Constraining general modifications of gravity during Reionization

Size: px
Start display at page:

Download "Constraining general modifications of gravity during Reionization"

Transcription

1 Constraining general modifications of gravity during Reionization Caroline Heneka Scuola Normale Superiore (SNS), Pisa Rencontres de Moriond La Thuile, March 17-24, 2018 based on: CH+ ApJ, 848 (2017) & arxiv:1804.xxx to be submitted

2 Introduction (Also) during Reionization: Gravity (and astrophysics) govern structure formation Which model of gravity / what cosmology? Which observables at these redshifts? Explore nature of Λ / DE / MG General properties / parametrizations w 0 w a c s µ Y Use wide range of scales (test scale- dependence)

3 Reionization high z: linear growth, simpler astrophysics(?) z 6 Image Credit:

4 Intensity Mapping What is the (large scale) structure of the Universe? To find out, we can identify individual sources of emission. Image: Courtesy of Asantha Cooray Image Credit:

5 Intensity Mapping What is the structure of the Universe? What are properties of galaxies / ionising sources?? To find out, we can identify individual sources of emission. OR We can sum all the emission in large areas and measure fluctuations (IM). Image: Courtesy of Asantha Cooray Image Credit:

6 Reionization Mesinger et al TS >> T Spin 21- cm temperature: T 1 = S TS < T T 1 + x T 1 + x c TK x + xc TS T

7 Intensity Mapping Cosmology from EoR/Cosmic Dawn with the SKA (Pritchard et al. 15) z=8 z=20 BUT

8 Simulations: 21 cm signal 21cm FAST (DexM) semi-numerical [Mesinger et al. 10] ionization xhi fcoll (x, M, z) 1 (filtering) density (+ velocity) Tb (Zel dovich approximation) Offset 21- cm brightness temperature T b TS T Tb ( ) = 1 e 0 1+z / xhi (1 + nl ) H dvr /dr + H Fiducial Cosmology: Planck

9 Parametrize GR- modifications Growth function: G (z,k) = m (z,k) / (0,k) via linear perturbation evolution: m + E0 0 E m = 3 m 2 a 3 E 2 m,0y with IC: = 0 in/ in Amendola et al. 2013, Taddei & Amendola =d/d log a

10 Parametrize GR- modifications Growth function: G (z,k) = m (z,k) / m (0,k) Parameter / free functions via linear perturbation evolution: m + E0 0 E m = 3 m 2 a 3 E 2 m,0 Y MG with IC: = MG 0 in/ in Amendola et al. 2013, Taddei & Amendola w 0,w a 0 =d/d log a

11 Parametrize GR- modifications Horndeski form, quasi- static: Y = h 1 1+(k/k p ) 2 h 5 1+(k/k p ) 2 h 3 time- dependent h i IC, in principle scale- dependent: = (k) = 0 in/ in GR: Y =1 & 0 in/ in =1 Amendola et al. 2013, Taddei & Amendola =d/d log a

12 Effect of varying Y z=10 Y=0.99 Y=1.0 Y=1.01 xh = xh = xh = [Normalized to same growth at CMB] C. Heneka & L. Amendola, 2018, in prep.

13 Effect of varying Y z=7 Y=0.99 Y=1.0 Y=1.01 x H 5 x H 0.30 x H = = =0.846 [Normalized to same growth at CMB] C. Heneka & L. Amendola, 2018, in prep.

14 Effect of varying Y + cosmic variance, thermal noise, instrumental sensitivity S/N: up to ~O(100) C. Heneka & L. Amendola, 2018, in prep.

15 Fisher (SKA): m, w0, wa, Y, - + foreground removal -0.6 w Fij = wa -1.6 z,k a kk 2 4 Cov 1 (z, 2 21,l (z, kk dc E(z) 0 k? dh (1 + z) w (0.144) (z, k) (0.016) 1.6 Y X wa 0.06 (0.072) Y (0.018) 0.06 (0.126) Wm w wa a [For 5 z- bins z=6-10] C. Heneka & L. Amendola, 2018, in prep.

16 Fisher (SKA): m,w 0,w a,y, For cosmological parameters only: P ij = C ij p Cii C jj Y the optimist Plus reionization parameters: Y order % errors on other parameters Tomography is key C. Heneka & L. Amendola, 2018, in prep.

17 Fisher (SKA): m,w 0,w a,y, For cosmological parameters only: P ij = C ij p Cii C jj Y Shot-noise high-k cut: Y C. Heneka & L. Amendola, 2018, in prep.

18 Fisher (SKA): m,w 0,w a,y, From cosmological parameters only: P ij = C ij p Cii C jj Y Cut of non-linear scales: Y Important to model (mildly) non-linear scales C. Heneka & L. Amendola, 2018, in prep.

19 Cosmology from EoR/Cosmic Dawn with other lines e.g. Ly- alpha Y up Y down neutral ionized vs.

20 Conclusion Study of Reionization: Intensity mapping Avenue to constrain cosmology / MG %- precision even for extended models within reach Tomography lifts degeneracies with astrophysics Important to model (mildly) non- linear scales a Y Ongoing & Upcoming: (k/kp ) h5 Test scale- dependency Y = h (k/kp ) h3 Combine with other probes Model the (mildly) non- linear regime caroline.heneka@sns.it Wm w wa a

21 .. Thank you

ARIZONA STATE UNIVERSITY TEMPE, ARIZONA Obtaining a Cold IGM through Modification of the Residual Ionization Fraction Following Recombination

ARIZONA STATE UNIVERSITY TEMPE, ARIZONA Obtaining a Cold IGM through Modification of the Residual Ionization Fraction Following Recombination ARIZONA STATE UNIVERSITY TEMPE, ARIZONA 85287 LOCO EDGES REPORT #098 Obtaining a Cold IGM through Modification of the Residual Ionization Fraction Following Recombination Judd Bowman July 16, 2017 1. Calculation

More information

Spectral Line Intensity Mapping with SPHEREx

Spectral Line Intensity Mapping with SPHEREx Spectral Line Intensity Mapping with SPHEREx Tzu-Ching Chang (JPL/Caltech) SPHEREx Science Team Hao-Yi Heidi Wu (Ohio State) Olivier Doré Cosmology and First Light - December 2015 1 Line Intensity Mapping

More information

Foregrounds for observations of the high redshift global 21 cm signal

Foregrounds for observations of the high redshift global 21 cm signal Foregrounds for observations of the high redshift global 21 cm signal Geraint Harker 28/10/2010 Fall Postdoc Symposium 1 The hydrogen 21cm line The hydrogen 21cm (1420MHz) transition is a forbidden transition

More information

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Charles Mpho Takalana Supervisor: Prof Sergio Colafrancesco University of the Witwatersrand November 28,

More information

Spectral Line Intensity Mapping with SPHEREx and CDIM

Spectral Line Intensity Mapping with SPHEREx and CDIM Spectral Line Intensity Mapping with SPHEREx and CDIM Tzu-Ching Chang (JPL/Caltech) SPHEREx Science Team & CDIM Science Team Olivier Doré Cosmology and First Light - December 2015 1 SPHEREx deep fields:

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata Simulating HI 21-cm Signal from EoR and Cosmic Dawn Kanan K. Datta Presidency University, Kolkata Plan of the talk Why simulations?! Dynamic ranges of simulations! Basic flowchart for simulation! Various

More information

What can we learn about reionization from the ksz

What can we learn about reionization from the ksz What can we learn about reionization from the ksz Andrei Mesinger Scuola Normale Superiore, Pisa IGM effect on CMB primary temperature anisotropies ionized IGM damps CMB temperature anisotropies through

More information

Synergies between 21cm intensity mapping, optical, and CMB surveys. Alkistis Pourtsidou, ICG Portsmouth

Synergies between 21cm intensity mapping, optical, and CMB surveys. Alkistis Pourtsidou, ICG Portsmouth Synergies between 21cm intensity mapping, optical, and CMB surveys Alkistis Pourtsidou, ICG Portsmouth Fundamental Physics with the SKA, Mauritius, 1-5 May 2017 The HI intensity mapping (IM) method [Battye

More information

RADIO-OPTICAL-cmb SYNERGIES. Alkistis Pourtsidou ICG Portsmouth

RADIO-OPTICAL-cmb SYNERGIES. Alkistis Pourtsidou ICG Portsmouth RADIO-OPTICAL-cmb SYNERGIES Alkistis Pourtsidou ICG Portsmouth Image credit: Hayden Planetarium, 2014 New Frontiers in Observational Cosmology [Planck 2015] 95% of our Universe is very strange - new physics!

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

Cosmological Tests of Gravity

Cosmological Tests of Gravity Cosmological Tests of Gravity Levon Pogosian Simon Fraser University, Canada VIA Lecture, 16 May, 2014 Workshop on Testing Gravity at SFU Harbour Centre January 15-17, 2015 Alternative theories of gravity

More information

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Eva-Maria Mueller Work in collaboration with Rachel Bean, Francesco De Bernardis, Michael Niemack (arxiv 1408.XXXX, coming out tonight)

More information

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli Coupled Dark University of Rome La Sapienza Roma, October 28th 2011 Outline 1 2 3 4 5 1 2 3 4 5 Accelerated Expansion Cosmological data agree with an accelerated expansion of the Universe d L [Mpc] 16000

More information

Measuring the dark universe. Luca Amendola University of Heidelberg

Measuring the dark universe. Luca Amendola University of Heidelberg Measuring the dark universe Luca Amendola University of Heidelberg 1 In search of the dark Searching with new probes Searching in new domains Or: a short overview of what I have been doing in the last

More information

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing 2017/7/14 13th Rencontres du Vietnam: Cosmology Ken Osato Dept. of Physics,

More information

21cmFAST A Fast, Semi-Numerical Simulation of the High-Redshift 21cm Signal

21cmFAST A Fast, Semi-Numerical Simulation of the High-Redshift 21cm Signal 21cmFAST A Fast, Semi-Numerical Simulation of the High-Redshift 21cm Signal Mesinger, Furlanetto, & Cen (2010) Andrei Mesinger Princeton University Motivation We know next to nothing about high-z --> ENORMOUS

More information

Secondary Polarization

Secondary Polarization Secondary Polarization z i =25 0.4 Transfer function 0.2 0 z=1 z i =8 10 100 l Reionization and Gravitational Lensing Wayne Hu Minnesota, March 2003 Outline Reionization Bump Model independent treatment

More information

Signatures of Cosmic Reionization on the 21cm 3-Point Correlation

Signatures of Cosmic Reionization on the 21cm 3-Point Correlation Tsinghua Center for Astrophysics (Beijing) Signatures of Cosmic Reionization on the 21cm 3-Point Correlation Kai Hoffmann collaborators: Yi Mao, Houjun Mo, Benjamin D. Wandelt Motivation 21cm clustering

More information

Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015

Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015 Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015 Why is the expansion of the Universe accelerating? Dark energy? Modified gravity? What is the nature of the primordial Universe?

More information

Shear Power of Weak Lensing. Wayne Hu U. Chicago

Shear Power of Weak Lensing. Wayne Hu U. Chicago Shear Power of Weak Lensing 10 3 N-body Shear 300 Sampling errors l(l+1)c l /2π εε 10 4 10 5 Error estimate Shot Noise θ y (arcmin) 200 100 10 6 100 1000 l 100 200 300 θ x (arcmin) Wayne Hu U. Chicago

More information

The Epoch of Reionization: Observational & Theoretical Topics

The Epoch of Reionization: Observational & Theoretical Topics The Epoch of Reionization: Observational & Theoretical Topics Lecture 1 Lecture 2 Lecture 3 Lecture 4 Current constraints on Reionization Physics of the 21cm probe EoR radio experiments Expected Scientific

More information

Square Kilometre Array: World s Largest Radio Telescope Design and Science drivers

Square Kilometre Array: World s Largest Radio Telescope Design and Science drivers Square Kilometre Array: World s Largest Radio Telescope Design and Science drivers Miroslava Dessauges Geneva Observatory, University of Geneva With my thanks to Philip Diamond (SKA director-general),

More information

HI across cosmic time

HI across cosmic time HI across cosmic time Hubble-ITC Fellow CfA Avi Loeb (CfA) Steve Furlanetto (UCLA) Stuart Wyithe (Melbourne) Mario Santos (Portugal) Hy Trac (CMU) Alex Amblard (Ames) Renyue Cen (Princeton) Asanthe Cooray

More information

CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case!

CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case! CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case! X Blake D. Sherwin Einstein Fellow, LBNL Outline! I. Brief Introduction: CMB lensing + LSS as probes of growth of structure II.

More information

Observational Cosmology

Observational Cosmology The Cosmic Microwave Background Part I: CMB Theory Kaustuv Basu Course website: http://www.astro.uni-bonn.de/~kbasu/obscosmo CMB parameter cheat sheet 2 Make your own CMB experiment! Design experiment

More information

Diving into precision cosmology and the role of cosmic magnification

Diving into precision cosmology and the role of cosmic magnification Diving into precision cosmology and the role of cosmic magnification Jose Luis Bernal Institute of Cosmos Science - Barcelona University ICC Winter Meeting 2017 06/02/2017 Jose Luis Bernal (ICCUB) ICC

More information

Observational Cosmology

Observational Cosmology (C. Porciani / K. Basu) Lecture 7 Cosmology with galaxy clusters (Mass function, clusters surveys) Course website: http://www.astro.uni-bonn.de/~kbasu/astro845.html Outline of the two lecture Galaxy clusters

More information

Separating out the Alcock Paczyński effect on 21-cm fluctuations

Separating out the Alcock Paczyński effect on 21-cm fluctuations Mon. Not. R. Astron. Soc. 37, 59 64 006 doi: 10.1111/j.1365-966.006.1088.x Separating out the Alcock Paczyński effect on 1-cm fluctuations R. Barkana School of Physics and Astronomy, The Raymond and Beverly

More information

Study the large-scale structure of the universenovember using galaxy 10, 2016 clusters 1 / 16

Study the large-scale structure of the universenovember using galaxy 10, 2016 clusters 1 / 16 Study the large-scale structure of the universe using galaxy clusters Bùi Văn Tuấn Advisors: Cyrille Rosset Michel Crézé Director: Volker Beckmann Astroparticle and Cosmology Laboratory Université Paris

More information

Inflation in a general reionization scenario

Inflation in a general reionization scenario Cosmology on the beach, Puerto Vallarta,, Mexico 13/01/2011 Inflation in a general reionization scenario Stefania Pandolfi, University of Rome La Sapienza Harrison-Zel dovich primordial spectrum is consistent

More information

The growth rate index of large scale structure as a probe of the cause of cosmic acceleration

The growth rate index of large scale structure as a probe of the cause of cosmic acceleration The growth rate index of large scale structure as a probe of the cause of cosmic acceleration Prof. Mustapha Ishak Collaborators: J. Dossett, Y. Gong, A. Wang Cosmology and Relativity Group Department

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

Mapping the dark universe with cosmic magnification

Mapping the dark universe with cosmic magnification Mapping the dark universe with cosmic magnification 张鹏杰 Zhang, Pengjie 中科院上海天文台 Shanghai Astronomical Observatory (SHAO) Chinese Academy of Sciences All the hard works are done by my student Yang Xinjuan

More information

Near-IR Background Fluctuation Results from the Cosmic Infrared Background Experiment

Near-IR Background Fluctuation Results from the Cosmic Infrared Background Experiment Near-IR Background Fluctuation Results from the Cosmic Infrared Background Experiment Michael Zemcov The Near- IR Background II: From Reionization to the Present Epoch Max- Planck- Gesellschaft, June 2,

More information

Testing parity violation with the CMB

Testing parity violation with the CMB Testing parity violation with the CMB Paolo Natoli Università di Ferrara (thanks to Alessandro Gruppuso)! ISSS L Aquila 24 April 2014 Introduction The aim is to use observed properties of CMB pattern to

More information

CMB polarization towards clusters as a probe of the integrated Sachs-Wolfe effect

CMB polarization towards clusters as a probe of the integrated Sachs-Wolfe effect CMB polarization towards clusters as a probe of the integrated Sachs-Wolfe effect Asantha Cooray* California Institute of Technology, Mail Code 130-33, Pasadena, California 91125 Daniel Baumann California

More information

CMB Anisotropies and Fundamental Physics. Lecture II. Alessandro Melchiorri University of Rome «La Sapienza»

CMB Anisotropies and Fundamental Physics. Lecture II. Alessandro Melchiorri University of Rome «La Sapienza» CMB Anisotropies and Fundamental Physics Lecture II Alessandro Melchiorri University of Rome «La Sapienza» Lecture II CMB & PARAMETERS (Mostly Dark Energy) Things we learned from lecture I Theory of CMB

More information

HI and Continuum Cosmology

HI and Continuum Cosmology HI and Continuum Cosmology Radiometry Equation snr 1 2 A For SKA, eff S[ ] kt rms sys 1/ 2 for each 100 mjy 1/ 2 [ ] polarizati on, two polarizati ons Filipe B. Abdalla Cosmology: Concordance Model Heavy

More information

Constraints on primordial abundances and neutron life-time from CMB

Constraints on primordial abundances and neutron life-time from CMB Constraints on primordial abundances and neutron life-time from CMB PhD Astronomy, Astrophysics and Space Science University of Sapienza and Tor Vergata Advisor: Alessandro Melchiorri Introduction Comparison

More information

Studying 21cm power spectrum with one-point statistics

Studying 21cm power spectrum with one-point statistics doi:10.1093/mnras/stv965 Studying 21cm power spectrum with one-point statistics Hayato Shimabukuro, 1,2 Shintaro Yoshiura, 2 Keitaro Takahashi, 2 Shuichiro Yokoyama 3 and Kiyotomo Ichiki 1 1 Department

More information

RADIO SPECTRAL LINES. Nissim Kanekar National Centre for Radio Astrophysics, Pune

RADIO SPECTRAL LINES. Nissim Kanekar National Centre for Radio Astrophysics, Pune RADIO SPECTRAL LINES Nissim Kanekar National Centre for Radio Astrophysics, Pune OUTLINE The importance of radio spectral lines. Equilibrium issues: kinetic, excitation, brightness temperatures. The equation

More information

CCAT-prime: CCAT-p. 01 July 2016 CCAT-p Overview 1

CCAT-prime: CCAT-p. 01 July 2016 CCAT-p Overview 1 CCAT-prime: CCAT-p 01 July 2016 CCAT-p Overview 1 6-meter off-axis submm telescope located at CCAT site at 5600 meters on Cerro Chajnantor Surface accuracy of

More information

Cosmology with Galaxy bias

Cosmology with Galaxy bias Cosmology with Galaxy bias Enrique Gaztañaga, M.Eriksen (PhD in progress...) www.ice.cat/mice Figure of Merit (FoM): Expansion x Growth w(z) -> Expansion History (background metric) we will use w0 and

More information

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU Effective Field Theory approach for Dark Energy/ Modified Gravity Bin HU BNU NAOC Nov. 2016 Outline 1. Evidence of late-time cosmic acceleration 2. Effective Field Theory approach for DE/MG 3. The structure

More information

PoS(Cosmology2009)022

PoS(Cosmology2009)022 and 21cm Observations Max Planck Institute for Astrophysics E-mail: ciardi@mpa-garching.mpg.de With the advent in the near future of radio telescopes as LOFAR, a new window on the highredshift universe

More information

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory Cross-correlations of CMB lensing as tools for cosmology and astrophysics Alberto Vallinotto Los Alamos National Laboratory Dark matter, large scales Structure forms through gravitational collapse......

More information

Reionization constraints post Planck-15

Reionization constraints post Planck-15 Reionization constraints post Planck-15 Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune CMB Spectral Distortions from Cosmic Baryon Evolution

More information

The Degeneracy of Dark Energy and Curvature

The Degeneracy of Dark Energy and Curvature The Degeneracy of Dark Energy and Curvature Department of Physics and Astronomy, UWC, Cape Town Department of MAM, UCT, Cape Town PhD student: Amadeus Witzemann Collaborators: Philip Bull, HIRAX coll.

More information

Complementarity in Dark Energy measurements. Complementarity of optical data in constraining dark energy. Licia Verde. University of Pennsylvania

Complementarity in Dark Energy measurements. Complementarity of optical data in constraining dark energy. Licia Verde. University of Pennsylvania Complementarity in Dark Energy measurements Complementarity of optical data in constraining dark energy Licia Verde University of Pennsylvania www.physics.upenn.edu/~lverde The situation: SN 1A (Riess

More information

arxiv: v2 [astro-ph.co] 1 Apr 2019

arxiv: v2 [astro-ph.co] 1 Apr 2019 Differential Observation Techniques for the SZE-21cm and radio sources arxiv:1903.12631v2 [astro-ph.co] 1 Apr 2019 University of the Witwatersrand E-mail: mtakalana@ska.ac.za Paolo Marchegiani University

More information

Lensing reconstruction from intensity maps

Lensing reconstruction from intensity maps Lensing reconstruction from intensity maps Simon Foreman Canadian Institute for Theoretical Astrophysics with Alex van Engelen, Daan Meerburg, Joel Meyers Aspen Center for Physics February 6, 2018 line

More information

Strong field tests of Gravity using Gravitational Wave observations

Strong field tests of Gravity using Gravitational Wave observations Strong field tests of Gravity using Gravitational Wave observations K. G. Arun Chennai Mathematical Institute Astronomy, Cosmology & Fundamental Physics with GWs, 04 March, 2015 indig K G Arun (CMI) Strong

More information

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis Absolute Neutrino Mass from Cosmology Manoj Kaplinghat UC Davis Kinematic Constraints on Neutrino Mass Tritium decay (Mainz Collaboration, Bloom et al, Nucl. Phys. B91, 273, 2001) p and t decay Future

More information

MURCHISON WIDEFIELD ARRAY

MURCHISON WIDEFIELD ARRAY MURCHISON WIDEFIELD ARRAY STEPS TOWARDS OBSERVING THE EPOCH OF RE-IONIZATION Ravi Subrahmanyan Raman Research Institute INDIA View from Earth: cosmic radio background from cosmological evolution in gas

More information

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation Bram Venemans MPIA Heidelberg Workshop The Reionization History of the Universe Bielefeld University, March 8-9 2018 History of

More information

Cosmological and astrophysical applications of vector-tensor theories

Cosmological and astrophysical applications of vector-tensor theories Cosmological and astrophysical applications of vector-tensor theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, M.Minamitsuji, S.Mukohyama, S.

More information

Galaxy Formation Now and Then

Galaxy Formation Now and Then Galaxy Formation Now and Then Matthias Steinmetz Astrophysikalisches Institut Potsdam 1 Overview The state of galaxy formation now The state of galaxy formation 10 years ago Extragalactic astronomy in

More information

Cross-correlation studies with CMB polarization maps

Cross-correlation studies with CMB polarization maps PHYSICAL REVIEW D 70, 023508 2004 Cross-correlation studies with CMB polarization maps Asantha Cooray* California Institute of Technology, Mail Code 130-33, Pasadena, California 91125, USA Received 21

More information

Polarization from Rayleigh scattering

Polarization from Rayleigh scattering Polarization from Rayleigh scattering Blue sky thinking for future CMB observations Previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

MODEL INDEPENDENT CONSTRAINTS ON THE IONIZATION HISTORY

MODEL INDEPENDENT CONSTRAINTS ON THE IONIZATION HISTORY MODEL INDEPENDENT CONSTRAINTS ON THE IONIZATION HISTORY JOHN ZANAZZI, NORTHERN ARIZONA UNIVERSITY 1. ABSTRACT We present a model independent eigenmode analysis of the ionization history around recombination

More information

Probing the Dark Ages with 21 cm Absorption

Probing the Dark Ages with 21 cm Absorption May 13, 2008 Probing the Dark Ages with 21 cm Absorption Emil Polisensky (UMD/NRL) ABSTRACT A brief overview of detecting neutral hydrogen gas during the cosmic Dark Ages in absorption against the background

More information

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS BÙI VĂN TUẤN Advisors: Cyrille Rosset, Michel Crézé, James G. Bartlett ASTROPARTICLE AND COSMOLOGY LABORATORY PARIS DIDEROT UNIVERSITY

More information

21cm / Intensity Mapping. Adrian Liu, UC Berkeley

21cm / Intensity Mapping. Adrian Liu, UC Berkeley 1cm / Intensity Mapping Adrian Liu, UC Berkeley A new project cannot be incremental Measure all the modes! But how? And what does that get us? For now, a lot of the details don t matter CHIME Next steps

More information

CMB studies with Planck

CMB studies with Planck CMB studies with Planck Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Thanks to Anthony Challinor & Anthony Lasenby for a few slides (almost) uniform

More information

X name "The talk" Infrared

X name The talk Infrared X name "The talk" Infrared 1 Cosmic Infrared Background measurement and Implications for star formation Guilaine Lagache Institut d Astrophysique Spatiale On behalf of the Planck collaboration Cosmic Infrared

More information

The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS

The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS Charlotte Mason (UCLA) Aspen, 7 Feb 2016 The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS with Tommaso Treu (UCLA), Michele Trenti (U. Melbourne),

More information

Which redshifts contribute most?

Which redshifts contribute most? Which redshifts contribute most? Some text z >1 z 5 z

More information

An Introduction to the Dark Energy Survey

An Introduction to the Dark Energy Survey An Introduction to the Dark Energy Survey A study of the dark energy using four independent and complementary techniques Blanco 4m on Cerro Tololo Galaxy cluster surveys Weak lensing Galaxy angular power

More information

CMB Polarization and Cosmology

CMB Polarization and Cosmology CMB Polarization and Cosmology Wayne Hu KIPAC, May 2004 Outline Reionization and its Applications Dark Energy The Quadrupole Gravitational Waves Acoustic Polarization and Initial Power Gravitational Lensing

More information

2. OBSERVATIONAL COSMOLOGY

2. OBSERVATIONAL COSMOLOGY 2. OBSERVATIONAL COSMOLOGY 1. OBSERVATIONAL PARAMETERS i. Introduction History of modern observational Cosmology ii. Cosmological Parameters The search for 2 (or more) numbers Hubble Parameter Deceleration

More information

Cosmological parameters of modified gravity

Cosmological parameters of modified gravity Cosmological parameters of modified gravity Levon Pogosian Simon Fraser University Burnaby, BC, Canada In collaborations with R. Crittenden, A. Hojjati, K. Koyama, A. Silvestri, G.-B. Zhao Two questions

More information

Hunting for dark matter in the forest (astrophysical constraints on warm dark matter)

Hunting for dark matter in the forest (astrophysical constraints on warm dark matter) Hunting for dark matter in the forest (astrophysical constraints on warm dark matter) ICC, Durham! with the Eagle collaboration: J Schaye (Leiden), R Crain (Liverpool), R Bower, C Frenk, & M Schaller (ICC)

More information

University of Groningen. Opening the low frequency window to the high redshift Universe Vedantham, Harish

University of Groningen. Opening the low frequency window to the high redshift Universe Vedantham, Harish University of Groningen Opening the low frequency window to the high redshift Universe Vedantham, Harish IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

20 Lecture 20: Cosmic Microwave Background Radiation continued

20 Lecture 20: Cosmic Microwave Background Radiation continued PHYS 652: Astrophysics 103 20 Lecture 20: Cosmic Microwave Background Radiation continued Innocent light-minded men, who think that astronomy can be learnt by looking at the stars without knowledge of

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Weak Gravitational Lensing. Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005

Weak Gravitational Lensing. Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005 Weak Gravitational Lensing Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005 astrophysics is on the 4th floor... President Amy Gutmann 215 898 7221 Physics Chair Tom

More information

The cosmic microwave background radiation

The cosmic microwave background radiation The cosmic microwave background radiation László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 May 18, 2018. Origin of the cosmic microwave radiation Photons in the plasma are

More information

Detection of hot gas in multi-wavelength datasets. Loïc Verdier DDAYS 2015

Detection of hot gas in multi-wavelength datasets. Loïc Verdier DDAYS 2015 Detection of hot gas in multi-wavelength datasets Loïc Verdier SPP DDAYS 2015 Loïc Verdier (SPP) Detection of hot gas in multi-wavelength datasets DDAYS 2015 1 / 21 Cluster Abell 520; Credit: X-ray: NASA/CXC/UVic./A.Mahdavi

More information

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland Neutrino Mass & the Lyman-α Forest Kevork Abazajian University of Maryland INT Workshop: The Future of Neutrino Mass Measurements February 9, 2010 Dynamics: the cosmological density perturbation spectrum

More information

Figures of Merit for Dark Energy Measurements

Figures of Merit for Dark Energy Measurements Figures of Merit for Dark Energy Measurements Dragan Huterer Department of Physics University of Michigan What next for Dark Energy? Theory Model Building Which flavor of DE? Experiment Systematics control

More information

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK Recent BAO observations and plans for the future David Parkinson University of Sussex, UK Baryon Acoustic Oscillations SDSS GALAXIES CMB Comparing BAO with the CMB CREDIT: WMAP & SDSS websites FLAT GEOMETRY

More information

arxiv: v1 [astro-ph.co] 28 May 2018

arxiv: v1 [astro-ph.co] 28 May 2018 21 cm line signal from magnetic modes arxiv:1805.10943v1 [astro-ph.co] 28 May 2018 Kerstin E. Kunze Departamento de Física Fundamental, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca,

More information

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You BARYON ACOUSTIC OSCILLATIONS Cosmological Parameters and You OUTLINE OF TOPICS Definitions of Terms Big Picture (Cosmology) What is going on (History) An Acoustic Ruler(CMB) Measurements in Time and Space

More information

The First Stars John Wise, Georgia Tech

The First Stars John Wise, Georgia Tech z=1100 The First Stars John Wise, Georgia Tech z~20-30 z~6 > (P=kT b Δν) Courtesy of J. Pritchard Adapted from Pritchard & Loeb, 2010, Phys. Rev. D, 82, 023006 A great mystery now confronts us: When and

More information

Late time cosmology with GWs

Late time cosmology with GWs Late time cosmology with elisa Institut de Physique Théorique CEA-Saclay CNRS Université Paris-Saclay Outline Standard sirens: Concept and issues Forecast cosmological constraints for elisa: Approach:

More information

Imprint of Scalar Dark Energy on CMB polarization

Imprint of Scalar Dark Energy on CMB polarization Imprint of Scalar Dark Energy on CMB polarization Kin-Wang Ng ( 吳建宏 ) Institute of Physics & Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan Cosmology and Gravity Pre-workshop NTHU, Apr

More information

Simulating Cosmic Reionization and the 21cm Background from the Epoch of Reionization

Simulating Cosmic Reionization and the 21cm Background from the Epoch of Reionization Simulating Cosmic Reionization and the 21cm Background from the Epoch of Reionization Paul Shapiro The University of Texas at Austin Collaborators in the work described today include: Ilian Iliev 2, Garrelt

More information

Non-linear structure formation in modified gravity

Non-linear structure formation in modified gravity Non-linear structure formation in modified gravity Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Cosmic acceleration Many independent data sets indicate the expansion of

More information

Cosmic Growth, Gravitational Waves, and CMB

Cosmic Growth, Gravitational Waves, and CMB Cosmic Growth, Gravitational Waves, and CMB Eric Linder UC Berkeley/KASI 8 th KIAS Workshop on Cosmology 5 November 2018 1 1 New Connections In just the last couple of years, we have fully recognized close

More information

Measurements of Degree-Scale B-mode Polarization with the BICEP/Keck Experiments at South Pole

Measurements of Degree-Scale B-mode Polarization with the BICEP/Keck Experiments at South Pole Measurements of Degree-Scale B-mode Polarization with the BICEP/Keck Experiments at South Pole Benjamin Racine for the BICEP/Keck Collaboration March 18th, 2018 53 èmes Rencontres de Moriond La Thuile

More information

Gravitational Lensing of the CMB

Gravitational Lensing of the CMB Gravitational Lensing of the CMB SNAP Planck 1 Ω DE 1 w a.5-2 -1.5 w -1 -.5 Wayne Hu Leiden, August 26-1 Outline Gravitational Lensing of Temperature and Polarization Fields Cosmological Observables from

More information

Instrumental Systematics on Lensing Reconstruction and primordial CMB B-mode Diagnostics. Speaker: Meng Su. Harvard University

Instrumental Systematics on Lensing Reconstruction and primordial CMB B-mode Diagnostics. Speaker: Meng Su. Harvard University Instrumental Systematics on Lensing Reconstruction and primordial CMB B-mode Diagnostics Speaker: Meng Su Harvard University Collaborators: Amit P.S. Yadav, Matias Zaldarriaga Berkeley CMB Lensing workshop

More information

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501.

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501. CONSTRAINTS AND TENSIONS IN MG PARAMETERS FROM PLANCK, CFHTLENS AND OTHER DATA SETS INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS arxiv:1501.03119 1 Mustapha Ishak The University of Texas at Dallas Jason

More information

Probing Cosmic Origins with CO and [CII] Emission Lines

Probing Cosmic Origins with CO and [CII] Emission Lines Probing Cosmic Origins with CO and [CII] Emission Lines Azadeh Moradinezhad Dizgah A. Moradinezhad Dizgah, G. Keating, A. Fialkov arxiv:1801.10178 A. Moradinezhad Dizgah, G. Keating, A. Fialkov (in prep)

More information

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey David Weinberg, Ohio State University Dept. of Astronomy and CCAPP Based partly on Observational Probes of Cosmic Acceleration

More information

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy 12-14 April 2006, Rome, Italy Francesco Melchiorri Memorial Conference Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher

More information

Neutrinos and cosmology

Neutrinos and cosmology Neutrinos and cosmology Yvonne Y. Y. Wong RWTH Aachen LAUNCH, Heidelberg, November 9--12, 2009 Relic neutrino background: Temperature: 4 T,0 = 11 Origin of density perturbations? 1 /3 T CMB, 0=1.95 K Number

More information

PLANCK lately and beyond

PLANCK lately and beyond François R. Bouchet, Institut d Astrophysique de Paris PLANCK lately and beyond CORE/M5 TT, EE, BB 2016 status Only keeping points w. sufficiently small error bars, Fig. E Calabrese τ = 0.055±0.009 1 114

More information

PIXIE: The Primordial Inflation Explorer. Al Kogut GSFC

PIXIE: The Primordial Inflation Explorer. Al Kogut GSFC PIXIE: The Primordial Inflation Explorer Al Kogut GSFC History of the Universe Standard model leaves many open questions NASA Strategic Guidance: 2010 Astrophysics Decadal Survey Top Mid-Scale Priorities

More information