GEOL212 Due 10/1/18 Homework V

Size: px
Start display at page:

Download "GEOL212 Due 10/1/18 Homework V"

Transcription

1 GEOL212 Due 10/1/18 Homework V General instructions: Although you are allowed to discuss homework questions with your classmates, your work must be uniquely your own. Thus, please answer all questions in your own intelligible words. (When in doubt, use complete sentences.) If calculations are involved, show all work (so that I will have some basis for giving partial credit.) Be sure to use appropriate units and significant digits, where appropriate. Impact geochronology: It is intuitively obvious that the older a landscape is, the greater its opportunity to accumulate impact craters. Thus, the counting of impact craters is a useful means of comparing the ages of regions on planetary bodies that can be photographed from space. For questions 1-4, refer to the attached images from Google Mars showing: a.) Gusev Crater (Where the Spirit rover operated from 2004 until 2010) and its surroundings. b.) Part of the margin of Amazonis Planitia northeast of Gusev. 1.) Begin with the Amazonis image. Identify all unambiguous craters. Using a ruler, measure their diameter to the nearest km (you will have to approximate in many cases), and note the diameter in km in a list. (You will want to use Excel for this.) Draw an X over each crater that you measure. Measure only unambiguous craters. If you re not sure a feature is a crater, ignore it. You ought to be able to identify craters down to 4 km in diameter. (2mm in the image.) Plan to spend some time on this. When you are done, sort your list by crater size. NOTE: Everyone will do this slightly differently, depending on which craters you identify and how you measure them. Still, do your best to collect good data. If you don t, your answers to later questions might be distorted. (GIGO) In the table below, indicate, for each diameter category, the cumulative number of craters equal to or larger than that amount. (For diameter 2, you would indicate actual the number of craters on your list with diameters greater than or equal to 2 km.) Then indicate the cumulative frequency of craters. Obtain this by dividing the cumulative number by the number of square kilometers in the image. (Each image covers 40,500 km 2 ). Use scientific notation where appropriate.

2 Crater diameter (km) Cumulative number Cumulative frequency ( = cumulative number / 40,500 km 2 ) =>4 =>5 =>6 =>7 =>8 =>9 =>10 =>20 =>30 =>40 =>50 =>60 =>70 =>80 =>90 =>100 STOP AND CHECK, are your numbers cumulative? If any cumulative number is smaller than the number in the row below it, it is wrong! For example: If there are 6 craters => 8 km., then there must be at least that many => 7 km. 2.) On the attached log/log graph paper, plot the cumulative frequency / km 2 against crater diameter. Be careful not to get confused! 2 x 10-4, for example, is twice as big a number as 1 x x 10-3 is ten times as big.

3 3.) Now repeat the above steps for Gusev. This will take longer because there are more craters. Crater diameter (km) Cumulative number Cumulative frequency ( = cumulative number / 40,500 km 2 ) =>4 =>5 =>6 =>7 =>8 =>9 =>10 =>20 =>30 =>40 =>50 =>60 =>70 =>80 =>90 =>100 4.) Plot these cumulative frequencies on the log/log graph. 5.) For any size class, which region has the higher cumulative frequency values, Gusev or Amazonis? In very simple terms, what does this imply about their relative ages? 6.) As plotted, are your cumulative frequency curves for these regions roughly the same general shape? What does this suggest about the size distribution of available impactors during Gusev and Amazonis times? I.e. was the size distribution the same, or did it change between these times? If it changed, describe the change in simple terms.

4 7. Figure 4.27 of your text (page 151) shows calibrated cratering curves for the Moon and Mars, allowing us to infer numerical ages of landscapes. What kind of data is used to calibrate the lunar cratering curves? 8.) How are the Martian curves calibrated? Which calibration do you consider more trustworthy? 9.) Your text s 4 Ga (billion year) and 3 Ga curves from figure 4.27 are indicated on the graph paper provided for the interval of km diameter. Based on your crater counts, is the Amazonis region younger or older than 3 Ga? 10.) Based on your crater counts, is the Gusev region older or younger than 4 Ga or 3 Ga?

5

6

7

Assignment 4. Due TBD

Assignment 4. Due TBD Assignment 4 Due TBD Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your work is

More information

Assignment 2. Due March 4, 2019

Assignment 2. Due March 4, 2019 Assignment 2 Due March 4, 2019 Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your

More information

Problem Set 3: Crater Counting

Problem Set 3: Crater Counting Problem Set 3: Crater Counting Introduction Impact craters are the dominant landforms on most of the solid surfaces in our solar system. These impact craters have formed on the surfaces over the 4.6 billion

More information

What is Crater Number Density?

What is Crater Number Density? Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky 2008 What is Crater Number Density? REAL Curriculum Crater Number Density Today we will learn some math that is necessary in order to learn important

More information

GEOL212 Due 11/19/18 Homework XI

GEOL212 Due 11/19/18 Homework XI GEOL212 Due 11/19/18 Homework XI General instructions: Although you are allowed to discuss homework questions with your classmates, your work must be uniquely your own. Thus, please answer all questions

More information

GEOL212 Due 9/24/18 Homework 4

GEOL212 Due 9/24/18 Homework 4 GEOL212 Due 9/24/18 Homework 4 General instructions: Although you are allowed to discuss homework questions with your classmates, your work must be uniquely your own. Thus, please answer all questions

More information

Craters. Part 1: What should we measure?

Craters. Part 1: What should we measure? When a meteoroid (called the impactor ) hits the surface of a planet or moon, it creates an impact crater. As the impactor s kinetic energy is dissipated, the resulting explosive energy release carves

More information

UNIVERSITY OF MARYLAND ASTRONOMY DEPARTMENT. Mars Cratering. Crater count isochrons of Arsia and Pavonis Mons

UNIVERSITY OF MARYLAND ASTRONOMY DEPARTMENT. Mars Cratering. Crater count isochrons of Arsia and Pavonis Mons UNIVERSITY OF MARYLAND ASTRONOMY DEPARTMENT Mars Cratering Crater count isochrons of Arsia and Pavonis Mons Paul Hearding and Ben McIlwain 5/21/2007 Imagery of Arsia and Pavonis Mons taken by Mars Global

More information

Highs and Lows, Floods and Flows PLANETARY MAPPING

Highs and Lows, Floods and Flows PLANETARY MAPPING Highs and Lows, Floods and Flows PLANETARY MAPPING OVERVIEW Teams of students become familiar with the topography of Mars, its geologic features, and patterns of features using a color-coded topographic

More information

Initial Observations and Strategies

Initial Observations and Strategies STUDENT WORKSHEET 1 Initial Observations and Strategies Name(s) Date Look at the Thermal Emission Imaging System (THEMIS) Daytime Infrared (IR) image mosaic your teacher has given you. You will be investigating

More information

MAPPING THE SURFACE OF MARS

MAPPING THE SURFACE OF MARS MAPPING THE SURFACE OF MARS What will you learn in this lab? How can we determine the geologic history of a planet or satellite without travelling to the planetary body? In this lab you will create a simple

More information

GEOL212 Due 10/16/17 Homework VII

GEOL212 Due 10/16/17 Homework VII GEOL212 Due 10/16/17 Homework VII General instructions: Although you are allowed to discuss homework questions with your classmates, your work must be uniquely your own. Thus, please answer all questions

More information

Name Date. Partners. Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna

Name Date. Partners. Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna Name Date Partners Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna Purpose : to become familiar with the major features of the planets of the solar system, especially the Earth,

More information

Day 1: Over + Over Again

Day 1: Over + Over Again Welcome to Morning Math! The current time is... huh, that s not right. Day 1: Over + Over Again Welcome to PCMI! We know you ll learn a great deal of mathematics here maybe some new tricks, maybe some

More information

GEOL212 Due 10/9/17 Homework VI

GEOL212 Due 10/9/17 Homework VI GEOL212 Due 10/9/17 Homework VI General instructions: Although you are allowed to discuss homework questions with your classmates, your work must be uniquely your own. Thus, please answer all questions

More information

Pi: The Ultimate Ratio

Pi: The Ultimate Ratio Pi: The Ultimate Ratio Exploring the Ratio of Circle Circumference to Diameter 1 WARM UP Scale up or down to determine an equivalent ratio. 1. 18 miles 3 hours 5? 1 hour 2. $750 4 days 3. 4. 12 in. 1 ft

More information

Grading Summary: Questions 1: 22 points. Question 2: 12 points. Question 3: 12 points. Question 4: 18 points. Question 5: 36 points.

Grading Summary: Questions 1: 22 points. Question 2: 12 points. Question 3: 12 points. Question 4: 18 points. Question 5: 36 points. HOMEWORK #3 Moon Concepts Due Friday, May 5 th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please be as brief and

More information

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons ESCI 110: Planetary Surfaces Page 3-1 Introduction Exercise 3 Surfaces of the Planets and Moons Our knowledge of the solar system has exploded with the space exploration programs of the last 40 years.

More information

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ABSTRACT We will be doing some review of Math concepts in this lab. Scientific notation, unit conversions, scale modeling, time to

More information

Martian Crater Dating through Isochrons. The universe is a vast and seemingly-endless array of space and matter that

Martian Crater Dating through Isochrons. The universe is a vast and seemingly-endless array of space and matter that Gary Studen ASTR 498 5/13/05 Martian Crater Dating through Isochrons Introduction The universe is a vast and seemingly-endless array of space and matter that harbors many mysteries. Through advances in

More information

Honors Algebra 2 Summer Practice Problems 2017

Honors Algebra 2 Summer Practice Problems 2017 Honors Algebra II Summer Assignment 017 These are the directions for your summer assignment for next year s course. This is an opportunity for you to review selected topics from Algebra One to make sure

More information

Lab #11. Impact Craters

Lab #11. Impact Craters Lab #11 Impact Craters Introduction It is clear from the surface features of geologically old planets (the Moon, Mercury) and some of the unusual phenomena in the solar system (Earth s large moon, the

More information

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a "geologic history" for a planet or moon is?

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a geologic history for a planet or moon is? Prelab 1. Explain in your own words what you think a "geologic history" for a planet or moon is? 2. Describe some of the major features seen on the Martian surface by various spacecraft missions over the

More information

Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky Ages on Mars. Martian Surface Age Exploration

Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky Ages on Mars. Martian Surface Age Exploration Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky 2008 Ages on Mars Martian Surface Age Exploration You have now learned some very important things about various planets and moons in our Solar

More information

Impact Age Dating. ASTRO 202 Lecture Thursday, February 14, Review. What is relative age dating? What is relative age dating?

Impact Age Dating. ASTRO 202 Lecture Thursday, February 14, Review. What is relative age dating? What is relative age dating? Review Impact Age Dating ASTRO 202 Lecture Thursday, February 14, 2008 Carbon-14, Potassium-Argon isotopic age determination: (1) Parent decays to daughter at some predictable rate (2) How much now? (3)

More information

15 Surface Water Flow Features on Mars

15 Surface Water Flow Features on Mars Name: Date: 15 Surface Water Flow Features on Mars 15.1 Introduction In this lab you will be making measurements of some valleys and channels on Mars. The main goal of this lab is to be able to distinguish

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG631,Linear and integer optimization with applications The simplex method: degeneracy; unbounded solutions; starting solutions; infeasibility; alternative optimal solutions Ann-Brith Strömberg

More information

Highs and Lows Floods and Flows

Highs and Lows Floods and Flows Highs and Lows Floods and Flows Planetary Mapping Facilitator Guide Becky Nelson Education Specialist The Lunar and Planetary Institute Highs and Lows, Floods and Flows Planetary Mapping Overview In this

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

North Seattle Community College Math 084 Chapter 1 Review. Perform the operation. Write the product using exponents.

North Seattle Community College Math 084 Chapter 1 Review. Perform the operation. Write the product using exponents. North Seattle Community College Math 084 Chapter 1 Review For the test, be sure to show all work! Turn off cell phones. Perform the operation. Perform the operation. Write the product using exponents.

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

ASTRONOMY MERIT BADGE WORK SHEET BYU MERIT BADGE POWWOW

ASTRONOMY MERIT BADGE WORK SHEET BYU MERIT BADGE POWWOW ASTRONOMY MERIT BADGE WORK SHEET BYU MERIT BADGE POWWOW Revision July 2013 Scout s Name Instructor s Name Scout s Address City State Instructions 1) The Scout is to review the merit badge book before the

More information

Proton. Size of cell. 100 = 10 2, so the logarithm of 100 is 2, written Log 100= 2

Proton. Size of cell. 100 = 10 2, so the logarithm of 100 is 2, written Log 100= 2 Homework 1 Date Due Name You will be making a chart of the sizes of things in the Universe. It should come out similar to Figure., but more precise. The plot you will be working on is at the end of this

More information

Lecture 15 Crater counting on Mars (Matt Smith, ESS)

Lecture 15 Crater counting on Mars (Matt Smith, ESS) Tuesday, 24 February Lecture 15 Crater counting on Mars (Matt Smith, ESS) Reading assignment: Ch. 8.1-8.5 Radar Basics (p.626 648) Ch 8.20 - Passive microwave (p. 709-714) Next lecture Forest remote sensing,

More information

Similar Shapes and Gnomons

Similar Shapes and Gnomons Similar Shapes and Gnomons May 12, 2013 1. Similar Shapes For now, we will say two shapes are similar if one shape is a magnified version of another. 1. In the picture below, the square on the left is

More information

Purpose: To determine the factors affecting the appearance of impact craters and ejecta.

Purpose: To determine the factors affecting the appearance of impact craters and ejecta. Title: Impact Craters Subject: Science Grade Level: 4 th - 8th Purpose: To determine the factors affecting the appearance of impact craters and ejecta. Materials 1 pan Lunar surface material Tempera paint,

More information

Mars for Earthlings. Purpose: Recognize the purpose and need for understanding the scale and context of various remote sensing imaging techniques.

Mars for Earthlings. Purpose: Recognize the purpose and need for understanding the scale and context of various remote sensing imaging techniques. LESSON 4: Remote Sensing Mars In-Class Activity 1 Scale and Context Purpose: Recognize the purpose and need for understanding the scale and context of various remote sensing imaging techniques. Study the

More information

Measurement. Chapter Review. Part A. Vocabulary Review Directions: Use the clues to complete the puzzle. Assessment. Across. Down

Measurement. Chapter Review. Part A. Vocabulary Review Directions: Use the clues to complete the puzzle. Assessment. Across. Down Chapter Review Measurement Part A. Vocabulary Review Directions: Use the clues to complete the puzzle. 1 2 3 4 5 6 7 8 9 10 11 12 Across 3. used to show the relationship between two variables (2 words)

More information

Measurement. Weight, height, and length are common measurements. List at least five things you can measure.

Measurement. Weight, height, and length are common measurements. List at least five things you can measure. chapter 32 Measurement section 1 Description and Measurement Before You Read Weight, height, and length are common measurements. List at least five things you can measure. What You ll Learn how to estimate

More information

Total 100

Total 100 MATH 111 Final Exam March 11, 2017 Name Signature Student ID # Section 1 9 2 13 3 10 4 12 5 14 6 13 7 13 8 16 Total 100 You are allowed to use a Ti-30x IIS Calculator, a ruler, and one hand-written 8.5

More information

GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS

GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS OBJECTIVES: I. Understand the three basic types of tectonic interactions that can occur II. Identify tectonic interactions on other planets MATERIALS:

More information

Level One, Lesson 1: The Red Planet

Level One, Lesson 1: The Red Planet The Red Planet Mars is the fourth planet from the sun. It is the next planet beyond Earth. Mars is the third brightest object in Earth s night sky. It often looks ery red because of the red dust that covers

More information

Physics Lab #2: Spectroscopy

Physics Lab #2: Spectroscopy Physics 10263 Lab #2: Spectroscopy Introduction This lab is meant to serve as an introduction to the science of spectroscopy. In this lab, we ll learn about how emission and absorption works, and we ll

More information

Lab 5: Calculating an equilibrium constant

Lab 5: Calculating an equilibrium constant Chemistry 162 The following write-up is inaccurate for the particular chemicals we are using. Please have all sections up through and including the data tables ready before class on Wednesday, February

More information

Significant Digits and Measurement

Significant Digits and Measurement Significant Digits and Measurement Question: What digits are significant when recording a measurement? When scientists use an instrument, such as a ruler or graduated cylinder, the scientist can only measure

More information

STEP Support Programme. Hints and Partial Solutions for Assignment 1

STEP Support Programme. Hints and Partial Solutions for Assignment 1 STEP Support Programme Hints and Partial Solutions for Assignment 1 Warm-up 1 You can check many of your answers to this question by using Wolfram Alpha. Only use this as a check though and if your answer

More information

DeAnza College Fall 2017 Third Midterm Exam. 1. Use only a #2 pencil on your Parscore sheet, and fill in the bubbles darkly and completely.

DeAnza College Fall 2017 Third Midterm Exam. 1. Use only a #2 pencil on your Parscore sheet, and fill in the bubbles darkly and completely. FAMILY NAME : (Please PRINT!) GIVEN NAME : (Please PRINT!) Signature: ASTRONOMY 4 DeAnza College Fall 2017 Third Midterm Exam Instructions: 1. Use only a #2 pencil on your Parscore sheet, and fill in the

More information

PHYSICS 30S/40S - GUIDE TO MEASUREMENT ERROR AND SIGNIFICANT FIGURES

PHYSICS 30S/40S - GUIDE TO MEASUREMENT ERROR AND SIGNIFICANT FIGURES PHYSICS 30S/40S - GUIDE TO MEASUREMENT ERROR AND SIGNIFICANT FIGURES ACCURACY AND PRECISION An important rule in science is that there is always some degree of uncertainty in measurement. The last digit

More information

Homework #1. Denote the sum we are interested in as To find we subtract the sum to find that

Homework #1. Denote the sum we are interested in as To find we subtract the sum to find that Homework #1 CMSC351 - Spring 2013 PRINT Name : Due: Feb 12 th at the start of class o Grades depend on neatness and clarity. o Write your answers with enough detail about your approach and concepts used,

More information

Mathematics E-15 Seminar on Limits Suggested Lesson Topics

Mathematics E-15 Seminar on Limits Suggested Lesson Topics Mathematics E-15 Seminar on Limits Suggested Lesson Topics Lesson Presentation Guidelines Each lesson should last approximately 45 minutes. This will leave us with some time at the end for constructive

More information

For Creative Minds. And the Winner is...

For Creative Minds. And the Winner is... For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities,

More information

Pizza Box Spectrometer Data & Report

Pizza Box Spectrometer Data & Report Pizza Box Spectrometer Data & Report Team Name: Members: Section or lab meeting time: Data & Observations: 1. How do you think the grating works? Explain in several sentences. 2. If you were to use your

More information

Math 90 Lecture Notes Chapter 1

Math 90 Lecture Notes Chapter 1 Math 90 Lecture Notes Chapter 1 Section 1.1: Introduction to Algebra This textbook stresses Problem Solving! Solving problems is one of the main goals of mathematics. Think of mathematics as a language,

More information

Supporting Video:

Supporting Video: Mars Habitation Earth, Earth's moon, and Mars Balloons Students construct scale models of Earth, Moon, & Mars to discover size and scale. Associated Mars Information Slideshow: Through a PowerPoint Presentation,

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Scientific Measurements by Christopher Hamaker 1 Uncertainty in Measurements A measurement is a number with a unit

More information

Physics Lab #9: Measuring the Hubble Constant

Physics Lab #9: Measuring the Hubble Constant Physics 10263 Lab #9: Measuring the Hubble Constant Introduction In the 1920 s, Edwin Hubble discovered a relationship that is now known as Hubble s Law. It states that the recession velocity of a galaxy

More information

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Jason Kendall, William Paterson University, Department of Physics HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Background Purpose: HR Diagrams are central to understanding

More information

GEOL212 Due 10/29/18 Homework VIII

GEOL212 Due 10/29/18 Homework VIII GEOL212 Due 10/29/18 Homework VIII General instructions: Although you are allowed to discuss homework questions with your classmates, your work must be uniquely your own. Thus, please answer all questions

More information

Cosmic Landscape Introduction Study Notes

Cosmic Landscape Introduction Study Notes Cosmic Landscape Introduction Study Notes About how much bigger in radius is the Sun than the Earth? The ratio of the Sun's radius to the Earth's radius is 1,392,000/12756 = 109.1 How big is an astronomical

More information

the probability of getting either heads or tails must be 1 (excluding the remote possibility of getting it to land on its edge).

the probability of getting either heads or tails must be 1 (excluding the remote possibility of getting it to land on its edge). Probability One of the most useful and intriguing aspects of quantum mechanics is the Heisenberg Uncertainty Principle. Before I get to it however, we need some initial comments on probability. Let s first

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #1 STA 5326 September 25, 2014 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access

More information

Lunar Crater Activity - Teacher Pages

Lunar Crater Activity - Teacher Pages Adapted from: http://www.nasa.gov/pdf/180572main_etm.impact.craters.pdf I took the activity and simplified it so that there was just one independent variable: the drop height, and one dependent variable:

More information

TITLE: NUMBER OF PAPER CLIPS ON NOSE OF A PAPER AIRPLANE VS. VELOCITY AND SPEED

TITLE: NUMBER OF PAPER CLIPS ON NOSE OF A PAPER AIRPLANE VS. VELOCITY AND SPEED EXPERIMENT 2: CHAPTER 3: LINEAR MOTION (CONSTANT VELOCITY) TITLE: NUMBER OF PAPER CLIPS ON NOSE OF A PAPER AIRPLANE VS. VELOCITY AND SPEED Purpose: To determine if the number of paperclips on the nose

More information

Error Analysis in Experimental Physical Science Mini-Version

Error Analysis in Experimental Physical Science Mini-Version Error Analysis in Experimental Physical Science Mini-Version by David Harrison and Jason Harlow Last updated July 13, 2012 by Jason Harlow. Original version written by David M. Harrison, Department of

More information

What Every Programmer Should Know About Floating-Point Arithmetic DRAFT. Last updated: November 3, Abstract

What Every Programmer Should Know About Floating-Point Arithmetic DRAFT. Last updated: November 3, Abstract What Every Programmer Should Know About Floating-Point Arithmetic Last updated: November 3, 2014 Abstract The article provides simple answers to the common recurring questions of novice programmers about

More information

Where we are now. The Moon Chapters 8.2, 9. Topography. Outline

Where we are now. The Moon Chapters 8.2, 9. Topography. Outline Where we are now Introduction Little things - comets, asteroids, KBOs Slightly larger things - Moon Larger still - Terrestrial planets Really large - Jovian planets Jovian moons + Pluto Extrasolar Planets

More information

A.2 Angular Resolution: Seeing Details with the Eye

A.2 Angular Resolution: Seeing Details with the Eye CHAPTER A. LABORATORY EXPERIMENTS 13 Name: Section: Date: A.2 Angular Resolution: Seeing Details with the Eye I. Introduction We can see through a telescope that the surface of the Moon is covered with

More information

LUNAR OBSERVING. What will you learn in this lab?

LUNAR OBSERVING. What will you learn in this lab? LUNAR OBSERVING What will you learn in this lab? The Moon is the second most noticeable object in the sky. This lab will first introduce you to observing the Moon with a telescope. You will be looking

More information

Measurement: Length, Area and Volume Part I

Measurement: Length, Area and Volume Part I IDS 101 Name Measurement: Length, Area and Volume Part I If we ask someone the size of a common object, such as a dime or penny, most people come pretty close to the actual size. However, objects that

More information

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source Lesson 3 Eclipses and Tides LA.8.2.2.3, SC.8.E.5.9, SC.8.N.1.1 Skim or scan the heading, boldfaced words, and pictures in the lesson. Identify or predict three facts you will learn from the lesson. Discuss

More information

MAPPING MARS TEACHER PAGE

MAPPING MARS TEACHER PAGE TEACHER PAGE Background Information This lesson introduces students to some common map projections and representations (e.g., globes or close-ups) and asks them to consider the ways that each representation

More information

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same?

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same? IP 614 Rolling marble lab Name: Block: Date: A. Purpose In this lab you are going to see, first hand, what acceleration means. You will learn to describe such motion and its velocity. How does the position

More information

EXERCISE 2 (16 POINTS): LUNAR EVOLUTION & APOLLO EXPLORATION

EXERCISE 2 (16 POINTS): LUNAR EVOLUTION & APOLLO EXPLORATION 1 GEOLOGICAL SCIENCES 0050 I am aware of the Brown University Honor Code [see the Student Handbook, which can be accessed through the Geo0050 web site], understand that this exercise falls under that code,

More information

A100H Exploring the Universe: Introduction. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Introduction. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: Introduction Martin D. Weinberg UMass Astronomy astron100h-mdw@umass.edu January 19, 2016 Lec 01 01/19/16 slide 1 What is Astronomy? Story of our understanding of the Universe

More information

Cosmic Microwave Background Radiation

Cosmic Microwave Background Radiation Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

More information

Performance of fourth-grade students on an agility test

Performance of fourth-grade students on an agility test Starter Ch. 5 2005 #1a CW Ch. 4: Regression L1 L2 87 88 84 86 83 73 81 67 78 83 65 80 50 78 78? 93? 86? Create a scatterplot Find the equation of the regression line Predict the scores Chapter 5: Understanding

More information

Guide for Reading. Reading Strategy Building Vocabulary As you read, write a definition of each vocabulary term in your own words.

Guide for Reading. Reading Strategy Building Vocabulary As you read, write a definition of each vocabulary term in your own words. 3.1 Measurements and Their Uncertainty Connecting to Your World On January 4, 2004, the Mars Exploration Rover Spirit landed on Mars. Equipped with five scientific instruments and a rock abrasion tool

More information

The Main Points. The View from the Surface. Geology of Mars. Lecture #20: Reading:

The Main Points. The View from the Surface. Geology of Mars. Lecture #20: Reading: Surface of Mars Lecture #20: Geology and Geologic Processes View from the Surface History/Evolution of the surface Reading: Chapter 9.4 The Main Points Mars has had a geologically active past that has

More information

MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm)

MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm) Name: MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm) Instructions: The total score is 200 points. There are ten problems. Point values per problem are shown besides the questions.

More information

A geologic process An erosional force A chronological tool An influence on biology

A geologic process An erosional force A chronological tool An influence on biology Impact Cratering: Physics and Chronology A geologic process An erosional force A chronological tool An influence on biology Impact features are common All solar system bodies with solid surfaces show evidence

More information

are topics that you have not covered yet. Just do the best you can.

are topics that you have not covered yet. Just do the best you can. Summer assignment for Honors Algebra II 1 Honors Algebra II 010 Summer Assignment Dear student, Welcome to Honors Algebra II! You have signed up for a rigorous course that will challenge your minds, get

More information

These maps make the idea of elevations and contours more tangible follow any of the brown-line contours; they should form a level path.

These maps make the idea of elevations and contours more tangible follow any of the brown-line contours; they should form a level path. Geology 101 Name(s): Lab 1: Maps and geologic time Note: On all labs, you may work in small groups. You may turn in one lab for all of the group members; make sure that everyone who should get credit is

More information

Determining strain graphically

Determining strain graphically Nancy West, Beth Pratt-Sitaula, and Shelley Olds, expanded from work by Vince Cronin, Baylor University and Anne Egger, Central Washington University. We have ample evidence that Earth deforms deformed

More information

GEOL360 Homework 1 : Elements and Isotopes

GEOL360 Homework 1 : Elements and Isotopes GEOL360 HOMEWORK 1: TOPICS 1 AND 2 1/5 GEOL360 Homework 1 : Elements and Isotopes Name: Fill in the final answers in the blank spaces provided after each question. Note carefully the units which I want

More information

GEOL151 Fall 2016: Lab for Week #7 Drainage Basins: Following a River from Source to Sink

GEOL151 Fall 2016: Lab for Week #7 Drainage Basins: Following a River from Source to Sink GEOL151 Fall 2016: Lab for Week #7 Drainage Basins: Following a River from Source to Sink Overview As we enter the middle of the course, we move into more synthetic topics and strive to gain an understanding

More information

REVIEW FOR TEST I OF CALCULUS I:

REVIEW FOR TEST I OF CALCULUS I: REVIEW FOR TEST I OF CALCULUS I: The first and best line of defense is to complete and understand the homework and lecture examples. Past that my old test might help you get some idea of how my tests typically

More information

What does mastering the course content look like?

What does mastering the course content look like? COURSE DESCRIPTION Earth science is a laboratory course that serves as an introduction survey of geology, mineralogy, mapping, astronomy as well as topics in meteorology, oceanography and paleontology.

More information

Observing Sessions and Lab Activity Reports

Observing Sessions and Lab Activity Reports Coconino Community College Astronomy - PHY180 Observing Sessions and Lab Activity Reports The types of activities in this Astronomy program are divided into two groups: 5 Observing Sessions, and 7 Lab

More information

UNIVERSITY COLLEGE LONDON

UNIVERSITY COLLEGE LONDON UNIVERSITY COLLEGE LONDON University Of London Observatory PHAS1510 Certicate in Astronomy 1213.01 PHAS1510-03: Impact Craters on the Moon, Mars and Mercury Name: An experienced student should aim to complete

More information

Geologic Features of Mars

Geologic Features of Mars Name Purpose Geologic Features of Mars To learn to identify landforms on the surface of Mars and the geological processes that produced them. Introduction In many ways, Mars is similar to Earth. The same

More information

ASTRONOMY Merit Badge Requirements

ASTRONOMY Merit Badge Requirements ASTRONOMY Merit Badge Requirements 1) Do the following: A) Sketch the face of the moon, indicating on it the locations of at least five seas and five craters. B) Within a single week, sketch the position

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

Astronomy 1143 Homework 1

Astronomy 1143 Homework 1 Astronomy 43 Homework October 7, 205. Two Martian astronomers, Marvin and Marla, are located due north and south of each other on the planet Mars. Marvin sees the Sun directly overhead (at the zenith)

More information

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Mars: The Red Planet Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Property Earth Mars Radius 6378km 3394km ~ 0.51R E Mass 5.97x10 24 kg 6.42x10 23 kg =

More information

Cratering Pre-Lab. 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor?

Cratering Pre-Lab. 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor? Cratering Pre-Lab 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor? 3.) What are the units of kinetic energy that you will use in

More information

Overview Students read about the structure of the universe and then compare the sizes of different objects in the universe.

Overview Students read about the structure of the universe and then compare the sizes of different objects in the universe. Part 1: Colonize the solar system Lesson #1: Structure of the Universe Time: approximately 40-50 minutes Materials: Copies of different distances (included). Text: So What All Is Out There, Anyway? Overview

More information

Missions mars. Beyond the Book. FOCUS Book

Missions mars. Beyond the Book. FOCUS Book Imagine that you are part of a team designing a new Mars rover. An area of the planet has been found that has ice and possibly liquid water. It seems like a great spot to locate life on Mars! Your job

More information

Mars Opposition Friday 27 th July 2018

Mars Opposition Friday 27 th July 2018 Mars Opposition Friday 27 th July 2018 Mars is about 6,780 kilometres in diameter or roughly half the size of the Earth whose diameter is 12,742km. As they orbit the Sun, the minimum distance between the

More information

CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds

CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds PART 1: OBSERVATIONS AND PRELIMINARY QUESTIONS The images below are of impact craters from different planetary worlds

More information

Ast 281 Review for Exam 1 Tuesday, February 25, 2014 in class

Ast 281 Review for Exam 1 Tuesday, February 25, 2014 in class Ast 281 Review for Exam 1 Tuesday, February 25, 2014 in class The Exam will be a CLOSED BOOK exam, lasting the whole period. You will be allowed to have calculators and the sheet of planetary data, but

More information