Effect of the Diffuse Solar Radiation on Photovoltaic Inverter Output

Size: px
Start display at page:

Download "Effect of the Diffuse Solar Radiation on Photovoltaic Inverter Output"

Transcription

1 Effect of the Diffuse Solar Radiation on Photovoltaic Inverter Output C.A. Balafas #1, M.D. Athanassopoulou #2, Th. Argyropoulos #3, P. Skafidas #4 and C.T. Dervos #5 #1,2,3,4,5 School of Electrical and Computer Eng., National Technical University of Athens, Zografou Campus 15780, Athens, Greece 5 cdervos@central.ntua.gr Abstract Solar global irradiance received at a horizontal level on the earth varies significantly over short intervals due to diffuse radiation changes. Experimental data on global irradiance profiles received by fast data recording systems show that the global irradiance may be enhanced for a few minute periods by as much as 40%. The diffuse radiation is intensified by dry air mass formations, airborne nanoparticles, and cloud formations at higher atmospheric levels. Evaluation factors for photovoltaic system design (i.e. sun hours, tilt angle, module direction, soiling, module reflection, and losses due to temperature, wiring and module output differences) may also have to consider possible global irradiance surges. Power monitoring of a photovoltaic park has shown that the delivered AC output power by the inverters can be increased beyond their nominal limits due to diffuse radiation effects, thus rising component reliability issues. I. THEORETICAL INVESTIGATION A. Solar radiation basics Solar radiation is the result of fusion of atoms inside the sun. Part of the energy from this fusion process heats the chromosphere, the outer layer of the sun that is much cooler than the interior of the sun, and the radiation from the chromosphere becomes the incident solar radiation on earth. The solar radiation is not much different from the radiation of any object that is heated to about 5800 Kelvin except that the 'surface' of the sun is heated by the fusion process. This radiation spans a large range of wavelengths from 200 nm to more that nm with its peak around 500 nm. Solar radiation outside the earth's atmosphere is called extraterrestrial radiation. On average the extraterrestrial irradiance is 1367 W/m 2. This value varies by ±3% as the earth orbits the sun [1-4]. Approximately 47% of the incident extraterrestrial solar radiation is in the visible wavelengths varying from 380 nm to 780 nm. The infrared portion of the spectrum has wavelengths greater than 780 nm and account for another 46% of the incident energy. Finally, the ultraviolet portion of the spectrum is with wavelengths below 380 nm and it accounts for 7% of the extraterrestrial solar radiation. As the sunlight passes through the atmosphere, a large portion of the UV radiation is absorbed and scattered. Air molecules scatter the shorter wavelengths more strongly than the longer ones. This scatters more blue light and is the reason why the sky appears blue. Water vapour and atmospheric dust further reduce the amount of direct sunlight passing through the atmosphere. On a clear day approximately 75% of the extraterrestrial direct normal irradiance passes through the atmosphere without being scattered or absorbed. Table I provides common sources of radiation absorption and scattering within the earth s atmosphere. On a day without clouds, about 25% of the solar radiation is scattered and is absorbed as it passes through the atmosphere near noon. Therefore about 1000 W/m 2 of the incident solar radiation finally reaches the earth's surface without being significantly scattered. This radiation, coming on the earth s surface from the direction of the sun, is called direct normal irradiance (or beam irradiance). Some of the scattered sunlight is scattered back into space and some of it also reaches the surface of the earth. The scattered radiation reaching the earth's surface is called diffuse radiation. Some radiation is also scattered off the earth's surface and then rescattered by the atmosphere to the observer. This is also part of the diffuse radiation the observer sees. For example, rescattered radiation may contribute significantly in those areas where ground is covered by snow. The total solar radiation on Table I. Radiation Absorption and Scattering Under Clear Sky Factor Percent absorbed Percent scattered Percent of total radiation passing through the atmosphere Ozone 2% 0% Water vapour 8% 4% Dry air 2% 7% Upper dust 2% 3% Lower dust 0% 0% Total absorbed or scattered 87% 87% 76% Fig 1. Extraterrestrial solar spectrum after [5] /10/$ IEEE 58

2 environmental factor that can actually increase the photovoltaic module output power. B. Environmental factors affecting the performance of photovoltaics Solar module performance factors help to explain the conversion from the solar module power rating (Watts DC) Standard Test Conditions (STC) to the energy (kilowatt-hours AC) produced at the utility. Fig 2. Solar radiation components in the earth s surface: Beam, diffuse and global. Fig 3. The components of global and direct solar spectrum, for the following conditions: Air Mass AM 1.5, and 37 Tilt [6]. a horizontal surface is called global irradiance and is the sum of the incident diffuse radiation plus the direct normal irradiance projected onto the horizontal surface, Fig 2. If the surface under study is tilted with respect to the horizontal, the total irradiance is the incident diffuse radiation plus the direct normal irradiance projected onto the tilted surface plus ground reflected irradiance that is incident on the tilted surface. As shown in Fig. 3 the difference between direct and global radiation, provides the diffuse radiation received at the observation point (at any wavelength). According to the data given in Fig 3, the diffuse radiation is enhanced in the visible spectrum (i.e. 380 nm nm). Many applications are concerned with specific regions of the solar spectrum. For example, building designers are interested in lighting for the human eye, which is sensitive only to the visible part of the spectrum. On the other hand photovoltaic applications are interested on the power delivered by wavelengths corresponding to greater energy values compared to the band-gap of the semiconductor material used to produce the photovoltaic cells, in order to provide the required electron-hole pairs that will be spatially separated by the build-in potential barrier across the p-n junction contact region. So far only parameters that limit performance of photovoltaic modules are normally encountered. However, as this work points out, the component of diffused radiation may become in practice the only (i) Modules are rated in DC Watts under STC. All solar module manufacturers test the power of their solar modules under specific Standard Test Conditions in the factory, i.e. irradiance level 1000 W/m 2, AM 1.5, cell temperature 25 C, and solar spectral irradiance as per ASTM E 892 [7]. The test results are used to rate the modules according to the tested power output. For example, a module tested in the factory, which produces 100W of DC power, is rated and labelled as a 100W STC DC solar module. During operation under STC, the actual power output of a given module may vary up or down. No module power output tolerances are taken into consideration, as average tested module power output is equal to nameplate rating. Manufacturers publish separately the output power tolerance (i.e. 100W ± 5%) on the module specification sheet. (ii) Increasing Module Temperature Decreases Power. Module operating temperature increases when placed in the sun. As the operating temperature increases, the power output decreases (due to the properties of the conversion material - this is true for all solar modules). The ratings are different for each module, and can vary from approximately 87%-92% of the STC rating. A typical decrease in power output is approximately 12% for crystalline based solar modules. This decrease results in a STC rated 100 Watt DC solar module now being rated at approximately 88 Watts DC. (iii) Particulate build-up ("Soiling"). When a module is placed outdoors, airborne particulates (e.g. dust, debris) settle on the glass surface of the module [8]. Particulates block the amount of light reaching the effective surface of the module and therefore reduce the produced power. The reduction in power from particulate build-up may range from 5%-15%. A typical value can be estimated at 7%. Due to the rain water rinsing off the module's glass surface modules installed in wet weather climate have less "soiling" than module installed in dry region. The effect of particulate build-up results in power decrease from 88 Watts to approximately 82 Watts. (iv) System wiring and module output differences. Typical solar electric systems require more than one module to be connected to one another. The wires used to connect the modules create ohmic losses in the electrical flow, thus decreasing the total power output of the system. In addition, slight differences in power output from module-to-module tend to reduce the maximum power output delivered by the modules [9]. The system AC and DC wiring losses and individual module power output differences could reduce the total system rated energy output from 3%-7%. A typical value 59

3 for these losses is 5%. This further reduces the expected power output from 82 Watts DC to 78 Watts DC. (v) Inverter conversion losses. Power inverters need to be used in order to convert the DC power delivered from the solar modules to the standard utility AC power (used by homes and businesses). Power conversion from DC to AC results in an energy decrease by approximately 6%-10%, and it varies for each inverter (primarily due to energy lost in the form of heat) [10]. A typical value for this loss is 6%. Thus, AC conversion results in power decrease that is estimated from 78 Watts DC to 73 Watts AC. (vi) Solar module tilt angle. The module installation angle in relation to the sun affects the overall energy output [11]. The module produces more power when the light source is located perpendicular to the surface of the module. For this reason, solar module installations are often tilted towards the sun to maximize intensity of light exposure. As the sun angle changes throughout the year (higher in the sky during summer and lower in the sky during winter), the amount of light falling directly on the module changes, as does the energy output. In the Mediterranean region, a typical optimum tilt angle for average module power production over the course of a year in a fixed-tilt system is approximately 30 degrees. For flat mounted systems, the reduction in average annual energy output for a module is approximately 11% when compared to the optimal tilt of approximately 30 degrees. Typical residential roofs are tilted approximately 15 degrees. The reduction in the average annual energy output for a module, which is mounted at a South-facing roof, 15-degree tilt, is approximately 3% when compared to the optimal tilt angle of approximately 30 degrees. This results in decreasing the energy from one sun hour exposure from 73 Watts to approximately 71 Watt-hours AC. (vii) Solar Module Compass Direction. As the sun moves across the sky throughout the day, from the East in the morning to the West in the afternoon, the compass direction, "orientation", of the module affects the cumulative energy output. For this reason, it is optimal to install a South-facing module in order to obtain the maximum amount of direct light exposure throughout the day. If the module is facing East or West, it will be exposed to less direct sunlight as the sun moves across the sky. There is no loss factor for south facing modules, so the estimated energy (from one sun hour exposure) for this particular example will remain at 71 Watt hours AC. If the module is not facing South, the module energy output will be reduced. For example, in a Southwestfacing module the energy output would be reduced further by approximately as much as 3%. (viii) Sun Hours. Every location on earth has a different amount of sunlight exposure throughout the year, which is measured in kwh/m 2 or Sun Hours [11]. For example, a coastal Mediterranean city will have a lower average amount of yearly Sun Hours than a dry inland city because of coastal moisture in the air. "One Sun" is approximated as the peak noon sunlight power intensity in the middle of summer. "One Sun Hour" is energy produced by the peak noon sunlight intensity in the middle of summer, over one hour. See Fig 4. Fig 4. Daily Sun Profile and Sun Hour relation The integrated area of daily sun profile equals the product between (sun hours) x (peak sun intensity). For one particular location the amount of Sun Hours may differ from day to day. There are multiple Sun Hour data sources which slightly vary from one to another. For example, the average Sun Hours during the summer season (e.g.. approximately 7.1 hours per day) and the average Sun Hours during the winter season (e.g. approximately 3.9 hours per day) are combined to provide the seasonal average result, ( )/2 = 5.51 Sun Hours per day. For the aforesaid example, the daily Sun Hour average of 5.51 hours throughout the year is shown in Fig. 4. In order to estimate the energy production of a solar module per year, one simply multiplies the estimated module output energy 71 Watt hours AC (from one sun hour exposure 1000W/m 2 over one hour), by the amount of Sun Hours for the particular location, i.e This results in approximately 391 Watt hours AC per day or kwh AC per day. When estimating yearly energy production, the estimated daily energy production, is multiplied by the total number of days in the year, 365. This results in approximately 142 kwh AC energy production. Thus, under the specified conditions of the aforesaid example, one 100 Watt DC module will approximately produce yearly 142 kwh of energy (AC). It should be stressed that all of the above factors that are taken into consideration to select, design and implement a photovoltaic installation tend to reduce the power delivered by the modules. However, the only environmental factor that may temporarily significantly enhance the delivered AC power, is the diffused radiation received by the panels. II. EXPERIMENTAL INVESTIGATION A. Solar radiation monitoring. The global radiation received at a horizontal surface was recorded at the National Technical University of Athens, Greece, 37 o 58'31.76"N, 23 o 47'05.51"E The sensor (Hydro 60

4 Lynx 4014 pyranometer) was located at an altitude of 212 m above sea level and it was placed 18m above ground level to reduce particle contamination. The employed sensor measures total sun and sky (global) radiation and provides a millivolt output signal proportional to solar radiation energy from 0 to 1400 W/m 2. The sensor responds to a 100% change in incoming radiation within one millisecond. It is calibrated for the entire solar spectrum by comparison with thermopile type radiometers in bright sunshine on a clear day. Cosine effects and Air Mass corrections have been made during the calibration by the manufacturer. The active device is sealed by a Pyrex glass dome incorporating desiccant, thus protecting it from moisture and dust. The sensor consists of a p-i-n silicon photodiode cell, having a spectral response that varies between 0.35 and 1.15 μm. The full scale response time is 1 ms. For radiation levels varying between 0 and 1400 W/m 2 it produces a voltage output 0-50 mv dc, with a linearity accuracy between incidence radiation and output voltage ±5%. Temperature compensation has been considered for photodiode temperature varying from +4 C to +60 C. The sensor output voltage is monitored by an Agilent 3458A multimeter that is capable of measuring DC voltages with an 8.5 digit resolution and a maximum sensitivity of 10 nv. The 24-hour voltage accuracy is 0.6 ppm, and the annual voltage reference stability is 8 ppm. The maximum number of readings per second is 100,000 thus, when used with a pyranometer having response time 1 ms it enables the investigation of fast global irradiance changes. The measuring unit is connected to the data bus of a PC platform by the IEEE 488 interface and the software application written in C, enables for fast sampling rates enabling up to 100 samples/s. The acquired global irradiance data are stored for further processing, and some of the daily acquired global irradiance data (sampling rate 1 sample/min) are also given in the following URL address: B. Results on global irradiance profiles. Figs. 5a, 5b and 5c provide representative results obtained for a sunny clear sky day (5a), and partially clouded days (5b,c). The meteorological data for the selected global irradiance profiles are summarised in Table II. Table II. Meteorological data of selected days Nov. 20 th 2008 Nov.21 st 2008 Feb.16 th 2009 Sunrise 07:08 07:11 07:14 Sunset 17:11 17:08 18:05 Pressure 1018 mbar 1016 mbar 1019 Temperature C C 6 13 C Humidity 51% RH 55% RH 58% RH UV-index Fig 5a provides the typical profile of global irradiance over the period of a single clear-sky day. Notice that in the first hour following sunrise the radiation level is remarkably low (below 45 W/m 2 ) and it rises abruptly after an hour or so. This phenomenon is attributed to the morphology of the greater area, and specifically the presence of a physical obstacle towards East of the monitoring point. This consists of a mountain (Hymettus) having an altitude of 1026 m located at a distance of approx. 3 km from the monitoring place. Therefore, only diffused radiation is monitored initially after the sunrise, but as soon as the direct beam reaches the sensor, global irradiance is actually measured. This response is evident in all irradiance profiles shown. However, the exact time required after sunrise till the direct beam reaches the sensor varies with the day of year. W/m 2 W/m 2 W/m November :00 07:30 09:00 10:30 12:00 13:30 15:00 16:30 18:00 Time (h) 21 November :00 07:30 09:00 10:30 12:00 13:30 15:00 16:30 18: Time (h) 16 February :00 07:30 09:00 10:30 12:00 13:30 15:00 16:30 18:00 19:30 Time (h) Fig. 5. Global irradiance profiles measured during different days (Nov. 20 th, Nov. 21 st, and Feb. 16 th ). Fig. 5b clearly points out that at 9:25 the presence of a cloud aside the direct line interconnecting the sun and the sensor (prior shadowing effect) induces momentarily a significant rise of the global irradiance by increasing the 61

5 diffuse radiation component. This increase of global irradiance from 300 W/m 2 to 420 W/m 2 lasts for more than 10 min in the specific example and corresponds to radiation level increase by as much as 40%. Then, as the cloud enters the area interconnecting directly the sun and the recording location the global irradiance drops to levels below 80 W/m 2. Later on at 10:45 the increase of global irradiance is observed again (from 420 W/m 2 to 500 W/m 2 without the shadowing effect following. According to Table I, the dry air masses, upperdust in the atmosphere (originating from air born particulates) or water vapour (clouds) could be some possible causes initiating diffuse radiation enhancement. Fig. 5c demonstrates the occurrence of multiple shadowing intervals without any diffuse radiation enhancement effects. Though this is the usually obtained response of global irradiance variations within partially cloudy days, it should be stated that there are not significant modifications between meteorological data corresponding to monitoring days of results given in Figs. 5b and 5c. C. Power delivered by inverter in a photovoltaic park A photovoltaic park located in Peloponnesus was used to monitor inverter output power variations with global irradiance. The park consisted of polycrystalline silicon solar modules and the DC to AC conversion took place via a 3- phase inverter system, having nominal power 35 kw each. The typical power plot received for all three inverters during a clear sunny-day, with very few (and short) shadowing intervals during the afternoon, is shown in Fig 6a. During noon all three inverters provide maximum power of the order of 30 kw, which is below inverter nominal output power levels. During the shadowing periods, the inverters output drop significantly, i.e. from 27 kw to 19 kw, as it is practically expected. The effect of diffuse radiation enhancement on the power output of the 3-phase inverter unit is clearly demonstrated by the results given in Fig. 6b. Here, the increased global irradiance levels force all three inverter units to provide enhanced output power (the first inverter produces up to 38.8 kw, the second up to 37.2 kw and the third up to 36.5 kw) all values being beyond nominal power levels. When monitoring the inverter power output levels over periods of several days (Fig. 6c) it becomes evident that during certain days with intense global irradiance variations the produced AC power by the inverters may practically exceed the theoretically predicted values, as is the case for days 10 and 11 in the power plot given in Fig. 6c. This response may practically induce aging of the electronic components, also affecting battery charging, and induce instantly unstable operating conditions, thus rising reliability issues in the photovoltaic establishments. III. CONCLUSIONS It has been shown experimentally that the global irradiance levels on flat surfaces may be increased by as much as 40% due to the diffuse radiation component. Though the intervals of increased global irradiance levels may last for only a few Fig. 6. Daily measurements of power output from a 3-phase inverter unit in a photovoltaic park. (a) Clear sunny sky and (b) partially cloudy with increased diffuse radiation levels, and (c) power plot of inverter output power for 13 day period. minutes, this phenomenon practically induces reliability issues on photovoltaic applications. For example, designers of photovoltaic plants should allow for inverters with greater nominal power capabilities compared to theoretically predicted ones, in order to compensate for unstable operating conditions relating to increased power outputs. The diffuse radiation may be enhanced significantly either by dry air formations in the atmosphere, or occurrence of dust particles in higher atmospheric levels. Nanoparticle 62

6 contaminants in the atmosphere may be introduced as a result of forest fires, airborne sand particles from wind gusts in the Sahara desert, and finally by industrial pollution and man made activities. The small size of atmospheric particles (few nanometers) causes their surfaces to be very active thus interacting with gaseous contaminants such as sulfur oxides, nitrogen oxides) and water vapor. The solar light beam interacts with particles and affects the diffused solar radiation component. Depending on the angle of incidence and irradiance monitoring locations the radiation may be significantly enhanced. This environmental parameter affects performance of photovoltaics. REFERENCES [1] G. W. Partridge and C. M. R. Platt, Radiative Processes in Meteorology and Climatology, Elsevier Scientific Pub. Co. (Amsterdam, New York), [2] J. A. Duffie, and W. A. Beckman,. Solar Engineering of Thermal Processes, 2nd edn., J. Wiley and Sons, New York, [3] J. J. Michalsky, The astronomical almanac's algorithm for approximate solar position ( ), Solar Energy, vol. 40, pp , [4] Watt Engineering Ltd. On the Nature and Distribution of Solar Radiation US Government Printing Office, March [5] C. Wehrli, Extraterrestrial Solar Spectrum, Physikalisch- Meteorologisches Observatorium and World Radiation Center (PMO/WRC) Davos Dorf, Publication no. 615, Switzerland, July [6] Standards (E-891) and (E-892), American Society for Testing and Materials (ASTM), [7] (Temperature) Module PTC ratings are available at the following CEC URL: ules.html. See APPENDIX, California Energy Commission List of Eligible Photovoltaic Modules PTC rating listing. [8] California Energy Commission, A Guide to Photovoltaic (PV) System Design and Installation report, Factors Affecting Output, Dirt and Dust, (Soiling) APPENDIX, section 2.3.1, page 8. [9] California Energy Commission, A Guide to Photovoltaic (PV) System Design and Installation report, Factors Affecting Output, Mismatch and wiring losses, section 2.3.1, page 8. [10] California Energy Commission, List of Eligible Inverters Inverter PTC ratings and inverter manufacturers specification sheets (SMA and Fronius). [11] California Energy Commission, A Guide to Photovoltaic (PV) System Design and Installation report, Estimating System Energy Output, Sun angle and house orientation, section 2.3.2, page 9. 63

Chapter 2 Available Solar Radiation

Chapter 2 Available Solar Radiation Chapter 2 Available Solar Radiation DEFINITIONS Figure shows the primary radiation fluxes on a surface at or near the ground that are important in connection with solar thermal processes. DEFINITIONS It

More information

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface 1. Base your answer to the following question on the diagram below which shows two identical houses, A and B, in a city in North Carolina. One house was built on the east side of a factory, and the other

More information

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D)

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D) 1. The hottest climates on Earth are located near the Equator because this region A) is usually closest to the Sun B) reflects the greatest amount of insolation C) receives the most hours of daylight D)

More information

ME 476 Solar Energy UNIT THREE SOLAR RADIATION

ME 476 Solar Energy UNIT THREE SOLAR RADIATION ME 476 Solar Energy UNIT THREE SOLAR RADIATION Unit Outline 2 What is the sun? Radiation from the sun Factors affecting solar radiation Atmospheric effects Solar radiation intensity Air mass Seasonal variations

More information

Exercise 6. Solar Panel Orientation EXERCISE OBJECTIVE DISCUSSION OUTLINE. Introduction to the importance of solar panel orientation DISCUSSION

Exercise 6. Solar Panel Orientation EXERCISE OBJECTIVE DISCUSSION OUTLINE. Introduction to the importance of solar panel orientation DISCUSSION Exercise 6 Solar Panel Orientation EXERCISE OBJECTIVE When you have completed this exercise, you will understand how the solar illumination at any location on Earth varies over the course of a year. You

More information

1 A 3 C 2 B 4 D. 5. During which month does the minimum duration of insolation occur in New York State? 1 February 3 September 2 July 4 December

1 A 3 C 2 B 4 D. 5. During which month does the minimum duration of insolation occur in New York State? 1 February 3 September 2 July 4 December INSOLATION REVIEW 1. The map below shows isolines of average daily insolation received in calories per square centimeter per minute at the Earth s surface. If identical solar collectors are placed at the

More information

Introduction to Photovoltaics

Introduction to Photovoltaics INTRODUCTION Objectives Understand the photovoltaic effect. Understand the properties of light. Describe frequency and wavelength. Understand the factors that determine available light energy. Use software

More information

PES ESSENTIAL. Fast response sensor for solar energy resource assessment and forecasting. PES Solar

PES ESSENTIAL. Fast response sensor for solar energy resource assessment and forecasting. PES Solar Fast response sensor for solar energy resource assessment and forecasting 30 Words: Dr. Mário Pó, Researcher at EKO Our industry continually strives to get better, smarter energy. Research and development

More information

LP PYRA Installation and Mounting of the Pyranometer for the Measurement of Global Radiation:

LP PYRA Installation and Mounting of the Pyranometer for the Measurement of Global Radiation: CENTRO DI TARATURA SIT N 124 TEL. +39.049.8977150 r.a. FAX +39.049.635596 1 Introduction LP PYRA 03 The LP PYRA 03 pyranometer measures the irradiance on a plane surface (Watt/ m 2 ). Measured irradiance

More information

Chapter 6. Solar Geometry. Contents

Chapter 6. Solar Geometry. Contents Chapter 6. Solar Geometry Contents 6.1 Introduction 6.2 The Sun 6.3 Elliptical Orbit 6.4 Tilt of the Earth s Axis 6.5 Consequences of the Altitude Angle 6.6 Winter 6.7 The Sun Revolves Around the Earth!

More information

Chapter 1 Solar Radiation

Chapter 1 Solar Radiation Chapter 1 Solar Radiation THE SUN The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39 10 9 m It is, on the average, 1.5 10 11 m away from the earth. The sun rotates on its axis

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

The Atmosphere and Atmospheric Energy Chapter 3 and 4

The Atmosphere and Atmospheric Energy Chapter 3 and 4 The Atmosphere and Atmospheric Energy Chapter 3 and 4 Size of the Earth s Atmosphere Atmosphere produced over 4.6 billion years of development Protects us from radiation Completely surrounds the earth

More information

Model 3024 Albedometer. User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA WWW. ALLWEATHERINC. COM

Model 3024 Albedometer. User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA WWW. ALLWEATHERINC. COM Model 3024 Albedometer User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA 95834 WWW. ALLWEATHERINC. COM TABLE OF CONTENTS INTRODUCTION... 1 THEORY OF OPERATION... 2 General Description... 2 Accuracy...

More information

SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions

SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions Our Place in Space Cosmic Rays AUTHOR: Jamie Repasky GRADE LEVEL(S): 3-5 SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions

More information

Solar spectral irradiance measurements relevant to photovoltaic applications

Solar spectral irradiance measurements relevant to photovoltaic applications Solar spectral irradiance measurements relevant to photovoltaic applications Cristina CORNARO 1,2, Angelo ANDREOTTI 1 1 Department of Enterprise Engineering, 2 CHOSE, University of Rome Tor Vergata Via

More information

AT350 EXAM #1 September 23, 2003

AT350 EXAM #1 September 23, 2003 AT350 EXAM #1 September 23, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the questions by using a No. 2 pencil to completely fill

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the primary reason New York State is warmer in July than in February? A) The altitude of the noon Sun is greater in February. B) The insolation in New York is greater in July. C) The Earth

More information

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz Sunlight and its Properties Part I EE 446/646 Y. Baghzouz The Sun a Thermonuclear Furnace The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction

More information

Optimizing the Photovoltaic Solar Energy Capture on Sunny and Cloudy Days Using a Solar Tracking System

Optimizing the Photovoltaic Solar Energy Capture on Sunny and Cloudy Days Using a Solar Tracking System Optimizing the Photovoltaic Solar Energy Capture on Sunny and Cloudy Days Using a Solar Tracking System Nelson A. Kelly and Thomas L. Gibson Chemical Sciences and Material Systems Laboratory General Motors

More information

CONSTRUCTION AND CALIBRATION OF A LOCAL PYRANOMETER AND ITS USE IN THE MEASUREMENT OF INTENSITY OF SOLAR RADIATION

CONSTRUCTION AND CALIBRATION OF A LOCAL PYRANOMETER AND ITS USE IN THE MEASUREMENT OF INTENSITY OF SOLAR RADIATION NIJOTECH VOL. 11, NO. 1 SEPTEMBER 1987 OKEKE AND ANUFOROM 44 CONSTRUCTION AND CALIBRATION OF A LOCAL PYRANOMETER AND ITS USE IN THE MEASUREMENT OF INTENSITY OF SOLAR RADIATION BY C.E. OKEKE and A.C. ANUFOROM

More information

CLASSICS. Handbook of Solar Radiation Data for India

CLASSICS. Handbook of Solar Radiation Data for India Solar radiation data is necessary for calculating cooling load for buildings, prediction of local air temperature and for the estimating power that can be generated from photovoltaic cells. Solar radiation

More information

LP NET. 1 About LP NET. 2 Working Principle. TEL r.a. FAX

LP NET. 1 About LP NET. 2 Working Principle. TEL r.a. FAX CENTRO DI TARATURA SIT N 124 MEASURING INSTRUMENTS REGULATORS STRUMENTI DI MISURA REGOLATORI TEL. +39.049.8977150 r.a. FAX +39.049.635596 LP NET 1 About LP NET LP NET net radiometer is designed to measure

More information

not for commercial-scale installations. Thus, there is a need to study the effects of snow on

not for commercial-scale installations. Thus, there is a need to study the effects of snow on 1. Problem Statement There is a great deal of uncertainty regarding the effects of snow depth on energy production from large-scale photovoltaic (PV) solar installations. The solar energy industry claims

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

MAPH & & & & & & 02 LECTURE

MAPH & & & & & & 02 LECTURE Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

3. Which color of the visible light has the shortest wavelength? A) violet B) green C) yellow D) red

3. Which color of the visible light has the shortest wavelength? A) violet B) green C) yellow D) red Name: Topic 6 Test 1. Which process is responsible for the greatest loss of energy from Earth's surface into space on a clear night? A) condensation B) conduction C) radiation D) convection 2. Base your

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

EE Properties of Sunlight. Y. Baghzouz Professor of Electrical Engineering

EE Properties of Sunlight. Y. Baghzouz Professor of Electrical Engineering EE 495-695 2.2 Properties of Sunlight Y. Baghzouz Professor of Electrical Engineering Azimuth angle The azimuth angle is the compass direction from which the sunlight is coming. At the equinoxes, the sun

More information

Solar resource. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment

Solar resource. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment SOLAR RESOURCE 1 Solar resource Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment 2 Solar resource Solar resource is immense Human energy use: 4.0x10 14

More information

Motion of the Sun. View Comments

Motion of the Sun. View Comments Login 2017 Survey to Improve Photovoltaic Education Christiana Honsberg and Stuart Bowden View Comments Instructions 1. Introduction 2. Properties of Sunlight 2.1. Basics of Light Properties of Light Energy

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

COMPUTER PROGRAM FOR THE ANGLES DESCRIBING THE SUN S APPARENT MOVEMENT IN THE SKY

COMPUTER PROGRAM FOR THE ANGLES DESCRIBING THE SUN S APPARENT MOVEMENT IN THE SKY COMPUTER PROGRAM FOR THE ANGLES DESCRIBING THE SUN S APPARENT MOVEMENT IN THE SKY B. BUTUC 1 Gh. MOLDOVEAN 1 Abstract: The paper presents software developed for the determination of the Sun-Earth geometry.

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

C) wavelength C) eastern horizon B) the angle of insolation is high B) increases, only D) thermosphere D) receive low-angle insolation

C) wavelength C) eastern horizon B) the angle of insolation is high B) increases, only D) thermosphere D) receive low-angle insolation 1. What is the basic difference between ultraviolet, visible, and infrared radiation? A) half-life B) temperature C) wavelength D) wave velocity 2. In New York State, the risk of sunburn is greatest between

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

1/55. Solar energy. solar radiation definitions incident solar energy

1/55. Solar energy. solar radiation definitions incident solar energy 1/55 Solar energy solar radiation definitions incident solar energy 2/55 Sun closest star centre of our planetary system solar system 3/55 Sun diameter 1 392 000 km 109 x larger than Earth weight 2 x 10

More information

PHOTOVOLTAIC SOLAR ENERGY TRAINER DL SOLAR-D1 Manual

PHOTOVOLTAIC SOLAR ENERGY TRAINER DL SOLAR-D1 Manual PHOTOVOLTAIC SOLAR ENERGY TRAINER DL SOLAR-D1 Manual DL SOLAR-D1 Contents 1. Solar energy: our commitment 5 to the environment 1.1. Basic principles and concepts 6 Mechanical work, energy and power: 6

More information

Production of electricity using photovoltaic panels and effects of cloudiness

Production of electricity using photovoltaic panels and effects of cloudiness Production of electricity using photovoltaic panels and effects of cloudiness PAVEL CHROBÁK, JAN SKOVAJSA AND MARTIN ZÁLEŠÁK The Department of Automation and Control Engineering Tomas Bata University in

More information

PV 2012/2013. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment

PV 2012/2013. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment SOLAR RESOURCE Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment 1 is immense Human energy use: 4.0x10 14 kwh/year on Earth s surface: 5.5x10 17 kwh/year

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 16 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES Physical Geography (Geog. 300) Prof. Hugh Howard American River College RADIATION FROM the SUN SOLAR RADIATION Primarily shortwave (UV-SIR) Insolation Incoming

More information

- global radiative energy balance

- global radiative energy balance (1 of 14) Further Reading: Chapter 04 of the text book Outline - global radiative energy balance - insolation and climatic regimes - composition of the atmosphere (2 of 14) Introduction Last time we discussed

More information

FLATE Hillsborough Community College - Brandon (813)

FLATE Hillsborough Community College - Brandon (813) The Florida Advanced Technological Education (FLATE) Center wishes to make available, for educational and noncommercial purposes only, materials relevant to the EST1830 Introduction to Alternative/Renewable

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson Agricultural Science Climatology Semester 2, 2006 Anne Green / Richard Thompson http://www.physics.usyd.edu.au/ag/agschome.htm Course Coordinator: Mike Wheatland Course Goals Evaluate & interpret information,

More information

GEOGRAPHY EYA NOTES. Weather. atmosphere. Weather and climate

GEOGRAPHY EYA NOTES. Weather. atmosphere. Weather and climate GEOGRAPHY EYA NOTES Weather and climate Weather The condition of the atmosphere at a specific place over a relatively short period of time Climate The atmospheric conditions of a specific place over a

More information

April 14, ESCI-61 Introduction to Photovoltaic Technology. Lecture #2. Solar Radiation. Ridha Hamidi, Ph.D.

April 14, ESCI-61 Introduction to Photovoltaic Technology. Lecture #2. Solar Radiation. Ridha Hamidi, Ph.D. April 14, 2010 1 ESCI-61 Introduction to Photovoltaic Technology Lecture #2 Solar Radiation Ridha Hamidi, Ph.D. April 14, 2010 2 The Sun The Sun is a perpetual source of energy It has produced energy for

More information

4. Solar radiation on tilted surfaces

4. Solar radiation on tilted surfaces 4. Solar radiation on tilted surfaces Petros Axaopoulos TEI of Athens Greece Learning Outcomes After studying this chapter, readers will be able to: define the direct, diffuse and reflected solar radiation

More information

Sunlight and its Properties II. EE 446/646 Y. Baghzouz

Sunlight and its Properties II. EE 446/646 Y. Baghzouz Sunlight and its Properties II EE 446/646 Y. Baghzouz Solar Time (ST) and Civil (clock) Time (CT) There are two adjustments that need to be made in order to convert ST to CT: The first is the Longitude

More information

XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS

XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS Estimating the performance of a solar system requires an accurate assessment of incident solar radiation. Ordinarily, solar radiation is measured on

More information

OZONE AND ULTRAVIOLET RADIATION

OZONE AND ULTRAVIOLET RADIATION OZONE AND ULTRAVIOLET RADIATION Alfio Parisi, Michael Kimlin Imagine if the earth s protective atmosphere did not exist and the earth was subjected to the harmful ultraviolet energy from the sun. Life

More information

Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

More information

Chapter 11 Lecture Outline. Heating the Atmosphere

Chapter 11 Lecture Outline. Heating the Atmosphere Chapter 11 Lecture Outline Heating the Atmosphere They are still here! Focus on the Atmosphere Weather Occurs over a short period of time Constantly changing Climate Averaged over a long period of time

More information

A New Angle on Energy Optimization of a microfit PV System

A New Angle on Energy Optimization of a microfit PV System A New Angle on Energy Optimization of a microfit PV System by Patrick James McVey White Submitted to Karin Hinzer ELG 6373 Contents List of Figures... II I. Introduction... 1 II. The Solar Resource...

More information

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan Ruslan Botpaev¹*, Alaibek Obozov¹, Janybek Orozaliev², Christian Budig², Klaus Vajen², 1 Kyrgyz State Technical University,

More information

Photovoltaic Systems Solar Radiation

Photovoltaic Systems Solar Radiation PowerPoint Presentation Photovoltaic Systems Solar Radiation The Sun Solar Radiation Sun- Earth Relationships Array Orientation Solar Radiation Data Sets Estimating Array Performance Arizona Solar Power

More information

1/71 AES-LECTURE 1. Solar energy. solar radiation definitions incident solar energy

1/71 AES-LECTURE 1. Solar energy. solar radiation definitions incident solar energy 1/71 AES-LECTURE 1 Solar energy solar radiation definitions incident solar energy Sun 2/71 closest star centre of our planetary system solar system Sun 3/71 diameter 1 392 000 km 109 x larger than Earth

More information

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA Global NEST Journal, Vol 8, No 3, pp 204-209, 2006 Copyright 2006 Global NEST Printed in Greece. All rights reserved TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA A.A. ACULININ

More information

On my honor, I have neither given nor received unauthorized aid on this examination. YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP OF EACH PAGE.

On my honor, I have neither given nor received unauthorized aid on this examination. YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP OF EACH PAGE. Instructor: Prof. Seiberling PHYSICS DEPARTMENT MET 1010 Name (print, last rst): 1st Midterm Exam Signature: On my honor, I have neither given nor received unauthorized aid on this examination. YOUR TEST

More information

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object Example: Sunlight warms your face without necessarily heating the air Shorter waves carry more energy

More information

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Chapter 4 Lesson 1: Describing Earth s Atmosphere Chapter 4 Lesson 1: Describing Earth s Atmosphere Vocabulary Importance of Earth s Atmosphere The atmosphere is a thin layer of gases surrounding Earth. o Contains the oxygen and water needed for life.

More information

Bi-annual Sun Tracking for Solar PV Module Support Structure: Study and Implementation

Bi-annual Sun Tracking for Solar PV Module Support Structure: Study and Implementation 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 56 Bi-annual Sun Tracking for Solar PV Module Support Structure: Study and Implementation Prabodh Bajpai, Member IEEE, Vaishalee Dash, N.K.

More information

ATMOSPHERIC CIRCULATION AND WIND

ATMOSPHERIC CIRCULATION AND WIND ATMOSPHERIC CIRCULATION AND WIND The source of water for precipitation is the moisture laden air masses that circulate through the atmosphere. Atmospheric circulation is affected by the location on the

More information

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 6, Issue 5 Ver. I (Sep.-Oct. 2014), PP 56-62 Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria Audu,

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves Skills Worksheet Directed Reading Section: Solar Energy and the Atmosphere 1. How is Earth s atmosphere heated? 2. Name the two primary sources of heat in the atmosphere. RADIATION In the space provided,

More information

Making Accurate Field Spectral Reflectance Measurements By Dr. Alexander F. H. Goetz, Co-founder ASD Inc., Boulder, Colorado, 80301, USA October 2012

Making Accurate Field Spectral Reflectance Measurements By Dr. Alexander F. H. Goetz, Co-founder ASD Inc., Boulder, Colorado, 80301, USA October 2012 Making Accurate Field Spectral Reflectance Measurements By Dr. Alexander F. H. Goetz, Co-founder ASD Inc., Boulder, Colorado, 80301, USA October 2012 Introduction Accurate field spectral reflectance measurements

More information

Hourly solar radiation estimation from limited meteorological data to complete missing solar radiation data

Hourly solar radiation estimation from limited meteorological data to complete missing solar radiation data 211 International Conference on Environment Science and Engineering IPCBEE vol.8 (211) (211) IACSIT Press, Singapore Hourly solar radiation estimation from limited meteorological data to complete missing

More information

Weather Final Review Page 1

Weather Final Review Page 1 Weather Final Review Name 1. Which change would cause a decrease in the amount of insolation absorbed at Earths surface? A) a decrease in cloud cover B) a decrease in atmospheric transparency C) an increase

More information

Energy and Seasons A B1. 9. Which graph best represents the general relationship between latitude and average surface temperature?

Energy and Seasons A B1. 9. Which graph best represents the general relationship between latitude and average surface temperature? Energy and Seasons A B1 1. Which type of surface absorbs the greatest amount of electromagnetic energy from the Sun? (1) smooth, shiny, and light colored (2) smooth, shiny, and dark colored (3) rough,

More information

METEOROLOGY AND AIR POLLUTION. JAI PRAKASH Civil Engineering IIT Delhi 1 AUGUST, 2011

METEOROLOGY AND AIR POLLUTION. JAI PRAKASH Civil Engineering IIT Delhi 1 AUGUST, 2011 METEOROLOGY AND AIR POLLUTION JAI PRAKASH Civil Engineering IIT Delhi 1 AUGUST, 2011 METEOROLOGY Aerosols particles which are emitted from the sources they are transported and dispersed through meteorological

More information

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Or, what happens to the energy received from the sun? First We Need to Understand The Ways in Which Heat Can be Transferred in the Atmosphere

More information

Climate and the Atmosphere

Climate and the Atmosphere Climate and Biomes Climate Objectives: Understand how weather is affected by: 1. Variations in the amount of incoming solar radiation 2. The earth s annual path around the sun 3. The earth s daily rotation

More information

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere?

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere? The Atmosphere Introduction to atmosphere, weather, and climate Where is the atmosphere? Everywhere! Completely surrounds Earth February 20, 2010 What makes up the atmosphere? Argon Inert gas 1% Variable

More information

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown 1 Time allowed 50 mins. Answer ALL questions Total possible points;50 Number of pages:8 Part A: Multiple Choice (1 point each) [total 24] Answer all Questions by marking the corresponding number on the

More information

COMPARISON OF GUNN BELLANI RADIOMETER DATA WITH GLOBAL SOLAR RADIATION SENSOR (PYRANOMETER CM6B) Author. Mungai Peter N.

COMPARISON OF GUNN BELLANI RADIOMETER DATA WITH GLOBAL SOLAR RADIATION SENSOR (PYRANOMETER CM6B) Author. Mungai Peter N. COMPARISON OF GUNN BELLANI RADIOMETER DATA WITH GLOBAL SOLAR RADIATION SENSOR (PYRANOMETER CM6B) Author Mungai Peter N. Kenya Meteorological Department. P.O.Box 30259-00100 GPO Nairobi, Kenya. Phone 254-2-3867880

More information

Unit 9. Atmosphere. Natural Science 1º ESO Antonio Jesús Moreno Quintero. Colegio Guadalete. Attendis.

Unit 9. Atmosphere. Natural Science 1º ESO Antonio Jesús Moreno Quintero. Colegio Guadalete. Attendis. 9. Atmosphere Unit 9. Atmosphere. 1 1. The Earth s atmosphere. Atmosphere: envelope of gases and particles which surrounds the Earth. Evolution of the atmosphere 1 st state: hydrogen and helium. It was

More information

Orientation of Building

Orientation of Building Orientation of Building Prof. S.K.Gupta 1 1 Dean &DirectorAmity University HaryanaPanchgaon, Manesar, Gurgaon I. INTRODUCTION The need to conserve essential building materials has drawn attention again

More information

OPTIMIZATION OF GLOBAL SOLAR RADIATION OF TILT ANGLE FOR SOLAR PANELS, LOCATION: OUARGLA, ALGERIA

OPTIMIZATION OF GLOBAL SOLAR RADIATION OF TILT ANGLE FOR SOLAR PANELS, LOCATION: OUARGLA, ALGERIA OPTIMIZATION OF GLOBAL SOLAR RADIATION OF TILT ANGLE FOR SOLAR PANELS, LOCATION: OUARGLA, ALGERIA Mohamed Lakhdar LOUAZENE Dris KORICHI Department of Electrical Engineering, University of Ouargla, Algeria.

More information

Basic Solar Geometry. Contents

Basic Solar Geometry. Contents Basic Solar Geometry Soteris A. Kalogirou Cyprus University of Technology Limassol, Cyprus Contents Introduction The sun (general characteristics) Solar geometry Solar Geometry Reckoning of time (AST)

More information

5. In which diagram is the observer experiencing the greatest intensity of insolation? A) B)

5. In which diagram is the observer experiencing the greatest intensity of insolation? A) B) 1. Which factor has the greatest influence on the number of daylight hours that a particular Earth surface location receives? A) longitude B) latitude C) diameter of Earth D) distance from the Sun 2. In

More information

ATM S 111: Global Warming Solar Radiation. Jennifer Fletcher Day 2: June

ATM S 111: Global Warming Solar Radiation. Jennifer Fletcher Day 2: June ATM S 111: Global Warming Solar Radiation Jennifer Fletcher Day 2: June 22 2010 Yesterday We Asked What factors influence climate at a given place? Sunshine (and latitude) Topography/mountains Proximity

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

COMPARISON BETWEEN MONO-AXIS AND BI-AXIS TRACKING FOR A PLATFORM OF PHOTOVOLTAIC MODULES

COMPARISON BETWEEN MONO-AXIS AND BI-AXIS TRACKING FOR A PLATFORM OF PHOTOVOLTAIC MODULES Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences Vol. 5 (54) No. 1-2012 COMPARISON BETWEEN MONO-AXIS AND BI-AXIS TRACKING FOR A PLATFORM OF PHOTOVOLTAIC MODULES M.A. IONIŢĂ

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

ON-LINE SOLAR RADIATION MONITORING SYSTEM, IN CLUJ NAPOCA, ROMANIA

ON-LINE SOLAR RADIATION MONITORING SYSTEM, IN CLUJ NAPOCA, ROMANIA ON-LINE SOLAR RADIATION MONITORING SYSTEM, IN CLUJ NAPOCA, ROMANIA Mugur BĂLAN, Lorentz JÄNTSCHI Introduction Sun can be considered a huge source of free energy, being also the unique energy source able

More information

ME 430 Fundamentals of Solar Energy Conversion for heating and Cooling Applications

ME 430 Fundamentals of Solar Energy Conversion for heating and Cooling Applications ME 430 Fundamentals of Solar Energy Conversion for heating and Cooling Applications Lecture (1 of 2) Solar Energy Resource and Availability C. Cruickshank and S. Harrison 2008 The Solar Constant 1 Variation

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Solutions Manual to Exercises for Weather & Climate, 8th ed. Appendix A Dimensions and Units 60 Appendix B Earth Measures 62 Appendix C GeoClock 63

Solutions Manual to Exercises for Weather & Climate, 8th ed. Appendix A Dimensions and Units 60 Appendix B Earth Measures 62 Appendix C GeoClock 63 Solutions Manual to Exercises for Weather & Climate, 8th ed. 1 Vertical Structure of the Atmosphere 1 2 Earth Sun Geometry 4 3 The Surface Energy Budget 8 4 The Global Energy Budget 10 5 Atmospheric Moisture

More information

Solar Radiation Measurements and Model Calculations at Inclined Surfaces

Solar Radiation Measurements and Model Calculations at Inclined Surfaces Solar Radiation Measurements and Model Calculations at Inclined Surfaces Kazadzis S. 1*, Raptis I.P. 1, V. Psiloglou 1, Kazantzidis A. 2, Bais A. 3 1 Institute for Environmental Research and Sustainable

More information

Mr Riaan Meyer On behalf of Centre for Renewable and Sustainable Energy Studies University of Stellenbosch

Mr Riaan Meyer On behalf of Centre for Renewable and Sustainable Energy Studies University of Stellenbosch CSP & Solar Resource Assessment CSP Today South Africa 2013 2 nd Concentrated Solar Thermal Power Conference and Expo 4-5 February, Pretoria, Southern Sun Pretoria Hotel Mr Riaan Meyer On behalf of Centre

More information

Lecture 2-07: The greenhouse, global heat engine.

Lecture 2-07: The greenhouse, global heat engine. Lecture 2-07: The greenhouse, global heat engine http://en.wikipedia.org/ the sun s ultraviolet (left) and infrared radiation imagers.gsfc.nasa.gov/ems/uv.html www.odysseymagazine.com/images SOLAR FLARES

More information

AVAILABLE SOLAR RADIATION THEORETICAL BACKGROUND

AVAILABLE SOLAR RADIATION THEORETICAL BACKGROUND AVAILABLE SOLAR RADIATION THEORETICAL BACKGROUND DETERMINING THE OPTIMUM ORIENTATION OF A GREENHOUSE ON THE BASIS OF THE TOTAL SOLAR RADIATION AVAILABILITY THE SOLAR CONSTANT At a distance of one astronomical

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

Atmospheric Composition and Structure

Atmospheric Composition and Structure Atmospheric Composition and Structure Weather and Climate What is weather? The state of the atmosphere at a specific time and place. Defined by: Humidity, temperature, wind speed, clouds, precipitation,

More information

Solar and Earth Radia.on

Solar and Earth Radia.on Solar and Earth Radia.on Solar and Earth Radia.on Solar radia.on Any incoming radia.on measured at the earth s surface Earth radia.on The long- wave band of radia.on emi>ed by the earth What are the typical

More information