines and curve of growth Small optical depth in the line (τ 1 and/or α 1) Very large optical depth in the line (τ 1 and/or α 1) Intermediate α and/or τ Shape of curve of growth Statistics Boltzmann statistics and excitation equation Ionization and Saha equation Statistics and structure in stellar spectra Excitation Ionization Spectrophotometric methods Balmer jump and Balmer Series T eff and log g from Strömgren photometry Metallicity from Strömgren photometry Spectroscopy and the curve of growth Excitation Ionization Depth structure of atmosphere Abundance of elements Special features The G-Band Quasi-molecular absorption: H 2 and H Molecular absorption in cool atmospheres

7 v 3.5 Magnetic fields and Zeeman effect Gravitational settling and radiation levitation Stellar rotation Rotation broadening of spectral lines Rotation and average surface parameters T, M V, B V Stellar classification: the MKK system and newer methods Development of stellar classification towards the MKK system Quality of the MK classification process New classification methods Stellar structure: Basic equations Four basic equations for the internal structure Mass continuity Hydrostatic equilibrium Energy conservation Temperature gradient Radiative energy transport Convective energy transport Conductive energy transport Stability and time scales Virial theorem Kelvin-Helmholtz time scale Nuclear time scale Dynamical time scale Convection versus radiation Schwarzschild s criterion for convection Ledoux s criterion for convection Estimates for ad < rad Adiabatic gradient ad Radiative gradient rad Absorption-driven or radiation-driven convection? Large absorption coefficient κ Large flux F (r) Convective overshoot Mixing length theory Material functions Opacity Equation of state Ideal gas law Radiation pressure Degenerate gas Energy production functions: nuclear fusion and gravity Stellar winds Coronal models Radiative winds Line driven winds Continuum-driven winds Dust-driven winds Bi-stability winds: fast and dilute or slow and dense Winds enhanced due to stellar rotation Pulsation-driven winds

8 vi 5 Nuclear fusion in stars Energy production: fusion of H and He Binding energy of nuclei Estimates for the occurrence of hydrogen fusion The Gamow peak proton proton chain CNO cycle Temperature dependence of H-fusion energy production He fusion: the triple alpha process Nucleosynthesis Carbon and oxygen burning; α-capture Nitrogen burning Fusion to heavier elements General considerations (NSE); s-, r- and p-process s-process r-process p-process Nucleosynthesis and the Universe; Yields The burning of Lithium Neutrinos Mean free path for neutrinos Solar neutrinos Neutrino experiments The solar neutrino problem Neutrino oscillations The Sudbury Neutrino Observatory and solution of the problem Relevant neutrino reactions Advantages of heavy water The solution of the solar neutrino problem Nobel prize 2002 for neutrino research Stellar structure: Making star models The equations of state and their complications Polytropes; Consequences of differing equations of state The general polytropic equation Special polytropes Polytrope for ideal gas Completely convective stars Non-relativistic degenerate electron gas Relativistic completely degenerate electron gas Balance between internal pressure and gravitation The maximum mass of a normal star The minimum mass of a star Methods for solving the differential equations Numerical solutions Differential equations against mass shell Adding stellar evolution A model using gaussian functions Vocabulary for stellar structure: definitions Zero-age-main-sequence star parameters from models ZAMS: structure as a function of mass shell ZAMS: parameters along the ZAMS - a star as a leaky ball Similarity along the MS; homology; thermostat; luminosity and mass 96

9 vii A star as a leaky ball: general behaviour, effects of chemical composition Internal structure and chemical composition Consequences of nuclear enrichment for stellar structure Non-hydrogen stars Central temperature and density of He and C stars Summary Star formation, proto-stars, very young stars Evidence of star formation, populations, IMF Signs of present star formation Star-formation processes and results of star formation Molecular clouds: places of star formation Discovery and importance of interstellar molecules Characteristics of molecular clouds Observed phenomena in star forming regions Instabilities in the interstellar gas Gravitational instability (Jeans instability) Thermal instabilities Energy input and energy loss Density fluctuations and their growth Stability and ambipolar diffusion in molecular clouds Low efficiency of star formation Cloud support mechanisms Ambipolar diffusion Theoretical scenario of star formation Pre-main-sequence evolution (PMS evolution) Energy source of PMS stars Theory of pre main-sequence stars Contraction along the Hayashi line in the earliest phase The accretion rate Ṁ Bipolar outflows, jets, Herbig-Haro objects, disks Definition of bipolar outflows and Herbig-Haro objects Some physical characteristics of bipolar flows Circumstellar disks Origin of outflows Very young stars General characteristics of T Tauri stars T Tau stars and X-ray emission T Tauri stars as young objects Herbig Ae and Be stars Summary The almost stars: Brown Dwarfs Introduction and naming problems Nuclear fusion in brown dwarfs Deuterium burning Lithium burning Evolution and surface parameters of BDs How ubiquitous are BDs? Deuterium, litium and cosmology The limit to giant planets Summary

10 viii 9 Stars out of balance: from MS star to red giant Main-sequence stars Changes in the main-sequence phase Evolution due to the changing composition of the interior The end of the main-sequence phase Effects of convection on the MS phase Stars without inner convection (M init < 1.15 M ) Stars with inner convection (M init > 1.15 M ) Why and how does a star become red giant? A gedankenexperiment : the gravothermal hysteresis cycle The hysteresis cycle and real stars A second red giant phase The overall stellar thermal equilibrium (STE) Isothermal He core and Schönberg-Chandrasekhar limit Luminosity evolution of red giants Red giant luminosity depends on M init Effects of metallicity The core drives the evolution, the envelope follows Duration of the main-sequence phase Stellar evolution: Stars in the lower mass range Defining the low mass range The MS-mass limit of 1.15 M The MS-mass limit of 0.5 M H shell burning: the red giant phase Evolution of the RG core and of the H-burning shell The RG surface: spectral lines, mass loss and dust The end of the RG phase: He ignition, He flash Core He-burning stars The end of core He burning and on to the AGB General aspects The end of core He burning Envelope thickness, pulses, dredge-up, hot bottom burning, s-process fusion Low mass core He burners (M init <2 M ): Horizontal-Branch stars HB stars and the various types Metal content and age of HB stars, morphology of HBs Evolution of stars on the HB and toward the AGB AGB stars: structure and evolution AGB star evolution and the CMD He-shell flashes (thermal pulses) and convection Third dredge-up: nuclear fusion and s-process Flashes and mass loss of fusion enriched material All happenings in a very thin layer Higher mass core He burners: blue loop stars and the AGB Stars with M init larger than 7 to 8 M Stars with M init = 2 to 7 M AGB stars and hot bottom burning Timescales The end of the AGB phase Massive AGB stars: OH/IR stars and pagb stars Low mass AGB stars: pagb stars and planetary nebulae

11 ix 10.6 The end phase: white dwarfs Classification of WDs Ultimate fate of WDs Born-again stars Initial to final mass relation for lower MS stars Some special stars Pulsational variables: RR Lyrae, δ Cepheids, PG 1159 and ZZ Ceti stars RR Lyrae stars δ Cepheid stars PG 1159 stars ZZ Ceti stars (pulsating WDs) λ Bootes stars Cool subdwarf stars Blue stragglers Gaps and bumps in the MS, HB, AGB Gap on the main sequence Gaps on the HB The RGB and AGB bumps The Red clump Summary Stellar pulsation and vibration Describing a star with oscillations The formalism Oscillations and limiting frequencies The driving forces of oscillations Spherically symmetric radial pulsations Formalism for radial pulsation Atmospheric radial pulsations Details of the κ mechanism Types of pulsational variables The instability strip: δ Cep, W Vir, RR Lyr, δ Sct, DA variables Cepheids RR Lyr δ Sct DA variables or ZZ Cet stars Main-sequence variables Red variables: Miras Massive variables (LBVs) Vibrations Helioseismology Asteroseismology Doppler imaging and spotted stars Doppler-shift asteroseismology Photometric asteroseismology PG 1159, sdb, and DB variables The Solar cycle of 11 years; effects on climate Stellar coronae, magnetic fields and sunspots Stellar coronae Effects of radiation transport Magnetic fields Sunspots Prominences and flares

12 x 12.6 Relevance of the structures for stellar evolution Stellar evolution: Stars in the higher mass range Defining the high mass range Types of high mass stars The O and Of-type stars Determining the temperature of O stars Determining the mass of O stars Oe/Be stars Summary O type stars B type stars Wolf-Rayet (WR) stars Luminous blue variables: LBVs; P-Cygni stars Red supergiant stars Expanding envelopes, luminous winds Processes of radiation acceleration Radiative acceleration by the continuum Radiative acceleration through spectral lines Making a P-Cyg profile Mass loss Velocity profile Density profile Evolution and the HRD General nature of evolution of high mass stars Evolution of stars of M When does a star evolve with a blue loop? Evolution of a 60 M star Evolution and effects of metallicity Evolution and effects of rotation See a star evolve: P Cygni Nuclear fusion times and endphases of high mass stars Rotation and stellar evolution General aspects of rotation Rotation and effects of deformation Rotation and variation in T eff Rotation and effective gravity Possible effects of rotation on structure Rotation and meridional circulation Rotation driven instabilities Brunt-Väisälä oscillations Solberg-Høiland instability Baroclinic instability Shear instability Rotation of the Sun Convective flows will be turbulent Braking internal rotation Stabilizing forces Redistribution of angular momentum with evolution Magnetic field and rotation Rotation makes a magnetic field stronger Rotation braking by magnetic fields Loosing angular momentum

13 xi 14.6 Rotation and mass loss Mass loss disks Mass loss and loss of angular momentum Chemical effects of rotation: mixing Rotation and mass loss affect high mass star evolution Rotation and mass accretion affect WD evolution The first stars First stars have very low metal content Making a star in metal-free gas Evolution of first stars Nucleosynthesis in Population III stars Lithium in first stars Models and variation of free input parameters Effects on models and evolution Complications with convection Effects of metal content Effects of mass loss Effects of rotation Effects of combined parameters Degenerate stars: WD, NS, BH White dwarfs Internal structure of WDs Atmosphere of a WD Cooling and crystallization of a WD; cooling time Chandrasekhar limit, maximum mass of a WD Transfer of mass onto a WD; Eruptions Can a WD become NS? Neutron stars Two ways for stars to become NS Structure and mass of neutron stars The surface layers of a NS Behaviour of neutron stars: pulsars Strange (quark) stars Black holes Schwarzschild radius Observational evidence for the presence of stellar black holes Nobel prize 2002 for X-ray astrophysics Supernovae Historical supernovae, supernova rate Observed types of supernovae Theories about supernovae Hydrodynamic (core collapse) supernovae Onset of the collapse The collapse End of the collapse and rebounce The explosion Decay of luminosity Endothermic nuclear reactions and light curve bump Deceleration Thermonuclear supernovae

14 xii Other mechanisms to make SNe Supernovae and their progenitors Hypernovae / Gamma-ray bursts Initial mass of stars becoming super- or hypernova SN Type Ia and cosmology SN 1987A in the LMC SN 1987A itself Effects of SN 1987A on its environment Endproduct of first stars: M init to M final Evolution of binary stars Introduction Equipotential surfaces Mathematical formulation Graphical representation of equipotential surfaces Mass exchange General case Conservative mass exchange Classification scheme for close binary systems Complications Non-conservative mass exchange Accretion disks Common envelopes; merging stars Evolution of binary stars Towards massive X-ray binaries and beyond Towards low-mass X-ray binaries Microquasars Low mass binary systems: towards cataclysmic binaries, SN Ia WDs and rotation: Nova and SN Ia phenomena Variety of binary evolution; special objects explained Multiple branching in binary evolution Special objects now explained by binary evolution Cataclysmic variables; Novae; Supersoft X-ray sources Type Ia supernovae Type Ib and Ic supernovae X-ray binaries (HMXB, LMXB) Binary pulsars High speed OB stars Merged stars Summary Luminosity and mass function The luminosity function The stellar initial mass function Power law mass functions; equivalences Salpeter mass function Relation between the luminosity and mass functions Determinations of the mass function Star clusters Open clusters Globular clusters Mass segregation Field stars Completeness of the photometry

15 xiii Results for mass functions The high-mass end of the IMF The IMF and its universality The mass function for the first stars Isochrones Definition Examples Effects of metal content of stars Transforming (L,T )-isochrones to (M V,B V )-isochrones Difference between isochrones and evolutionary tracks Using isochrones in CMDs Synthetic CMDs Special CMD-regions to find the age of star groups Star formation history (SFH) Photometric SFH SFH and synthetic spectral energy distributions Stars influence their environment Star formation and IS cloud metal content Effects of first stars Chemical evolution Consumption of primordial D, Li, He Metal production and yield Radioactive decay and nucleochronometry What comes of all evolution? Stars and their light Stellar remnants Gas returned to IS space Summary; Questions, Constants, Acronyms, Lists Stars and their structure Stars and their evolution Stellar evolution in comparison Stars and effects for their environment List of questions Acronyms, Constants, Abbreviations List of Figures List of Tables Index

16

Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Achim Weiss Max-Planck-Institut für Astrophysik 01/2014 Stellar Structure p.1 Stellar evolution overview 01/2014 Stellar Structure p.2 Mass ranges Evolution of stars with

More information

Chapter 19: The Evolution of Stars

Chapter 19: The Evolution of Stars Chapter 19: The Evolution of Stars Why do stars evolve? (change from one state to another) Energy Generation fusion requires fuel, fuel is depleted [fig 19.2] at higher temperatures, other nuclear process

More information

Lecture 1: Introduction. Literature: Onno Pols chapter 1, Prialnik chapter 1

Lecture 1: Introduction. Literature: Onno Pols chapter 1, Prialnik chapter 1 Lecture 1: Introduction Literature: Onno Pols chapter 1, Prialnik chapter 1!" Goals of the Course! Understand the global characteristics of stars! Relate relevant microphysics to the global stellar characteristics!

More information

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13.

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13. 6.1 THE STUCTUE OF MAIN-SEQUENCE STAS (ZG: 16.2; CO 10.6, 13.1) main-sequence phase: hydrogen core burning phase zero-age main sequence (ZAMS): homogeneous composition Scaling relations for main-sequence

More information

Advanced Stellar Astrophysics

Advanced Stellar Astrophysics v Advanced Stellar Astrophysics William K. Rose University of Maryland College Park CAMBRIDGE UNIVERSITY PRESS Contents Preface xiii Star formation and stellar evolution: an overview 1 1 A short history

More information

Evolution of Intermediate-Mass Stars

Evolution of Intermediate-Mass Stars Evolution of Intermediate-Mass Stars General properties: mass range: 2.5 < M/M < 8 early evolution differs from M/M < 1.3 stars; for 1.3 < M/M < 2.5 properties of both mass ranges MS: convective core and

More information

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Choose the answer that best completes the question. Read each problem carefully and read through all the answers.

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Pre Main-Sequence Evolution

Pre Main-Sequence Evolution Stellar Astrophysics: Stellar Evolution Pre Main-Sequence Evolution The free-fall time scale is describing the collapse of the (spherical) cloud to a protostar 1/2 3 π t ff = 32 G ρ With the formation

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

More information

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 Phys 0 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 MULTIPLE CHOICE 1. We know that giant stars are larger in diameter than the sun because * a. they are more luminous but have about the

More information

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

More information

Protostars evolve into main-sequence stars

Protostars evolve into main-sequence stars Understanding how stars evolve requires both observation and ideas from physics The Lives of Stars Because stars shine by thermonuclear reactions, they have a finite life span That is, they fuse lighter

More information

HR Diagram, Star Clusters, and Stellar Evolution

HR Diagram, Star Clusters, and Stellar Evolution Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

More information

The Local Group of Galaxies

The Local Group of Galaxies The Local Group of Galaxies Two large spiral galaxies Milky Way & Andromeda (Messier 31 or M31) Distance between them: D = 700 kpc = 2.3 x 10 6 light yrs Each large spiral galaxy has several smaller satellite

More information

Chapter 11 The Formation and Structure of Stars

Chapter 11 The Formation and Structure of Stars Chapter 11 The Formation and Structure of Stars Guidepost The last chapter introduced you to the gas and dust between the stars that are raw material for new stars. Here you will begin putting together

More information

An Overview of Stellar Evolution

An Overview of Stellar Evolution Stellar Objects: An Overview of Stellar Evolution 1 An Overview of Stellar Evolution 1 the Main Sequence Zero-age Main Sequence stars (ZAMS) are those stars who arrived at the MS recently. Practically,

More information

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. Lecture 4 Stars The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. X-ray ultraviolet infrared radio To understand

More information

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Choose the answer that best completes the question. Read each problem carefully and read through all the answers.

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Guiding Questions. The Birth of Stars

Guiding Questions. The Birth of Stars Guiding Questions The Birth of Stars 1 1. Why do astronomers think that stars evolve (bad use of term this is about the birth, life and death of stars and that is NOT evolution)? 2. What kind of matter

More information

Stellar Evolution. Eta Carinae

Stellar Evolution. Eta Carinae Stellar Evolution Eta Carinae Evolution of Main Sequence Stars solar mass star: from: Markus Bottcher lecture notes, Ohio University Evolution off the Main Sequence: Expansion into a Red Giant Inner core

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Index. blue stragglers 16, 64, 86, 128, 148 blue supergiant (BSG) 26, 102 bolometric correction 10, 25, 62, 105, 215 BzK criterion 157, 158

Index. blue stragglers 16, 64, 86, 128, 148 blue supergiant (BSG) 26, 102 bolometric correction 10, 25, 62, 105, 215 BzK criterion 157, 158 261 Index symbols 4000 Å break 118, 124 η Carinae 27 a A496 238 accretion 82, 129, 133, 138, 184 191, 223 accretion efficiency 196 accretion induced collapse (AIC) 184, 187 adiabatic gradient 5, 18 AGB

More information

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2) Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

More information

Astronomy II (ASTR1020) Exam 3 Test No. 3D

Astronomy II (ASTR1020) Exam 3 Test No. 3D Astronomy II (ASTR1020) Exam 3 Test No. 3D 23 October 2001 The answers of this multiple choice exam are to be indicated on the Scantron with a No. 2 pencil. Don t forget to write your name and the Test

More information

ASTR-1020: Astronomy II Course Lecture Notes Section VI

ASTR-1020: Astronomy II Course Lecture Notes Section VI ASTR-1020: Astronomy II Course Lecture Notes Section VI Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star Star Death High Mass Star Red Supergiant A star with mass between 8 M and 20 M will become a red supergiant and will subsequently experience a supernova explosion. The core of this star will have a mass

More information

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence Lecture 9: Post-main sequence evolution of stars Lifetime on the main sequence Shell burning and the red giant phase Helium burning - the horizontal branch and the asymptotic giant branch The death of

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The Later Evolution of Low Mass Stars (< 8 solar masses) http://apod.nasa.gov/apod/astropix.html The sun - past and future central density also rises though average density decreases During 10 billion

More information

Homologous Stellar Models and Polytropes

Homologous Stellar Models and Polytropes Homologous Stellar Models and Polytropes Main Sequence Stars Stellar Evolution Tracks and Hertzsprung-Russell Diagram Star Formation and Pre-Main Sequence Contraction Main Sequence Star Characteristics

More information

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Brock University Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Number of hours: 50 min Time of Examination: 18:00 15:50 Instructor:

More information

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: I. The End of a Star s Life When all the fuel in a star is used up, will win over pressure and the star will die nuclear fuel; gravity High-mass

More information

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Chapter 6: Stellar Evolution (part 2): Stellar end-products Chapter 6: Stellar Evolution (part 2): Stellar end-products Final evolution stages of high-mass stars Stellar end-products White dwarfs Neutron stars and black holes Supernovae Core-collapsed SNe Pair-Instability

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Brock University Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost Stars form from the interstellar medium and reach stability fusing hydrogen in their cores. This chapter is about the long, stable middle age of stars on the main

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The sun - past and future The Later Evolution of Low Mass Stars (< 8 solar masses) During 10 billion years the suns luminosity changes only by about a factor of two. After that though, changes become rapid

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

Mar 22, INSTRUCTIONS: First ll in your name and social security number (both by printing

Mar 22, INSTRUCTIONS: First ll in your name and social security number (both by printing ASTRONOMY 0089: EXAM 2 Class Meets M,W,F, 1:00 PM Mar 22, 1996 INSTRUCTIONS: First ll in your name and social security number (both by printing and by darkening the correct circles). Sign your answer sheet

More information

Evolution from the Main-Sequence

Evolution from the Main-Sequence 9 Evolution from the Main-Sequence Lecture 9 Evolution from the Main-Sequence P. Hily-Blant (Master PFN) Stellar structure and evolution 2016-17 111 / 159 9 Evolution from the Main-Sequence 1. Overview

More information

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS Main Categories of Compact Systems Formation of Compact Objects Mass and Angular Momentum Loss Evolutionary Links to Classes of Binary Systems Future Work

More information

20. Stellar Death. Interior of Old Low-Mass AGB Stars

20. Stellar Death. Interior of Old Low-Mass AGB Stars 20. Stellar Death Low-mass stars undergo three red-giant stages Dredge-ups bring material to the surface Low -mass stars die gently as planetary nebulae Low -mass stars end up as white dwarfs High-mass

More information

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

More information

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 7: Stellar evolution I: Low-mass stars Lecture 7: Stellar evolution I: Low-mass stars Senior Astrophysics 2018-03-21 Senior Astrophysics Lecture 7: Stellar evolution I: Low-mass stars 2018-03-21 1 / 37 Outline 1 Scaling relations 2 Stellar

More information

Stellar Evolution: Outline

Stellar Evolution: Outline Stellar Evolution: Outline Interstellar Medium (dust) Hydrogen and Helium Small amounts of Carbon Dioxide (makes it easier to detect) Massive amounts of material between 100,000 and 10,000,000 solar masses

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

More information

The Life of Our Sun The Life of Our Sun

The Life of Our Sun The Life of Our Sun The Life of a Star Chapter 14 Stellar Evolution 1 2 Mass Is the Key Stars require millions to billions of years to evolve a time that is incredibly slow by human standards A star s evolution can be studied

More information

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19 ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19 WHEN S THE NEXT TEST?!?!?!? If anyone is following the syllabus, you know that it says there is a test today. The test will be on April 11 th (a

More information

Evolution and nucleosynthesis prior to the AGB phase

Evolution and nucleosynthesis prior to the AGB phase Evolution and nucleosynthesis prior to the AGB phase Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars, and the evolution

More information

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to

More information

The Stars. Chapter 14

The Stars. Chapter 14 The Stars Chapter 14 Great Idea: The Sun and other stars use nuclear fusion reactions to convert mass into energy. Eventually, when a star s nuclear fuel is depleted, the star must burn out. Chapter Outline

More information

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae Guiding Questions Stellar Evolution 1. Why do astronomers think that stars evolve? 2. What kind of matter exists in the spaces between the stars? 3. What steps are involved in forming a star like the Sun?

More information

Chapter 9. Stars. The Hertzsprung-Russell Diagram. Topics for Today s Class. Phys1411 Introductory Astronomy Instructor: Dr.

Chapter 9. Stars. The Hertzsprung-Russell Diagram. Topics for Today s Class. Phys1411 Introductory Astronomy Instructor: Dr. Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 9 Stars Cengage Learning 2016 Topics for Today s Class HR Diagram Variable Stars Intrinsic Variables Cepheids

More information

Atoms and Star Formation

Atoms and Star Formation Atoms and Star Formation What are the characteristics of an atom? Atoms have a nucleus of protons and neutrons about which electrons orbit. neutrons protons electrons 0 charge +1 charge 1 charge 1.67 x

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Astronomy 104: Second Exam

Astronomy 104: Second Exam Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

More information

Chapter 17: Stellar Evolution

Chapter 17: Stellar Evolution Astr 2310 Thurs. Mar. 30, 2017 Today s Topics Chapter 17: Stellar Evolution Birth of Stars and Pre Main Sequence Evolution Evolution on and off the Main Sequence Solar Mass Stars Massive Stars Low Mass

More information

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer Charles Keeton Principles of Astrophysics Using Gravity and Stellar Physics to Explore the Cosmos ^ Springer Contents 1 Introduction: Tools of the Trade 1 1.1 What Is Gravity? 1 1.2 Dimensions and Units

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

Stars with Mⵙ go through two Red Giant Stages

Stars with Mⵙ go through two Red Giant Stages Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Death of Stars Nuclear reactions in small stars How stars disperse carbon How low mass stars die The nature of white dwarfs

More information

Why Do Stars Leave the Main Sequence? Running out of fuel

Why Do Stars Leave the Main Sequence? Running out of fuel Star Deaths Why Do Stars Leave the Main Sequence? Running out of fuel Observing Stellar Evolution by studying Globular Cluster HR diagrams Plot stars in globular clusters in Hertzsprung-Russell diagram

More information

Recall what you know about the Big Bang.

Recall what you know about the Big Bang. What is this? Recall what you know about the Big Bang. Most of the normal matter in the universe is made of what elements? Where do we find most of this normal matter? Interstellar medium (ISM) The universe

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE Extended Second Edition A. Weiss, W. Hillebrandt, H.-C. Thomas and H. Ritter Max-Planck-lnstitut fur Astrophysik, Garching, Germany C S P CONTENTS PREFACE

More information

Topics for Today s Class

Topics for Today s Class Foundations of Astronomy 13e Seeds Chapter 11 Formation of Stars and Structure of Stars Topics for Today s Class 1. Making Stars from the Interstellar Medium 2. Evidence of Star Formation: The Orion Nebula

More information

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars Lecture 11 Stellar Evolution Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars A Spiral Galaxy (Milky Way Type) 120,000 ly A few hundred billion stars

More information

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc. Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Astronomy. Stellar Evolution

Astronomy. Stellar Evolution Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Stellar Evolution Main Sequence star changes during nuclear fusion What happens when the fuel runs out Old stars and second

More information

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc. Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017 Lecture 16: The life of a low-mass star Astronomy 111 Monday October 23, 2017 Reminders Online homework #8 due Monday at 3pm Exam #2: Monday, 6 November 2017 The Main Sequence ASTR111 Lecture 16 Main sequence

More information

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Wed, July 16 MW galaxy, then review. Start with ECP3Ch14 2 through 8 Then Ch23 # 8 & Ch 19 # 27 & 28 Allowed Harlow Shapely to locate

More information

MAURIZIO SALARIS AGB STARS STRUCTURE 2 nd dredge up only for masses above ~4 M Early AGB Thermal pulses M=2.0M Z=0.02 Weiss & Ferguson (2009) HOT BOTTOM BURNING The minimum mass for HBB decreases with

More information

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS AST 101 INTRODUCTION TO ASTRONOMY SPRING 2008 - MIDTERM EXAM 2 TEST VERSION 1 ANSWERS Multiple Choice. In the blanks provided before each question write the letter for the phrase that best answers the

More information

Astro 1050 Wed. Apr. 5, 2017

Astro 1050 Wed. Apr. 5, 2017 Astro 1050 Wed. Apr. 5, 2017 Today: Ch. 17, Star Stuff Reading in Horizons: For Mon.: Finish Ch. 17 Star Stuff Reminders: Rooftop Nighttime Observing Mon, Tues, Wed. 1 Ch.9: Interstellar Medium Since stars

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

PENNSYLVANIA SCIENCE OLYMPIAD STATE FINALS 2012 ASTRONOMY C DIVISION EXAM APRIL 27, 2012

PENNSYLVANIA SCIENCE OLYMPIAD STATE FINALS 2012 ASTRONOMY C DIVISION EXAM APRIL 27, 2012 PENNSYLVANIA SCIENCE OLYMPIAD STATE FINALS 2012 ASTRONOMY C DIVISION EXAM APRIL 27, 2012 TEAM NUMBER SCHOOL NAME INSTRUCTIONS: 1. Turn in all exam materials at the end of this event. Missing exam materials

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Properties of Stars. Characteristics of Stars

Properties of Stars. Characteristics of Stars Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations. Star Color and Temperature Color

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Cambridge University Press Advanced Stellar Astrophysics William K. Rose Frontmatter More information

Cambridge University Press Advanced Stellar Astrophysics William K. Rose Frontmatter More information In the last two decades, remarkable progress has been made in understanding stars. This graduate-level textbook provides a systematic, self-contained and lucid introduction to the physical processes and

More information

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure 10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium Physics and Chemistry of the Interstellar Medium Sun Kwok The University of Hong Kong UNIVERSITY SCIENCE BOOKS Sausalito, California * Preface xi The Interstellar Medium.1.1 States of Matter in the ISM

More information

Evolution Beyond the Red Giants

Evolution Beyond the Red Giants Evolution Beyond the Red Giants Interior Changes Sub-giant star 1 Post-Helium Burning What happens when there is a new core of non-burning C and O? 1. The core must contract, which increases the pressure

More information

Chapter 9. The Formation and Structure of Stars

Chapter 9. The Formation and Structure of Stars Chapter 9 The Formation and Structure of Stars The Interstellar Medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

ASTRONOMY 1 EXAM 3 a Name

ASTRONOMY 1 EXAM 3 a Name ASTRONOMY 1 EXAM 3 a Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) Multiple Choice (25 @ 2 points each = 50 pts.) Essays (choose 3 of 4 @ 10 points each = 30 pt 1.Luminosity D 8.White dwarf

More information

Billions and billions of stars

Billions and billions of stars Billions and billions of stars The Trifid Nebula Distance ~5200 lyrs Star forming regions include the famous Orion nebula About 1500 light years away. The belt of Orion The Flame Nebula can you spot the

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information