Observational Cosmology

Size: px
Start display at page:

Download "Observational Cosmology"

Transcription

1 (C. Porciani / K. Basu) Lecture 7 Cosmology with galaxy clusters (Mass function, clusters surveys) Course website:

2 Outline of the two lecture Galaxy clusters as tools for cosmology The physics and astrophysics of galaxy cluster cosmology Observation and mass modeling of clusters The X-ray and Sunyaev-Zel dovich observables Optical and radio observation of galaxy clusters Current and future cluster surveys 2

3 Cosmology with galaxy clusters Growth of cosmic structure from cluster number counts (use of halo mass function) Measuring distances using clusters as standard candles (joint X-ray/SZE) Using the gas mass fraction in clusters to measure the cosmic baryon density Measuring the large-scale velocity fields in the universe from kinematic SZE Constraints from galaxy cluster power spectrum 3

4 What are galaxy clusters? Galaxy clusters are the most massive, collapsed structures in the universe. They contain galaxies, hot, ionized gas ( K) and dark matter. In typical structure formation scenarios, low mass clusters emerge in significant numbers at z~2-3. Clusters are good probes, because they are massive an easy to detect through their: X-ray emission Sunyaev-Zel dovich Effect Light from galaxies Gravitational lensing 4

5 Galaxy clusters in simulations 700 Mpc comoving cube Galaxy clusters: rare peaks in the density field 5

6 Space density of clusters Clusters are rare objects. For standard ΛCDM cosmology (Ωm=0.3, ΩΛ=0.7, h=0.7, σ8=0.9), the space density of >10 14 M halos is 7 x 10-5 Mpc -3. Galaxy clusters represent the end result of the density fluctuations involving comoving scales of ~10-20 Mpc. This marks the transition between two distinct dynamical states: On scales above ~10 Mpc, evolution of the universe is driven by gravity. This regime can be analyzed by analytical methods, or more accurately, with computer N-body simulations. At scales below ~1 Mpc, the physics of baryons start to play an important role, and complicates the process. 6

7 Growth of structures Ωm=0.3, ΩΛ=0.7 Normalized w.r.t. local cluster density Ωm=1.0 Borgani & Guzzo, Nature, 2001 Example showing the role of galaxy clusters in tracing the cosmic evolution, in particular dark matter and dark energy contents. 7

8 The Halo Mass Function # of clusters per unit area and z: Consider the cosmic density field filtered on mass scale M Assume that density perturbations have collapsed by the time their linearly evolved overdensity exceeds some critical value δc Number density of collapsed objects with mass M is then proportional to an integral over a Gaussian distribution This is the famous Press-Schechter mass function 8

9 Correction to PS approach Despite its very simple formalism, Press-Schechter formula has served remarkably well as a guide to constrain cosmological parameters from the mass distribution of galaxy clusters. Only with the advent of large N-body simulations, significant deviations of the PS description from the exact numerical description is noticed. 9

10 Cluster cosmology & astrophysics Bayes theorem makes clear that identifying the most likely cosmology is dependent on knowing how likely the observations are within that cosmological model: P(C R) ~ P(R C) Pprior(C) For galaxy clusters, nonlinear dynamics and astropysical uncertainties (e.g. uncertain baryonic physics) complicate the computation of the observable likelihood P(R C). The question of computing the likelihood can be split into two parts: How many clusters of mass M exist in this cosmology at redshift z? What is the likelihood that a cluster of mass M at redshift z will have temperature Tx (or some other observable) 10

11 Mass budget in clusters White et al. (1993) 11

12 Selection of clusters Cleanest selection techniques for clusters are those that couple properties of the high-density virial regions Clusters light up in X-ray or SZE only when they collapse (i.e. form the dark matter halos counted in N-body simulations) Galaxy counting and shear selection is problematic because it is challenging to separate massive clusters from surrounding large scale structures Shear couples to mass whether inside or outside the clusters Red galaxies exist in clusters and surrounding large-scale structures Convergent velocity fields around massive clusters make redshift a blunt too to determine cluster membership 12

13 Intra-Cluster Medium (ICM) Majority of observable cluster mass (majority of baryons) is hot gas Temperature T ~ 10 8 K ~ 10 kev (heated by gravitational potential) Electron number density ne ~ 10-3 cm -3 Mainly H, He, but with heavy elements (O, Fe,..) Mainly emits X-rays (but also radio and gamma rays) LX ~ erg/s, most luminous extended X-ray sources in Universe Causes the Sunyaev-Zel dovich effect (SZE) by inverse Compton scattering the background CMB photons 13

14 X-ray emission from clusters Thermal Bremsstahlung 14

15 X-ray spectra free-free recombination 2-photon 15

16 X-ray observatories XMM-Newton Chandra Wolter type III mirror assembly (Hans Wolter, 1952) 16

17 X-ray cluster samples The X-ray flux limit establishes a simple criterion for sample completeness and searching volume, thereby giving a reasonably accurate idea for the number of objects per unit volume. 17

18 The Sunyaev-Zel dovich (SZ) effect 1-2% of the CMB photons traversing galaxy clusters are inverse Compton scattered to higher energy 18

19 Properties of the SZ effect Thermal SZE is a small (<1 mk) distortion in the CMB caused by inverse Compton scattering of the CMB photons Total cluster flux density is independent of redshift! 19

20 SZ spectrum Thermal SZE frequency dependence: kinematic SZE: 20

21 Simple models of the ICM A consistently good empirical fit! For cool core cluster a much better fit is double β-model 21

22 X-ray and SZ in β-model The most convenient feature of isothermal β-model is that X-ray surface brightness and SZE decrement takes simple analytical forms Try writing these two expressions in full details by solving these two integrals: (integration is along the line of sight dl = DA dζ) 22

23 Solving for ne Integrating over density distribution gives total gas mass: 23

24 Solving for da Reese et al

25 Gas mass fraction Since galaxy clusters collapse from a scale of ~10 Mpc, they are expected to contain a fair sample of the baryonic content of the universe (mass segregation is not believed to occur at such large scales). The gas mass fraction, fgas, is therefore a reasonable estimate of the baryonic mass fraction of the cluster. It should also be reasonable approximation to the universal baryon mass fraction, fb = ΩB / Ωm In reality, fgas fb always! Mantz, Allen et al. Next lecture!! 25

Joint X ray/sze analysis of the intra cluster medium

Joint X ray/sze analysis of the intra cluster medium Joint X ray/sze analysis of the intra cluster medium Kaustuv Basu (MPIfR / Universität Bonn) kbasu@mpifr bonn.mpg.de with Martin Nord Yu Ying Zhang & the APEX SZ collaboration The Sunyaev-Zel'dovich (SZ)

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Summer School on Cosmology July Clusters of Galaxies - Lecture 2. J. Mohr LMU, Munich

Summer School on Cosmology July Clusters of Galaxies - Lecture 2. J. Mohr LMU, Munich 2354-23 Summer School on Cosmology 16-27 Clusters of Galaxies - Lecture 2 J. Mohr LMU, Munich SPT Outline ICTP Summer School on Cosmology, Trieste, e-rosita ESA/SRE(211)12 July 211 Galaxy Clusters and

More information

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Charles Mpho Takalana Supervisor: Prof Sergio Colafrancesco University of the Witwatersrand November 28,

More information

Advanced Topics on Astrophysics: Lectures on dark matter

Advanced Topics on Astrophysics: Lectures on dark matter Advanced Topics on Astrophysics: Lectures on dark matter Jesús Zavala Franco e-mail: jzavalaf@uwaterloo.ca UW, Department of Physics and Astronomy, office: PHY 208C, ext. 38400 Perimeter Institute for

More information

The role of Planck in understanding galaxy cluster radio halos

The role of Planck in understanding galaxy cluster radio halos The role of Planck in understanding galaxy cluster radio halos Radio data Radio data Planck measurements Planck measurements 1 The role of Planck in understanding galaxy cluster radio halos Kaustuv Basu

More information

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation?

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation? Einführung in die beobachtungsorientierte Kosmologie I / Introduction to observational Cosmology I LMU WS 2009/10 Rene Fassbender, MPE Tel: 30000-3319, rfassben@mpe.mpg.de 1. Cosmological Principles, Newtonian

More information

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK Millennium simulation of the cosmic web MEASUREMENTS OF THE LINEAR BIAS OF RADIO GALAXIES USING CMB LENSING FROM PLANCK Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle

More information

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

Clusters and Groups of Galaxies

Clusters and Groups of Galaxies Clusters and Groups of Galaxies X-ray emission from clusters Models of the hot gas Cooling flows Sunyaev-Zeldovich effect X-ray surveys and clusters Scaling relations Evolutionary effects X-ray emitting

More information

Some issues in cluster cosmology

Some issues in cluster cosmology Some issues in cluster cosmology Tim McKay University of Michigan Department of Physics 1/30/2002 CFCP Dark Energy Workshop 1 An outline Cluster counting in theory Cluster counting in practice General

More information

The X-Ray Universe. The X-Ray Universe

The X-Ray Universe. The X-Ray Universe The X-Ray Universe The X-Ray Universe Potsdam University Dr. Lidia Oskinova Wintersemester 2013-2014 lida@astro.physik.uni-potsdam.de astro.physik.uni-potsdam.de/~lida/x-ray.html Chandra X-ray, HST optical,

More information

Detection of hot gas in multi-wavelength datasets. Loïc Verdier DDAYS 2015

Detection of hot gas in multi-wavelength datasets. Loïc Verdier DDAYS 2015 Detection of hot gas in multi-wavelength datasets Loïc Verdier SPP DDAYS 2015 Loïc Verdier (SPP) Detection of hot gas in multi-wavelength datasets DDAYS 2015 1 / 21 Cluster Abell 520; Credit: X-ray: NASA/CXC/UVic./A.Mahdavi

More information

Dark Matter. Homework 3 due. ASTR 433 Projects 4/17: distribute abstracts 4/19: 20 minute talks. 4/24: Homework 4 due 4/26: Exam ASTR 333/433.

Dark Matter. Homework 3 due. ASTR 433 Projects 4/17: distribute abstracts 4/19: 20 minute talks. 4/24: Homework 4 due 4/26: Exam ASTR 333/433. Dark Matter ASTR 333/433 Today Clusters of Galaxies Homework 3 due ASTR 433 Projects 4/17: distribute abstracts 4/19: 20 minute talks 4/24: Homework 4 due 4/26: Exam Galaxy Clusters 4 distinct measures:

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

Galaxy Clusters in Stage 4 and Beyond

Galaxy Clusters in Stage 4 and Beyond Galaxy Clusters in Stage 4 and Beyond (perturbation on a Cosmic Visions West Coast presentation) Adam Mantz (KIPAC) CMB-S4/Future Cosmic Surveys September 21, 2016 Galaxy clusters: what? Galaxy cluster:

More information

Testing gravity on cosmological scales with the observed abundance of massive clusters

Testing gravity on cosmological scales with the observed abundance of massive clusters Testing gravity on cosmological scales with the observed abundance of massive clusters David Rapetti, KIPAC (Stanford/SLAC) In collaboration with Steve Allen (KIPAC), Adam Mantz (KIPAC), Harald Ebeling

More information

AST 541 Notes: Clusters of Galaxies Fall 2010

AST 541 Notes: Clusters of Galaxies Fall 2010 Clusters 1 AST 541 Notes: Clusters of Galaxies Fall 2010 Galaxy clusters represent the largest bound and virialized structures in the Universe today. This extreme environment makes them interesting for

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Baryon Census in Hydrodynamical Simulations of Galaxy Clusters

Baryon Census in Hydrodynamical Simulations of Galaxy Clusters Baryon Census in Hydrodynamical Simulations of Galaxy Clusters Susana Planelles (Univ.Trieste-INAF) Collaborators: S.Borgani (Univ. Trieste-INAF), G.Murante (INAF Torino), L.Tornatore (Univ. Trieste),

More information

Simulating cosmic reionization at large scales

Simulating cosmic reionization at large scales Simulating cosmic reionization at large scales I.T. Iliev, G. Mellema, U. L. Pen, H. Merz, P.R. Shapiro and M.A. Alvarez Presentation by Mike Pagano Nov. 30th 2007 Simulating cosmic reionization at large

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

Weighing the Giants:

Weighing the Giants: Weighing the Giants: Accurate Weak Lensing Mass Measurements for Cosmological Cluster Surveys Anja von der Linden Tycho Brahe Fellow DARK Copenhagen + KIPAC, Stanford IACHEC, May 14, 2014 1 Hello! Copenhagen

More information

Outline: Galaxy groups & clusters

Outline: Galaxy groups & clusters Outline: Galaxy groups & clusters Outline: Gravitational lensing Galaxy groups and clusters I Galaxy groups and clusters II Cluster classification Increasing rareness Intermission: What are you looking

More information

Galaxy Cluster Mergers

Galaxy Cluster Mergers Galaxy Cluster Mergers Alexia Schulz Institute for Advanced Study Andrew Wetzel Daniel Holz Mike Warren Talk Overview! Introduction " Why are cluster mergers of interest? " Where will mergers complicate

More information

Lecture 9. Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae. Gravitational lensing Sunyaev-Zeldovich effect

Lecture 9. Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae. Gravitational lensing Sunyaev-Zeldovich effect Lecture 9 H 0 from the Hubble diagram Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae H 0 from other methods Gravitational lensing Sunyaev-Zeldovich effect H 0 from the Hubble

More information

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Probing Fundamental Physics with CMB Spectral Distortions, CERN March 12, 2018

More information

Cosmology with Galaxy Clusters. V. The Cluster Mass Function

Cosmology with Galaxy Clusters. V. The Cluster Mass Function Cosmology with Galaxy Clusters V. The Cluster Mass Function Baryon Fraction Summary Assuming clusters large enough to be representative, mass composition should match Universe observe fb and constrain

More information

Cosmology The Road Map

Cosmology The Road Map Cosmology The Road Map Peter Schneider Institut für Astrophysik, Bonn University on behalf of the Astronomy Working Group Cosmology s Themes Fundamental Cosmology Probing inflation Investigating Dark Energy

More information

Precision Cosmology with X-ray and SZE Galaxy Cluster Surveys?

Precision Cosmology with X-ray and SZE Galaxy Cluster Surveys? Precision Cosmology with X-ray and SZE Galaxy Cluster Surveys? Joe Mohr University of Illinois Outline SZE and X-ray Observations of Clusters Cluster survey yields and cosmology Precision cosmology and

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

The State of Tension Between the CMB and LSS

The State of Tension Between the CMB and LSS The State of Tension Between the CMB and LSS Tom Charnock 1 in collaboration with Adam Moss 1 and Richard Battye 2 Phys.Rev. D91 (2015) 10, 103508 1 Particle Theory Group University of Nottingham 2 Jodrell

More information

Lecture 12 : Clusters of galaxies

Lecture 12 : Clusters of galaxies Lecture 12 : Clusters of galaxies All sky surveys in the later half of 20th century changed the earlier view that clusters of galaxies are rare and that only a small fraction of galaxies are grouped together

More information

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives Cosmic Rays in Galaxy Clusters: Simulations and Perspectives 1 in collaboration with Volker Springel 2, Torsten Enßlin 2 1 Canadian Institute for Theoretical Astrophysics, Canada 2 Max-Planck Institute

More information

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Reasons to care Concordance of many measures of baryon number (BBN, CMB,.) Evolution of our personal baryons (galaxies, stars, planets,

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

Probing the Dark Ages with 21 cm Absorption

Probing the Dark Ages with 21 cm Absorption May 13, 2008 Probing the Dark Ages with 21 cm Absorption Emil Polisensky (UMD/NRL) ABSTRACT A brief overview of detecting neutral hydrogen gas during the cosmic Dark Ages in absorption against the background

More information

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS BÙI VĂN TUẤN Advisors: Cyrille Rosset, Michel Crézé, James G. Bartlett ASTROPARTICLE AND COSMOLOGY LABORATORY PARIS DIDEROT UNIVERSITY

More information

Observational Cosmology

Observational Cosmology The Cosmic Microwave Background Part I: CMB Theory Kaustuv Basu Course website: http://www.astro.uni-bonn.de/~kbasu/obscosmo CMB parameter cheat sheet 2 Make your own CMB experiment! Design experiment

More information

A Measurement of the Kinetic SZ Signal Towards MACS J0717.5

A Measurement of the Kinetic SZ Signal Towards MACS J0717.5 A Measurement of the Kinetic SZ Signal Towards MACS J0717.5 A Measurement of the Kinetic SZ Signal Towards MACS J0717.5, Tony Mroczkowski, Mike Zemcov, Phil Korngut, Jamie Bock, Sunil Golwala, Seth Siegel

More information

SZ Effect with ALMA. Kaustuv moni Basu (MPIfR / Universität Bonn)

SZ Effect with ALMA. Kaustuv moni Basu (MPIfR / Universität Bonn) SZ Effect with ALMA Kaustuv moni Basu (MPIfR / Universität Bonn) with Martin Nord, Frank Bertoldi, Florian Pacaud APEX SZ collaboration, X ray cluster cosmology group at AIfA The Sunyaev-Zel'dovich Effect

More information

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory Cross-correlations of CMB lensing as tools for cosmology and astrophysics Alberto Vallinotto Los Alamos National Laboratory Dark matter, large scales Structure forms through gravitational collapse......

More information

Baryon Acoustic Oscillations Part I

Baryon Acoustic Oscillations Part I Baryon Acoustic Oscillations Part I Yun Wang (on behalf of the Euclid collaboration) ESTEC, November 17, 2009 Outline Introduction: BAO and galaxy clustering BAO as a standard ruler BAO as a robust dark

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

The Sunyaev-Zeldovich Effect with ALMA Band 1

The Sunyaev-Zeldovich Effect with ALMA Band 1 The Sunyaev-Zeldovich Effect with ALMA Band 1 and some current observational results from the CBI Steven T. Myers National Radio Astronomy Observatory Socorro, New Mexico, USA 1 State of the art SZ and

More information

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing 2017/7/14 13th Rencontres du Vietnam: Cosmology Ken Osato Dept. of Physics,

More information

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ = Cosmology AS7009, 2008 Lecture 10 Outline Structure formation Jeans length, Jeans mass Structure formation with and without dark matter Cold versus hot dark matter Dissipation The matter power spectrum

More information

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14 Signatures of MG on non- linear scales Fabian Schmidt MPA Garching Lorentz Center Workshop, 7/15/14 Tests of gravity Smooth Dark Energy (DE): unique prediction for growth factor given w(a) Use evolution

More information

Clusters of Galaxies

Clusters of Galaxies Clusters of Galaxies Galaxies are not randomly strewn throughout space. Instead the majority belong to groups and clusters of galaxies. In these structures, galaxies are bound gravitationally and orbit

More information

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy 12-14 April 2006, Rome, Italy Francesco Melchiorri Memorial Conference Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher

More information

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics Series in Astronomy and Astrophysics An Introduction to the Science of Cosmology Derek Raine Department of Physics and Astronomy University of Leicester, UK Ted Thomas Department of Physics and Astronomy

More information

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation Cosmic ray feedback in hydrodynamical simulations of galaxy and structure formation Canadian Institute for Theoretical Astrophysics, Toronto April, 13 26 / Workshop Dark halos, UBC Vancouver Outline 1

More information

Clusters of galaxies

Clusters of galaxies Clusters of galaxies Most galaxies belong to some larger bound structure. Conventionally consider groups and clusters, with characteristic properties: Groups Clusters Core radius 250 h -1 kpc 250 h -1

More information

Frontiers: Sunyaev-Zeldovich effect

Frontiers: Sunyaev-Zeldovich effect Frontiers: Sunyaev-Zeldovich effect An effect predicted more than four decades ago, the S-Z effect has come into its own as a probe of cosmological conditions, due to instrumental advances and a certain

More information

Theory of galaxy formation

Theory of galaxy formation Theory of galaxy formation Bibliography: Galaxy Formation and Evolution (Mo, van den Bosch, White 2011) Lectures given by Frank van den Bosch in Yale http://www.astro.yale.edu/vdbosch/teaching.html Theory

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest White dwarf Core of solar mass star No energy from fusion or gravitational contraction

More information

THE SUNYAEV-ZELDOVICH EFFECT

THE SUNYAEV-ZELDOVICH EFFECT THE SUNYAEV-ZELDOVICH EFFECT Etienne Pointecouteau IRAP (Toulouse, France) THE SUNYAEV-ZELDOVICH EFFECT Inverse Compton scattering of CMB photons by intracluster electrons R. A. Sunyaev Ya. B. Zeldovich

More information

Solving small scale structure puzzles with. dissipative dark matter

Solving small scale structure puzzles with. dissipative dark matter Solving small scale structure puzzles with. dissipative dark matter Robert Foot, COEPP, University of Melbourne Okinawa, March 2016 Dark matter: why we think it exists Dark matter issues on small scales

More information

Outline. Cosmological parameters II. Deceleration parameter I. A few others. Covers chapter 6 in Ryden

Outline. Cosmological parameters II. Deceleration parameter I. A few others. Covers chapter 6 in Ryden Outline Covers chapter 6 in Ryden Cosmological parameters I The most important ones in this course: M : Matter R : Radiation or DE : Cosmological constant or dark energy tot (or just ): Sum of the other

More information

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy)

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy) OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY Marco Roncadelli INFN Pavia (Italy) ABSTRACT Assuming KNOWN physical laws, I first discuss OBSERVATIONAL evidence for dark matter in galaxies and

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 13; May 30 2013 Previously on astro-2 Energy and mass are equivalent through Einstein s equation and can be converted into each other (pair production and annihilations)

More information

A Measurement of the Velocity Sub-Structure in MACS J using the Kinetic Sunyaev-Zel dovich Effect

A Measurement of the Velocity Sub-Structure in MACS J using the Kinetic Sunyaev-Zel dovich Effect A Measurement of the Velocity Sub-Structure in MACS J0717.5 using the Kinetic Sunyaev-Zel dovich Effect A Measurement of the Velocity Sub-Structure in MACS J0717.5 using the Kinetic Sunyaev-Zel dovich

More information

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More (MPIA) Kunming,

More information

Weak Gravitational Lensing

Weak Gravitational Lensing Weak Gravitational Lensing Sofia Sivertsson October 2006 1 General properties of weak lensing. Gravitational lensing is due to the fact that light bends in a gravitational field, in the same fashion as

More information

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges Daisuke Nagai Yale University IPMU, July 15 th, 2010 Large-scale structure in the Universe SDSS (optical) Today δρ/ρ>>1

More information

pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago

pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago Baseline model for cluster scaling relations Kaiser 1986, 1991 If mass is defined within a spherical

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 3 June, 2004 9 to 12 PAPER 67 PHYSICAL COSMOLOGY Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start to

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information

AST Cosmology and extragalactic astronomy Lecture 7

AST Cosmology and extragalactic astronomy Lecture 7 AST4320 - Cosmology and extragalactic astronomy Lecture 7 Press-Schechter Formalism: applications, origin of the `fudge factor 2, modifications Press-Schechter (PS) Formalism: Preface... PS assumes 1.

More information

Cosmology with galaxy clusters?

Cosmology with galaxy clusters? Cosmology with galaxy clusters? Cosmology with the cluster mass fct. Piero Rosati (ESO, Garching) Paolo Tozzi (INAF-OAT, Trieste) Colin Norman (JHU, Baltimora) Elena Pierpaoli (Princeton Univ.) Douglas

More information

Modelling the Sunyaev Zeldovich Scaling Relations

Modelling the Sunyaev Zeldovich Scaling Relations Modelling the Sunyaev Zeldovich Scaling Relations (Implication for SZ Power Spectrum) Anya Chaudhuri (with Subha Majumdar) Tata Institute of Fundamental Research 31 Oct 2009 Outline Sunyaev Zeldovich effect

More information

Isotropy and Homogeneity

Isotropy and Homogeneity Cosmic inventory Isotropy and Homogeneity On large scales the Universe is isotropic (looks the same in all directions) and homogeneity (the same average density at all locations. This is determined from

More information

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies! 3/6/12 Astro 358/Spring 2012 Galaxies and the Universe Dark Matter in Galaxies Figures + Tables for Lectures (Feb 16-Mar 6) Dark Matter in Spiral Galaxies Flat rotation curve of Milky Way at large radii

More information

2. OBSERVATIONAL COSMOLOGY

2. OBSERVATIONAL COSMOLOGY 2. OBSERVATIONAL COSMOLOGY 1. OBSERVATIONAL PARAMETERS i. Introduction History of modern observational Cosmology ii. Cosmological Parameters The search for 2 (or more) numbers Hubble Parameter Deceleration

More information

arxiv:astro-ph/ v1 6 May 2004

arxiv:astro-ph/ v1 6 May 2004 XMM-NEWTON OBSERVATIONS OF THREE HIGH REDSHIFT RADIO GALAXIES arxiv:astro-ph/0405116 v1 6 May 2004 Abstract E. Belsole, D.M. Worrall, M. J. Hardcastle Department of Physics - University of Bristol Tyndall

More information

Clusters: Context and Background

Clusters: Context and Background Clusters: Context and Background We re about to embark on a subject rather different from what we ve treated before, so it is useful to step back and think again about what we want to accomplish in this

More information

20 Lecture 20: Cosmic Microwave Background Radiation continued

20 Lecture 20: Cosmic Microwave Background Radiation continued PHYS 652: Astrophysics 103 20 Lecture 20: Cosmic Microwave Background Radiation continued Innocent light-minded men, who think that astronomy can be learnt by looking at the stars without knowledge of

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

AST4320: LECTURE 10 M. DIJKSTRA

AST4320: LECTURE 10 M. DIJKSTRA AST4320: LECTURE 10 M. DIJKSTRA 1. The Mass Power Spectrum P (k) 1.1. Introduction: the Power Spectrum & Transfer Function. The power spectrum P (k) emerged in several of our previous lectures: It fully

More information

Homework 9 due Nov. 26 (after Thanksgiving)

Homework 9 due Nov. 26 (after Thanksgiving) Homework 9 due Nov. 26 (after Thanksgiving) [CO 17.6 parts (a), (b)] [16.6 1 st ed., parts (a), (b)] Derive the deflection of the light ray passing a massive object. Note that your answer will come out

More information

(Toward) A Solution to the Hydrostatic Mass Bias Problem in Galaxy Clusters. Eiichiro Komatsu (MPA) UTAP Seminar, December 22, 2014

(Toward) A Solution to the Hydrostatic Mass Bias Problem in Galaxy Clusters. Eiichiro Komatsu (MPA) UTAP Seminar, December 22, 2014 (Toward) A Solution to the Hydrostatic Mass Bias Problem in Galaxy Clusters Eiichiro Komatsu (MPA) UTAP Seminar, December 22, 2014 References Shi & EK, MNRAS, 442, 512 (2014) Shi, EK, Nelson & Nagai, arxiv:1408.3832

More information

The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback.

The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback. The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback. John Stott Durham University Stott et al. 2012, MNRAS 2012, 422, 2213, arxiv:1202.3787 The XCS Collaboration

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

Title Sunyaev Zel dovich Signal & Cross Correlations

Title Sunyaev Zel dovich Signal & Cross Correlations Title Sunyaev Zel dovich Signal & Cross Correlations Relatore Pasquale Mazzotta Universita di Roma Tor Vergata on behalf of the Italian CMB community Overview Cosmic web and Clusters of Galaxies Observing

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 4 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

What are the Contents of the Universe? Taking an Inventory of the Baryonic and Dark Matter Content of the Universe

What are the Contents of the Universe? Taking an Inventory of the Baryonic and Dark Matter Content of the Universe What are the Contents of the Universe? Taking an Inventory of the Baryonic and Dark Matter Content of the Universe Layout of the Course Sept 4: Introduction / Overview / General Concepts Sept 11: No Class

More information

Cosmological Studies with SZE-determined Peculiar Velocities. Sarah Church Stanford University

Cosmological Studies with SZE-determined Peculiar Velocities. Sarah Church Stanford University Cosmological Studies with SZE-determined Peculiar Velocities Sarah Church Stanford University Outline! Why Measure Peculiar Velocities? Cosmological information complements other techniques! Experimental

More information

Simulating non-linear structure formation in dark energy cosmologies

Simulating non-linear structure formation in dark energy cosmologies Simulating non-linear structure formation in dark energy cosmologies Volker Springel Distribution of WIMPS in the Galaxy Early Dark Energy Models (Margherita Grossi) Coupled Dark Energy (Marco Baldi) Fifth

More information

Cosmology with Planck clusters. Nabila Aghanim IAS, Orsay (France)

Cosmology with Planck clusters. Nabila Aghanim IAS, Orsay (France) Cosmology with Planck clusters Nabila Aghanim IAS, Orsay (France) Starting point Planck results March 2013 ~3σ sigma tension between Planck CMB and cluster counts Planck results February 2015 extensions:

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

X-rays from Clusters of Galaxies!

X-rays from Clusters of Galaxies! Back from Japan Clusters of Galaxies X-ray Overview Probes of the history of structure formation Dynamical timescales are not much shorter than the age of the universe Studies of their evolution, temperature

More information

GALAXY CLUSTERS: X-RAY CONTRIBUTIONS TO MULTI-WAVELENGTH CLUSTER STUDIES IN THE ERA OF MASS SENSITIVE CLUSTER SURVEYS.

GALAXY CLUSTERS: X-RAY CONTRIBUTIONS TO MULTI-WAVELENGTH CLUSTER STUDIES IN THE ERA OF MASS SENSITIVE CLUSTER SURVEYS. GALAXY CLUSTERS: X-RAY CONTRIBUTIONS TO MULTI-WAVELENGTH CLUSTER STUDIES IN THE ERA OF MASS SENSITIVE CLUSTER SURVEYS. By AMRUTA J. DESHPANDE A dissertation submitted to the Graduate School New Brunswick

More information