Name Date. Partners. Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna

Size: px
Start display at page:

Download "Name Date. Partners. Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna"

Transcription

1 Name Date Partners Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna Purpose : to become familiar with the major features of the planets of the solar system, especially the Earth, Moon and Mars. This is also an exercise in comparing different estimates of the same quantity and analyzing the assumptions supporting each one. Introduction : After the planets of the solar system formed together about 4.6 billion years ago they were modified by several different processes such as impact cratering, plate tectonics, volcanism, and erosion by ice, wind, and water. These processes did not act uniformly on all the bodies, and we would like to find out why. Equipment: Laminated planet images, ruler, Earth images, Mars images, colored pencils, maps of NJ, newspapers Procedure : 1. Categorizing Images Examine the laminated images of planetary features. Place them into multiple categories such as clouds, rivers, mountains, whole planets, etc. List your categories and their member images. Tell which solar system body you think is pictured on each image: Image Planet Image Planet

2 2 2. Cratering Density Since direct dating of rocks (by their radioactive decay) is possible for only a small sample of material from other worlds we will calibrate and use the indirect method of crater density to get a rough idea of the ages of areas on the moon, Mars, and the Earth. A. Moon Data Table 1: the Moon Mission Area N craters +/- N 1/2 craters/area Age, Gyr Apollo Fra Mauro Apollo Hadley Rille Apollo 16 Descartes Apollo 17 Taurus Littrow Fresh surface 100 Q: The largest number of craters/area is in the location. Plot a graph of crater density vs. age, and put error bars on the crater density points by +/- N 1/2. Draw a smooth curve through the points' error bars. Q: How has the cratering rate (slope of the curve) changed with time? Q: Why might this happen? (Is the supply of meteors steady?) Q: Draw a straight line through the first two points of your curve. See where it crosses the time axis. When was the major cratering bombardment finished? Your curve of craters/km2 vs. age will be your model of the "aging" of planetary surfaces. You can approximate the recent part of the curve by a straight line with a much lower slope. Using a ruler, draw a straight line to approximate the curve from 2 Ga to 0 years ago. On the curve at age= 2 Ga the number of craters/ is N =. This calibrates the straight line so that the age of any location with fewer craters/unit area than N is given by the proportion Age = 2 * 10^9 years * (the location's craters/ ) N

3 3 B. The Earth Local: On the Earth find a region with impact craters, and calculate the crater density for it. Enter this in Data Table 2. Data Table 2: Earth Location Area, N +/- N 1/2 craters Craters/area Approximate age Q: Is this an over-estimate or an under-estimate of the true crater density? (Hint: Does the area you used go halfway to the next crater?) As an approximation we can use your moon's cratering curve to infer the ages of this region. Enter this calculate value in Data Table 2. Global: So far humans have found 178 craters on the Earth's dry land. Since the Earth's radius is roughly 6000 km and the surface area of a sphere is 4πR 2, the Earth's total area is roughly km2. About 30% is dry land, or about km2. This means that the rough average for the Earth is about = 178 craters/ dry area = craters/. Q: Is this more or less than the cratering density on various places on the moon? C. Mars On Mars find a region with impact craters and also linear dimensions listed, and calculate the crater density for it. Fill in Data Table 3. Again use your Moon's cratering curve to estimate the age of this surface. Data Table 3: Mars Location Area, N +/- N 1/2 craters Craters/area Approximate age On Mars the largest crater density found in the class is craters/. D. Comparison of Worlds One way to compare these three worlds is to look at their most heavily cratered regions. The largest number of craters/km2 is on the Moon, on Earth (the over-all average), and on Mars. Q: Now list the three worlds in order of oldest (many craters) to youngest (few craters) with respect to their surfaces: Q: Give two reasons for this.

4 4 3. Geological Maps Use the various books and maps available to locate on Earth and on Mars all examples of the following landforms. Use colored pencils to sketch them in on your maps. blue Ice red Volcanic mountains green Rift valleys yellow Pushed up or folded mountains (may be rims of huge craters) brown Heavily cratered terrain. 4. Scaling a lunar crater to the Earth The lunar crater Eratosthenes is 60 km wide. On your map of New Jersey find the scale and figure out how big this would be. Tear out a rough newspaper circle to match the crater Eratosthenes to this scale. Place your paper crater on the NJ map as if the crater had formed in Trenton. Would Montclair be destroyed? If the crater was in New York, would Montclair be destroyed? If the crater was in Philadelphia, would Montclair be destroyed? 5. Discussion Q: Discuss briefly why the Earth, Moon, and Mars are so different in surface age and landforms. Give at least three reasons.

5 5

6 6

7 7

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

Problem Set 3: Crater Counting

Problem Set 3: Crater Counting Problem Set 3: Crater Counting Introduction Impact craters are the dominant landforms on most of the solid surfaces in our solar system. These impact craters have formed on the surfaces over the 4.6 billion

More information

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons ESCI 110: Planetary Surfaces Page 3-1 Introduction Exercise 3 Surfaces of the Planets and Moons Our knowledge of the solar system has exploded with the space exploration programs of the last 40 years.

More information

Highs and Lows Floods and Flows

Highs and Lows Floods and Flows Highs and Lows Floods and Flows Planetary Mapping Facilitator Guide Becky Nelson Education Specialist The Lunar and Planetary Institute Highs and Lows, Floods and Flows Planetary Mapping Overview In this

More information

Assignment 2. Due March 4, 2019

Assignment 2. Due March 4, 2019 Assignment 2 Due March 4, 2019 Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your

More information

Assignment 4. Due TBD

Assignment 4. Due TBD Assignment 4 Due TBD Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your work is

More information

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday Today Terrestrial Planet Geology Events Fall break next week - no class Tuesday When did the planets form? We cannot find the age of a planet, but we can find the ages of the rocks that make it up. We

More information

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a "geologic history" for a planet or moon is?

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a geologic history for a planet or moon is? Prelab 1. Explain in your own words what you think a "geologic history" for a planet or moon is? 2. Describe some of the major features seen on the Martian surface by various spacecraft missions over the

More information

LUNAR OBSERVING. What will you learn in this lab?

LUNAR OBSERVING. What will you learn in this lab? LUNAR OBSERVING What will you learn in this lab? The Moon is the second most noticeable object in the sky. This lab will first introduce you to observing the Moon with a telescope. You will be looking

More information

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet Part II: Solar System The Moon Audio update: 2014Feb23 The Moon A. Orbital Stuff B. The Surface C. Composition and Interior D. Formation E. Notes 2 A. Orbital Motion 3 Earth-Moon is a Binary Planet 4 1.

More information

Student Guide to Moon 101

Student Guide to Moon 101 Student Guide to Moon 101 LINKS TO WEBSITES AND DOCUMENTS NECESSARY TO COMPLETE MOON 101 CAN BE FOUND AT: 1) Read the following articles: PART 1 - FORMATION OF THE MOON a) The Scientific Legacy of Apollo,

More information

Teachersʼ Guide. Creating Craters. Down to Earth KS3

Teachersʼ Guide. Creating Craters. Down to Earth KS3 Teachersʼ Guide Creating Craters Creating Craters! Creating Craters - Teachersʼ Guide - 2 Overview This lesson allows pupils to create impact craters in layered dry materials. Pupils can perform controlled

More information

COSMORPHOLOGY - May 2009

COSMORPHOLOGY - May 2009 Name COSMORPHOLOGY - May 2009 Geologic landforms Purpose: By studying aerial photographs you will learn to identify different kinds of geologic features based on their different morphologies and learn

More information

EXERCISE 2 (16 POINTS): LUNAR EVOLUTION & APOLLO EXPLORATION

EXERCISE 2 (16 POINTS): LUNAR EVOLUTION & APOLLO EXPLORATION 1 GEOLOGICAL SCIENCES 0050 I am aware of the Brown University Honor Code [see the Student Handbook, which can be accessed through the Geo0050 web site], understand that this exercise falls under that code,

More information

Write Up #3. 3a) Given a picture of the moon I need to give an age sequence at least three maybe more

Write Up #3. 3a) Given a picture of the moon I need to give an age sequence at least three maybe more Brad O Neal Professor Wilhelm AST 191 001 21 September Write Up #3 3a) Given a picture of the moon I need to give an age sequence at least three maybe more of the formations present in the picture. This

More information

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves.

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves. Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds What are terrestrial planets like on the inside? Seismic Waves Vibrations that travel through Earth s interior tell us what Earth is

More information

Topic 1: Scientific Method Observation vs. Inference 1. Write 2 observations about this cartoon.

Topic 1: Scientific Method Observation vs. Inference 1. Write 2 observations about this cartoon. Name: Section: Earth Science Review Topic 1: Scientific Method Observation vs. Inference 1. Write 2 observations about this cartoon. Observation 1: Observation 2: 2. Write 2 inferences about this cartoon.

More information

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors and Surfaces Our goals for learning What are terrestrial planets like on the inside? What causes geological

More information

COSMORPHOLOGY - May 2012

COSMORPHOLOGY - May 2012 Name COSMORPHOLOGY - May 2012 Geologic mapping Goals: To recognize the similarities and differences in the processes affecting the outer planet satellites, and in the resulting landforms. To demonstrate

More information

Signature: Name: Banner ID#:

Signature: Name: Banner ID#: 1 GEOLOGICAL SCIENCES 0050 I am aware of the Brown University Honor Code [see the Student Handbook, which can be accessed through the Geo0050 web site], understand that this exercise falls under that code,

More information

The Moon & Mercury: Dead Worlds

The Moon & Mercury: Dead Worlds The Moon & Mercury: Dead Worlds There are many similarities between the Moon and Mercury, and some major differences we ll concentrate mostly on the Moon. Appearance of the Moon from the Earth We ve already

More information

crater density: number of craters per unit area on a surface

crater density: number of craters per unit area on a surface Reading for this week: Chap. 9, Sect. 9.4-9.5, Chap. 10, Sect. 10.1-10.5 Homework 6: due in recitation Friday/Monday (Oct. 13, 16) Midterm grade estimates posted on Blackboard this week Astro 120 Fall

More information

Q. Some rays cross maria. What does this imply about the relative age of the rays and the maria?

Q. Some rays cross maria. What does this imply about the relative age of the rays and the maria? Page 184 7.1 The Surface of the Moon Surface Features To the naked eye, the Moon is a world of grays. Some patches are darker than others, creating a vague impression of what some see as a face ( the man

More information

ESSENTIAL QUESTION How can we use the Mars Map and photographs of Mars to learn about the geologic history of the planet?

ESSENTIAL QUESTION How can we use the Mars Map and photographs of Mars to learn about the geologic history of the planet? GRADE LEVEL(S) 4 6 LENGTH 60 minutes MATERIALS Giant Destination Mars Map Mars Mapping Student Sheet Colored Markers (red, green, blue) VOCABULARY Crater Erode Ejecta Channel Sun Angle Sequence ESSENTIAL

More information

MAPPING THE SURFACE OF MARS

MAPPING THE SURFACE OF MARS MAPPING THE SURFACE OF MARS What will you learn in this lab? How can we determine the geologic history of a planet or satellite without travelling to the planetary body? In this lab you will create a simple

More information

Venus: Key Ideas: A Warm Up Exercise. Venus at a Glance -- Orbit. Venus at a Glance Planetary Data

Venus: Key Ideas: A Warm Up Exercise. Venus at a Glance -- Orbit. Venus at a Glance Planetary Data Venus A Warm Up Exercise Because Mercury has a high average density despite its relatively low mass, it is thought to a) Have a subsurface ocean b) Have a large iron core c) Be made largely of lead d)

More information

Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky Ages on Mars. Martian Surface Age Exploration

Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky Ages on Mars. Martian Surface Age Exploration Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky 2008 Ages on Mars Martian Surface Age Exploration You have now learned some very important things about various planets and moons in our Solar

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

MARS INSIDE AND OUT.

MARS INSIDE AND OUT. GEOLOGIC SCENE INVESTIGATOR JOURNAL MARS INSIDE AND OUT Explore! Mars Inside and Out Investigator Name www.lpi.usra.edu/education PART I: SCRATCHING THE SURFACE GSI: INSIDE MARS COOLING CUPCAKES AND PLANETS

More information

b. What evidence could you see on, above, or around the rim of a planet, dwarf planet, or moon that would indicate the presence of an atmosphere?

b. What evidence could you see on, above, or around the rim of a planet, dwarf planet, or moon that would indicate the presence of an atmosphere? ASTR& 101 Name: Extra Credit Exercise in Planetary Geology: The Geology of Pluto The New Horizons satellite, launched by NASA in 2006, completed its flyby of Pluto in July of 2014, passing the dwarf of

More information

9/15/16. Guiding Questions. Our Barren Moon. The Moon s Orbit

9/15/16. Guiding Questions. Our Barren Moon. The Moon s Orbit Our Barren Moon Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior have a

More information

The Moon. A look at our nearest neighbor in Space! Free powerpoints at

The Moon. A look at our nearest neighbor in Space! Free powerpoints at The Moon A look at our nearest neighbor in Space! Free powerpoints at http://www.worldofteaching.com What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of

More information

Lecture #10: Plan. The Moon Terrestrial Planets

Lecture #10: Plan. The Moon Terrestrial Planets Lecture #10: Plan The Moon Terrestrial Planets Both Sides of the Moon Moon: Direct Exploration Moon: Direct Exploration Moon: Direct Exploration Apollo Landing Sites Moon: Apollo Program Magnificent desolation

More information

Where do they come from?

Where do they come from? Exploring Meteorite Mysteries Lesson 7 Crater Hunters Objectives Students will: observe impact craters on Earth and other solar system bodies. discuss geologic forces that have removed most of the evidence

More information

Our Barren Moon. Chapter Ten. Guiding Questions

Our Barren Moon. Chapter Ten. Guiding Questions Our Barren Moon Chapter Ten Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior

More information

Photogeologic Mapping of Mars

Photogeologic Mapping of Mars Exercise Two and Fifteen are suggested as introductory exercises. 2.0 hours Exercise Seventeen Photogeologic Mapping of Mars Instructor Notes Suggested Correlation of Topics Deductive reasoning, geologic

More information

Moon 101. By: Seacrest School Moon Crew Blake Werab David Prue

Moon 101. By: Seacrest School Moon Crew Blake Werab David Prue Moon 101 By: Seacrest School Moon Crew Blake Werab David Prue The 101 images The smooth Mare surfaces common on the nearside of the Moon Mare Surfaces from Late heavy Bombardment We find that the 3 images

More information

Sample Test. 5. Which of the surfaces is the youngest? A) 1A B) 1B C) 1C D) 1D E) There is no way to tell.

Sample Test. 5. Which of the surfaces is the youngest? A) 1A B) 1B C) 1C D) 1D E) There is no way to tell. Sample Test 1. The yellow arrows in image 1B are pointing to a form of A) liquid erosion. B) plate tectonics. C) tidally cracked surface. D) wind erosion (sand dunes). E) All of the above. 2. If an object

More information

Chapter 9 Lecture. The Cosmic Perspective Seventh Edition. Planetary Geology: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 9 Lecture. The Cosmic Perspective Seventh Edition. Planetary Geology: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 9 Lecture The Cosmic Perspective Seventh Edition Planetary Geology: Earth and the Other Terrestrial Worlds Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors

More information

How Old is the Solar System?

How Old is the Solar System? How Old is the Solar System? Earth s crust is constantly changing due to volcanoes, erosion, and plate tectonics. So Earth rocks do not preserve a record of the early days of the Solar System. Instead,

More information

Earth Space EOC Review Test #1

Earth Space EOC Review Test #1 Earth Space EOC Review Test #1 NAME: Use test for questions 1 and 2 Jack studied the effects of light pollution on turtles and their offspring. He observed that areas with a high amounts of light pollution

More information

How can solid rock be bent, squished, stretched, and cracked?

How can solid rock be bent, squished, stretched, and cracked? AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 4 Processes that Shape Surfaces Volcanism Eruption of molten rock onto surface Impact cratering Impacts by asteroids or comets Tectonics

More information

Iron and Titanium: Important Elements. posted October 20, References:

Iron and Titanium: Important Elements. posted October 20, References: 1 of 6 posted October 20, 1997 Moonbeams and Elements Written by G. Jeffrey Taylor Hawai'i Institute of Geophysics and Planetology To determine how a planetary body formed and evolved, we must determine

More information

Terrestrial Planets: The Earth as a Planet

Terrestrial Planets: The Earth as a Planet Terrestrial Planets: The Earth as a Planet In today s class, we want to look at those characteristics of the Earth that are also important in our understanding of the other terrestrial planets. This is

More information

The Earth's Moon. The Earth's Moon, in many ways, is prototypical of a substantial fraction of the objects in the Solar System.

The Earth's Moon. The Earth's Moon, in many ways, is prototypical of a substantial fraction of the objects in the Solar System. 1 The Earth's Moon The Earth's Moon, in many ways, is prototypical of a substantial fraction of the objects in the Solar System. Like many other moons and planets it exhibits a heavily cratered surface

More information

Moon 101. Bellaire High School Team: Rachel Fisher, Clint Wu, Omkar Joshi

Moon 101. Bellaire High School Team: Rachel Fisher, Clint Wu, Omkar Joshi Moon 101 Bellaire High School Team: Rachel Fisher, Clint Wu, Omkar Joshi Part I Formation of the Moon Planetary Formation In the solar nebula, dust particles coalesced to form smaller planetesimals and

More information

What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth

What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth The Moon What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth Location, location, location! About 384,000 km (240,000 miles) from Earth

More information

Chapter 20 Earth: The Standard of Comparative Planetology

Chapter 20 Earth: The Standard of Comparative Planetology Chapter 20 Earth: The Standard of Comparative Planetology Guidepost In the preceding chapter, you learned how our solar system formed as a by-product of the formation of the sun. You also saw how distance

More information

Class Exercise. Today s Class. Overview of Mercury. Terrestrial Planet Interiors. Today s Class: Mercury & Venus

Class Exercise. Today s Class. Overview of Mercury. Terrestrial Planet Interiors. Today s Class: Mercury & Venus Today s Class: Mercury & Venus Homework: Further reading on Venus for next class Sections 10.1 and 10.5 in Cosmic Perspective. Space in the News: 'Frankenstein' Galaxy Surprises Astronomers Presenter:

More information

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy LESSON 2 THE EARTH-SUN-MOON SYSTEM Chapter 8 Astronomy OBJECTIVES Investigate how the interaction of Earth, the Moon, and the Sun causes lunar phases. Describe conditions that produce lunar and solar eclipses.

More information

Impact Age Dating. ASTRO 202 Lecture Thursday, February 14, Review. What is relative age dating? What is relative age dating?

Impact Age Dating. ASTRO 202 Lecture Thursday, February 14, Review. What is relative age dating? What is relative age dating? Review Impact Age Dating ASTRO 202 Lecture Thursday, February 14, 2008 Carbon-14, Potassium-Argon isotopic age determination: (1) Parent decays to daughter at some predictable rate (2) How much now? (3)

More information

Geologic Landforms Seen on Aerial Photos Instructor Notes

Geologic Landforms Seen on Aerial Photos Instructor Notes 1.5 hours Exercise Two Geologic Landforms Instructor Notes Suggested Correlation of Topics Geomorphology, gradation, impact cratering, tectonism, volcanism, photography Purpose The objective of this exercise

More information

EXPLORING THE GEOLOGY OF SEVERAL WORLDS FROM SPACE

EXPLORING THE GEOLOGY OF SEVERAL WORLDS FROM SPACE NAME DATE PARTNER(S) EXPLORING THE GEOLOGY OF SEVERAL WORLDS FROM SPACE We have investigated to understand how scientists can map the sea floor and land surfaces of the Earth. Now let=s extend our vision

More information

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury = Hermes Mythology Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury s Orbit Mercury never seen more than 28 from the sun Revolves/orbits

More information

Geologic Features of Mars

Geologic Features of Mars Name Purpose Geologic Features of Mars To learn to identify landforms on the surface of Mars and the geological processes that produced them. Introduction In many ways, Mars is similar to Earth. The same

More information

CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds

CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds PART 1: OBSERVATIONS AND PRELIMINARY QUESTIONS The images below are of impact craters from different planetary worlds

More information

Cratering Pre-Lab. 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor?

Cratering Pre-Lab. 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor? Cratering Pre-Lab 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor? 3.) What are the units of kinetic energy that you will use in

More information

A Living Planet. Chapter PHYSICAL GEOGRAPHY. What you will learn in this chapter. Summary of the chapter

A Living Planet. Chapter PHYSICAL GEOGRAPHY. What you will learn in this chapter. Summary of the chapter QUIT Main Ideas What you will learn in this chapter Summary Summary of the chapter Test your geographic knowledge by playing the. Main Ideas Section 1: The Earth Inside and Out The earth is the only habitable

More information

Comprehensive Earth Science

Comprehensive Earth Science Comprehensive Earth Science COURSE DESCRIPTION: This course provides students with a comprehensive earth science curriculum, focusing on geology, oceanography, astronomy, weather, and climate. The program

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

Highs and Lows, Floods and Flows PLANETARY MAPPING

Highs and Lows, Floods and Flows PLANETARY MAPPING Highs and Lows, Floods and Flows PLANETARY MAPPING OVERVIEW Teams of students become familiar with the topography of Mars, its geologic features, and patterns of features using a color-coded topographic

More information

Extraterrestrial Volcanism

Extraterrestrial Volcanism Extraterrestrial Volcanism What does it take to create volcanic activity? How do different planetary conditions influence volcanism? Venus Volcanism in our solar system. Io Europa Mercury Venus Earth/Moon

More information

I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit

I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit for passing back HW, then with chart. Water on the Moon?

More information

CPO Science Middle School Earth Science Learning System Correlated to Ohio Science Academic Content Standards for Earth Science, grades 6-8

CPO Science Middle School Earth Science Learning System Correlated to Ohio Science Academic Content Standards for Earth Science, grades 6-8 CPO Science Middle School Earth Science Learning System Correlated to Ohio Science Academic Content Standards for Earth Science, grades 6-8 Earth and Space Science Benchmark A - Describe how the positions

More information

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 7

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 7 Name Section Partners By Tyler Nordgren Laboratory Exercise for Chapter 7 Equipment: Ruler Sand box Meter stick Log-log paper Small balls such as those included in the table at the end of the lab THE FORMATION

More information

Materials needed: ISNs (students & teacher), document camera, self-reflection pages, corrected tests

Materials needed: ISNs (students & teacher), document camera, self-reflection pages, corrected tests Science April 6-10 L.HE.05.11 Explain that the traits of an individual are influenced by both the environment and the genetics of the individual. L.HE.05.12 Distinguish between inherited and acquired traits.

More information

Lunar Cratering and Surface Composition

Lunar Cratering and Surface Composition Lunar Cratering and Surface Composition Earth vs. Moon On Earth, the combined actions of wind and water erode our planet s surface and reshape its appearance almost daily Most of the ancient history of

More information

Introduction. Background

Introduction. Background Introduction In introducing our research on mars we have asked the question: Is there a correlation between the width of an impact crater and the depth of that crater? This will lead to answering the question:

More information

ASTR 380 Possibilities for Life in the Inner Solar System

ASTR 380 Possibilities for Life in the Inner Solar System ASTR 380 Possibilities for Life in the Inner Solar System ASTR 380 Midterm Test Results Generally people did well: 100-90 = A = 19 people 89 80 = B = 19 people 79 70 = C = 9 people 69 60 = D = 0 < 60 =

More information

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version E of the exam. Please fill in (E). A) This

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version B of the exam. Please fill in (B). A) This

More information

MARINER VENUS / MERCURY 1973 STATUS BULLETIN

MARINER VENUS / MERCURY 1973 STATUS BULLETIN MARINER VENUS / MERCURY 1973 STATUS BULLETIN MARINER 10 PICTURES OF MERCURY; SECOND ENCOUNTER PLANNED Fig. 1. (a) Photomosaic of Mercury made from nine computer-enhanced pictures taken at 234,000 km, 6

More information

GEOLOGY 12 CHAPTER 22 WORKSHEET COMPARATIVE PLANETOLOGY INTRODUCTION (VIDEO) Name

GEOLOGY 12 CHAPTER 22 WORKSHEET COMPARATIVE PLANETOLOGY INTRODUCTION (VIDEO) Name GEOLOGY 12 CHAPTER 22 WORKSHEET COMPARATIVE PLANETOLOGY Name References: Video: Overview of the Solar System (Standard Deviants 30 minutes) Text: pages 165-167 and 475-501 CDROM (Library): Exploring the

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Announcements: 1. Midterm exam on Thursday (in this room) 2. Oct 21 st - 26 th : Sections replaced by evening observing) Lecture 8: October 18, 2016 Previously on Astro 1 Solar System

More information

The Solar System. Tour of the Solar System

The Solar System. Tour of the Solar System The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets

More information

STUDENT GUIDE. Written and Developed by:

STUDENT GUIDE. Written and Developed by: CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds STUDENT GUIDE Written and Developed by: Paige Valderrama Graff Science Education Specialist, Jacobs Astromaterials Research

More information

A geologic process An erosional force A chronological tool An influence on biology

A geologic process An erosional force A chronological tool An influence on biology Impact Cratering: Physics and Chronology A geologic process An erosional force A chronological tool An influence on biology Impact features are common All solar system bodies with solid surfaces show evidence

More information

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements.

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements. ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 26: Planetary Geology [3/23/07] Announcements Planetary Geology Planetary

More information

CLASSROOM SCIENCE ACTIVITIES

CLASSROOM SCIENCE ACTIVITIES CLASSROOM SCIENCE E ACTIVITIES ITIES Instructional note Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. (3-LS4-1) 3 From

More information

UNIVERSITY OF MARYLAND ASTRONOMY DEPARTMENT. Mars Cratering. Crater count isochrons of Arsia and Pavonis Mons

UNIVERSITY OF MARYLAND ASTRONOMY DEPARTMENT. Mars Cratering. Crater count isochrons of Arsia and Pavonis Mons UNIVERSITY OF MARYLAND ASTRONOMY DEPARTMENT Mars Cratering Crater count isochrons of Arsia and Pavonis Mons Paul Hearding and Ben McIlwain 5/21/2007 Imagery of Arsia and Pavonis Mons taken by Mars Global

More information

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17.

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17. Astronomy 1 S 16 Exam 1 Name Identify terms Label each term with the appropriate letter of a definition listed 1. Spectral line R 8. Albedo H 15. helioseismology E 2. Terrestrial Planet G 9. Coulomb Force

More information

Distance of Mercury to the Sun or the Orbital Radius

Distance of Mercury to the Sun or the Orbital Radius Distance of Mercury to the Sun or the Orbital Radius The minimum distance from the Sun to Mercury is about 45866304 kilometers and the maximum distance is about 70006464 kilometers. Space Station One Day

More information

Initial Observations and Strategies

Initial Observations and Strategies STUDENT WORKSHEET 1 Initial Observations and Strategies Name(s) Date Look at the Thermal Emission Imaging System (THEMIS) Daytime Infrared (IR) image mosaic your teacher has given you. You will be investigating

More information

Strand 1: Inquiry Process

Strand 1: Inquiry Process Strand 1: Inquiry Process Concept 1: Observations, Questions, and Hypotheses Formulate predictions, questions, or hypotheses based on observations. Locate appropriate resources. PO 1. Formulate questions

More information

Exploring the Lunar Surface

Exploring the Lunar Surface Exploring the Lunar Surface Introduction When you look up at the Moon without optical aid, you may notice the variations in the texture of the lunar surface--some parts of the Moon are quite bright, while

More information

Chapter 17: Mercury, Venus and Mars

Chapter 17: Mercury, Venus and Mars Chapter 17: Mercury, Venus and Mars Mercury Very similar to Earth s moon in several ways: Small; no atmosphere lowlands flooded by ancient lava flows heavily cratered surfaces Most of our knowledge based

More information

Finding Impact Craters with Landsat

Finding Impact Craters with Landsat Name Finding Impact Craters with Landsat Known Effects of Impact Events When an object from space hits the Earth, here is what can happen. There's a huge explosion. The impact makes a big hole or crater

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

Agenda. Chapter 7. The Earth s Moon. The Moon. Surface Features. Magnificent Desolation. The Moon

Agenda. Chapter 7. The Earth s Moon. The Moon. Surface Features. Magnificent Desolation. The Moon Chapter 7 The 1 Agenda Announce: Project Part II due Tue No class next Thursday...Tgiving break! No class 12/14 (last day) Spectral Lines Lab due Pass Back Test 2 Discuss grades NYT article on gamma ray

More information

Subject: Science, Biology, History, Geography

Subject: Science, Biology, History, Geography Digging for Evidence Author: Jacqueline D. Grade Span: 6-8 Assignment Type: Individual, Small Group State: South Carolina Subject: Science, Biology, History, Geography Recommended Time Frame: 9 class periods

More information

Problem How can I find and mine valuable resources from a simulated moon surface?

Problem How can I find and mine valuable resources from a simulated moon surface? National Aeronautics and Space Administration MOON MINING Student Section Student Name Lesson Objective This lesson simulates the locating and the mining of ilmenite for oxygen on the moon. During this

More information

Tectonics. Planets, Moons & Rings 9/11/13 movements of the planet s crust

Tectonics. Planets, Moons & Rings 9/11/13 movements of the planet s crust Tectonics Planets, Moons & Rings 9/11/13 movements of the planet s crust Planetary History Planets formed HOT Denser materials fall to center Planet cools by conduction, convection, radiation to space

More information

Craters. Part 1: What should we measure?

Craters. Part 1: What should we measure? When a meteoroid (called the impactor ) hits the surface of a planet or moon, it creates an impact crater. As the impactor s kinetic energy is dissipated, the resulting explosive energy release carves

More information

Sea Floor Spreading Lab ES2 # 1 Purpose: Show rock age and magnetism patterns in spreading sea floor with a paper model.

Sea Floor Spreading Lab ES2 # 1 Purpose: Show rock age and magnetism patterns in spreading sea floor with a paper model. Names & B Date your name (first and last) partner Sea Floor Spreading Lab ES2 # 1 Purpose: Show rock age and magnetism patterns in spreading sea floor with a paper model. Background: In the last few decades,

More information

DRAFT. Caption: An astronaut climbs down a lunar module on the surface of the Moon. <Insert figure 1.4 here; photograph of the surface of Mars>>

DRAFT. Caption: An astronaut climbs down a lunar module on the surface of the Moon. <Insert figure 1.4 here; photograph of the surface of Mars>> 01 Exploring Space TALKING IT OVER Throughout history, people have been fascinated by space. For a long time, people could only use their eyes to make observations of objects in the sky at night. In the

More information

Sea Floor Spreading Lab ES2 # 2!

Sea Floor Spreading Lab ES2 # 2! Names & Bl Date your name (first and last) partner Sea Floor Spreading Lab ES2 # 2 Purpose: Show rock age and magnetism patterns in spreading sea floor with a paper model. Background: In the last few decades,

More information

PSc 201 Chapter 3 Homework. Critical Thinking Questions

PSc 201 Chapter 3 Homework. Critical Thinking Questions PSc 201 Chapter 3 Homework Critical Thinking Questions 1. (adapted from text) Seawater is denser than fresh water. A ship moving from the Atlantic Ocean into the Great Lakes goes from seawater to fresh

More information

Tuesday, September 05, 2017 Planet Earth

Tuesday, September 05, 2017 Planet Earth Tuesday, September 05, 2017 Planet Earth Objective: Describe the solar system and Earth s location in it. Identify Earth s shape. Discuss Earth s structure. List Earth s landforms Do Now: What is a compass

More information