Cosmology with Galaxy bias

Size: px
Start display at page:

Download "Cosmology with Galaxy bias"

Transcription

1 Cosmology with Galaxy bias Enrique Gaztañaga, M.Eriksen (PhD in progress...)

2 Figure of Merit (FoM): Expansion x Growth w(z) -> Expansion History (background metric) we will use w0 and wa γ -> Growth History (metric perturbations) probably need one more parameter here δ = Hθ Linear Theory: P(k,z) ~D 2 (z) P(k,0) + mass conservation Is this the best choice for 3 parameters? θ = f(ω) δ f = Velocity growth factor: tell us if gravity is really responsible for structure formation! Could also tell us about cosmological parameters or Modify Gravity 1 = σ(w0) σ(wa) σ(γ) Om - ODE - h - sig8 - Ob - w0 - wa -γ- ns - bias(z) need clustering

3 The role of Galaxy Bias Search of Cosmological parameters is hinder by BIAS! Options: A) Avoid BIAS: BAO, SNe, Cluster counts, WL and through away most information B) Understand Bias <==> Galaxy Formation Xtalk probes: combine different probes to measure bias together with other cosmological parameters

4 Workshop on Galaxy Bias: Non-linear, Non-local and Non-Gaussian here bias is: Linear and local Deterministic: r=1 Gaussian IC on linear scales: b(z, type) as a function of redshift (one bias per z-bin) and type first step (better than non!)

5 XTalks in Galaxy Clustering astro- ph: Galaxy Clustering (real) 2pt: 3D, lots of info but degenerate with bias: can measure linear shape, but not growth 2. Galaxy Clustering 3pt: 3D (break degeneracy?) 3. Weak Lensing: 2D (unbiased but degenerate & few 2D modes) 4. Redshift Space Distortions (can be used in to measure bias but 1D) 5. BAO: (unbiased but 1.5D) Combine probes: RSD + WL Cross-correlate probes: galaxy-lensing Combine Photometric & Spectroscopic Survey: sampling variance, photo-z accuracy

6 Photometric Sample (F) i ~ 24 2D weak lensing Δz = 0.03 FxB 100 Mpc/h 10000Km/s use WL & RSD to measure bias recover full 3D dm info Δz = Spectroscopic Sample (B) i ~ Mpc/h 1000Km/s

7 Anna Cabré s PhD Thesis arxiv: Crocce etal 2011 DR7 Errors from MICE sim 19 BAO: radial H(z) H(z=0.34) = 83.8 ±3.0± 1.6 EG, Cabre & Hui (2009) Transverse cdz/h(z) θ(z=0.34) = 3.90 ± 0.38 Carnero etal 2011

8 RSD in 2D Jacobo Asorey & MarOn Crocce arxiv: Adjacent bins (no photo- z outliers) 8

9 Martin Eriksen RSD and BAO in cross-correlations RSD in correlations. Text

10 RSD+WL: Same or different sky? Same Sky: factor of 2 less Area! but note that covariance <WLxRSD> ~ 0 while <FF BB> 0 Different Sky: no cross-correlations & no Covariance (smaller sampling variance, but no sampling variance cancelation) 1. Gaztanaga E., Eriksen M., Crocce M., Castander F. J.,Fosalba P., Marti P., Miquel R., Cabre A., astro- ph: Cai Y.-C., Bernstein G., astro- ph: Kirk D., Lahav O., Bridle S., Jouvel S., Abdalla F. B., Frieman J. A., astro- ph: Font-Ribera A., McDonald P., Mostek N., Reid B. A., Seo H.-J., Slosar A., astro- ph: de Putter R., Dore O., Takada M., astro- ph: D+3D Cov ~ 0 <g F g B > 0 2D, narrow bins, Limber FxB >> F+B 2 2D+3D Cov~ 0 <g F g B >=0 FxB > F+B 3 2D Cov 0 <g F g B >=0, no Limber FxB >> F+B 4 2D+3D Cov ~ 0 <g F g B > 0 2D, nl BAO FxB ~ F+B 5 2D+3D Cov ~ 0 <g F g B > 0 2D, nl BAO FxB ~ F+B 10

11 Forecast WL+RSD Nuisance parameters: one bias per z-bin & pop, photo-z transitions (rij, can be measured), noise (σ/n) Cosmological: Om - ODE - h - sig8 - Ob - w0 - wa - γ - ns - bias(z) shear-shear (2D):! <γ γ> galaxy-shear (2D need narrow bins) galaxy-galaxy (3D or narrow bins): <g γ> <g g> including BAO, RSD and WL magnification F= Faint (Photometric dz~0.05) sample: <γ F γ F >, <g F γ F >, <g F g F > B= Bright (Spectroscopic dz~0.003) sample: <γ B γ B >, <g B γ B >, <g B g B > F+B= No overlap => no cross <FB>=0 & no Covariance : <FF BB>=0 FxB= Overlaping => <FB> 0 & <FF BB> 0 11

12 New Forecast based on Exact calculavon with narrow 2D z- bins Martin Eriksen 12

13 Adding crosscorrelation between redshifts FoM increases as we add more cross-correlations zi-zj <Δz due to RSD and WL WL FoMωγ with shear Same sky (FxB) RSD without shear Martin Eriksen zi-zj < Δz max

14 Our new Exact Calculation Forecast: Martin Eriksen sq.deg. WLxG*+RSD+BAO (cross Cl: l<300 + Planck priors) F Photometric (DES iab<24) B Spectroscopic (PAU iab<22.5) F+B Combine both as Independent 2.6 / fix bias 38 no lens 0.03 /no BAO 2.0/no RSD / fix bias 44 no lens 4.1 /no BAO 4.3/no RSD / fix bias 157 no lens 4.7 /no BAO 13/no RSD 9 FxB CrossCorrelated over same Area *WLxG: shear-shear, galaxy-shear, galaxy-galaxy (including MAG) 32 /fix bias 189 no lens 5.9 /no BAO 22/no RSD 15 no cross FB: 26! FxB (no cross) > F+B

15 Martin Eriksen with shear Same sky (FxB)

16 Martin Eriksen without shear Same sky (FxB)

17 Error in bias for <FB>=0 (without cross-correlation) Compare cases: <FF BB>=0 with <FF BB> 0 (same sky) ratio relative to the case <FB> 0 and <FF BB> 0 <FF BB>=0 <FF BB>=0 Bright <FF BB>=0 Faint <FF BB> 0 Bright <FF BB> 0 Faint Including Covariance Reduces Error in F bias (but not in B bias) <FF BB> 0 Including Cross-correlation Reduces Error in F & B bias

18 Implications for Bias: Several ways to constrain a simple linear bias model: WL, RSD Can use 2D cross-correlations to combine (3D) RSD with WL Cross-correlations <FB> improve bias measurements (and FoM) F and B populations can reduce cosmic variance (RSD and ratio bias) F linear bias (from WL and counts) is better constrained, but B sample provide better FoM. The combination is best over the same sky. FoM (when bias is known) can be ~100 better than BAO or WL! Low radial accuracy (~20Mpc/h) for linear scales => PAU photo-z

19 THE END thank you! 19

LSS with angular cross-correlations: Combining Spectro and Photometric Survey. Enrique Gaztañaga SDSS. Cosmic Web galaxies

LSS with angular cross-correlations: Combining Spectro and Photometric Survey. Enrique Gaztañaga SDSS. Cosmic Web galaxies LSS with angular cross-correlations: Combining Spectro and Photometric Survey Enrique Gaztañaga SDSS Cosmic Web galaxies Goals: - Motivate use of Galaxy Surveys to understand DE - Introduce idea of 2D

More information

Cross talk in Cosmic Maps

Cross talk in Cosmic Maps Cross talk in Cosmic Maps Enrique Gaztañaga Bonvin Vernizzi Corasani: Casarini Bartelmann Reyes bottom line astro- ph:1109.4852 WHAT DATA COULD TELL US (ON LINEAR SCALES) More efficient way of using galaxy

More information

Measuring BAO using photometric redshift surveys.

Measuring BAO using photometric redshift surveys. Measuring BAO using photometric redshift surveys. Aurelio Carnero Rosell. E. Sanchez Alvaro, Juan Garcia-Bellido, E. Gaztanaga, F. de Simoni, M. Crocce, A. Cabre, P. Fosalba, D. Alonso. 10-08-10 Punchline

More information

Baryon acoustic oscillations A standard ruler method to constrain dark energy

Baryon acoustic oscillations A standard ruler method to constrain dark energy Baryon acoustic oscillations A standard ruler method to constrain dark energy Martin White University of California, Berkeley Lawrence Berkeley National Laboratory... with thanks to Nikhil Padmanabhan

More information

Are VISTA/4MOST surveys interesting for cosmology? Chris Blake (Swinburne)

Are VISTA/4MOST surveys interesting for cosmology? Chris Blake (Swinburne) Are VISTA/4MOST surveys interesting for cosmology? Chris Blake (Swinburne) Yes! Probes of the cosmological model How fast is the Universe expanding with time? How fast are structures growing within it?

More information

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey David Weinberg, Ohio State University Dept. of Astronomy and CCAPP Based partly on Observational Probes of Cosmic Acceleration

More information

Enhanced constraints from multi-tracer surveys

Enhanced constraints from multi-tracer surveys Enhanced constraints from multi-tracer surveys or How to beat cosmic variance Raul Abramo Physics Institute, USP & LabCosmos @ USP & J-PAS / Pau-Brasil Collaboration J-PAS Galaxy surveys are evolving We

More information

Results from the Baryon Oscillation Spectroscopic Survey (BOSS)

Results from the Baryon Oscillation Spectroscopic Survey (BOSS) Results from the Baryon Oscillation Spectroscopic Survey (BOSS) Beth Reid for SDSS-III/BOSS collaboration Hubble Fellow Lawrence Berkeley National Lab Outline No Ly-α forest here, but very exciting!! (Slosar

More information

WL and BAO Surveys and Photometric Redshifts

WL and BAO Surveys and Photometric Redshifts WL and BAO Surveys and Photometric Redshifts Lloyd Knox University of California, Davis Yong-Seon Song (U Chicago) Tony Tyson (UC Davis) and Hu Zhan (UC Davis) Also: Chris Fassnacht, Vera Margoniner and

More information

LSST Cosmology and LSSTxCMB-S4 Synergies. Elisabeth Krause, Stanford

LSST Cosmology and LSSTxCMB-S4 Synergies. Elisabeth Krause, Stanford LSST Cosmology and LSSTxCMB-S4 Synergies Elisabeth Krause, Stanford LSST Dark Energy Science Collaboration Lots of cross-wg discussions and Task Force hacks Junior involvement in talks and discussion Three

More information

Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering. Roland de Pu+er JPL/Caltech COSMO- 14

Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering. Roland de Pu+er JPL/Caltech COSMO- 14 Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering Roland de Pu+er JPL/Caltech COSMO- 14 Galaxy Clustering: - 3D maps of galaxies - > 3D power spectrum P(k,mu) - BOSS: V = 4.4 (h-

More information

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14 Signatures of MG on non- linear scales Fabian Schmidt MPA Garching Lorentz Center Workshop, 7/15/14 Tests of gravity Smooth Dark Energy (DE): unique prediction for growth factor given w(a) Use evolution

More information

Target Selection for future spectroscopic surveys (DESpec) Stephanie Jouvel, Filipe Abdalla, With DESpec target selection team.

Target Selection for future spectroscopic surveys (DESpec) Stephanie Jouvel, Filipe Abdalla, With DESpec target selection team. Target Selection for future spectroscopic surveys (DESpec) Stephanie Jouvel, Filipe Abdalla, With DESpec target selection team. 1 1 Outline: Scientific motivation (has an impact on how to select targets...)

More information

Shear Power of Weak Lensing. Wayne Hu U. Chicago

Shear Power of Weak Lensing. Wayne Hu U. Chicago Shear Power of Weak Lensing 10 3 N-body Shear 300 Sampling errors l(l+1)c l /2π εε 10 4 10 5 Error estimate Shot Noise θ y (arcmin) 200 100 10 6 100 1000 l 100 200 300 θ x (arcmin) Wayne Hu U. Chicago

More information

Diving into precision cosmology and the role of cosmic magnification

Diving into precision cosmology and the role of cosmic magnification Diving into precision cosmology and the role of cosmic magnification Jose Luis Bernal Institute of Cosmos Science - Barcelona University ICC Winter Meeting 2017 06/02/2017 Jose Luis Bernal (ICCUB) ICC

More information

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Eva-Maria Mueller Work in collaboration with Rachel Bean, Francesco De Bernardis, Michael Niemack (arxiv 1408.XXXX, coming out tonight)

More information

Mapping the dark universe with cosmic magnification

Mapping the dark universe with cosmic magnification Mapping the dark universe with cosmic magnification 张鹏杰 Zhang, Pengjie 中科院上海天文台 Shanghai Astronomical Observatory (SHAO) Chinese Academy of Sciences All the hard works are done by my student Yang Xinjuan

More information

Figures of Merit for Dark Energy Measurements

Figures of Merit for Dark Energy Measurements Figures of Merit for Dark Energy Measurements Dragan Huterer Department of Physics University of Michigan What next for Dark Energy? Theory Model Building Which flavor of DE? Experiment Systematics control

More information

Testing General Relativity with Redshift Surveys

Testing General Relativity with Redshift Surveys Testing General Relativity with Redshift Surveys Martin White University of California, Berkeley Lawrence Berkeley National Laboratory Information from galaxy z-surveys Non-Gaussianity? BOSS Redshi' Survey

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

Cosmology with high (z>1) redshift galaxy surveys

Cosmology with high (z>1) redshift galaxy surveys Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong Texas Cosmology Center and Astronomy Department University of Texas at Austin Ph. D. thesis defense talk, 17 May 2010 Cosmology with HETDEX

More information

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing 2017/7/14 13th Rencontres du Vietnam: Cosmology Ken Osato Dept. of Physics,

More information

EUCLID Cosmology Probes

EUCLID Cosmology Probes EUCLID Cosmology Probes Henk Hoekstra & Will Percival on behalf of the EUCLID The presented document is Proprietary information of the. This document shall be used and disclosed by the receiving Party

More information

Science from overlapping lensing / spec-z surveys. Chris Blake (Swinburne)

Science from overlapping lensing / spec-z surveys. Chris Blake (Swinburne) Science from overlapping lensing / spec-z surveys Chris Blake (Swinburne) Probes of the cosmological model How fast is the Universe expanding with time? How fast are structures growing within it? Redshift-space

More information

Constraining Source Redshift Distributions with Angular Cross Correlations

Constraining Source Redshift Distributions with Angular Cross Correlations Constraining Source Redshift Distributions with Angular Cross Correlations Matt McQuinn (UC Berkeley) in collaboration w/ Martin White arxiv:1302.0857 Technique: Using spatial clustering to measure source

More information

Measuring Neutrino Masses and Dark Energy

Measuring Neutrino Masses and Dark Energy Huitzu Tu UC Irvine June 7, 2007 Dark Side of the Universe, Minnesota, June 5-10 2007 In collaboration with: Steen Hannestad, Yvonne Wong, Julien Lesgourgues, Laurence Perotto, Ariel Goobar, Edvard Mörtsell

More information

Large Scale Structure with the Lyman-α Forest

Large Scale Structure with the Lyman-α Forest Large Scale Structure with the Lyman-α Forest Your Name and Collaborators Lecture 1 - The Lyman-α Forest Andreu Font-Ribera - University College London Graphic: Anze Slozar 1 Large scale structure The

More information

Lambda or Dark Energy or Modified Gravity?

Lambda or Dark Energy or Modified Gravity? Lambda or Dark Energy or Modified Gravity? Dragan Huterer Department of Physics University of Michigan Evidence for Dark Energy Theory Model Building Which flavor of DE? Experiment Systematics control

More information

EUCLID galaxy clustering and weak lensing at high redshift

EUCLID galaxy clustering and weak lensing at high redshift EUCLID galaxy clustering and weak lensing at high redshift Luca Amendola INAF/Osservatorio Astronomico di Roma Observations are converging to an unexpected universe The dark energy problem F g μν 1 R μν

More information

Science with large imaging surveys

Science with large imaging surveys Science with large imaging surveys Hiranya V. Peiris University College London Science from LSS surveys: A case study of SDSS quasars Boris Leistedt (UCL) with Daniel Mortlock (Imperial) Aurelien Benoit-Levy

More information

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK Recent BAO observations and plans for the future David Parkinson University of Sussex, UK Baryon Acoustic Oscillations SDSS GALAXIES CMB Comparing BAO with the CMB CREDIT: WMAP & SDSS websites FLAT GEOMETRY

More information

Baryon Acoustic Oscillations Part I

Baryon Acoustic Oscillations Part I Baryon Acoustic Oscillations Part I Yun Wang (on behalf of the Euclid collaboration) ESTEC, November 17, 2009 Outline Introduction: BAO and galaxy clustering BAO as a standard ruler BAO as a robust dark

More information

Gravitational Lensing of the CMB

Gravitational Lensing of the CMB Gravitational Lensing of the CMB SNAP Planck 1 Ω DE 1 w a.5-2 -1.5 w -1 -.5 Wayne Hu Leiden, August 26-1 Outline Gravitational Lensing of Temperature and Polarization Fields Cosmological Observables from

More information

Cosmology with weak-lensing peak counts

Cosmology with weak-lensing peak counts Durham-Edinburgh extragalactic Workshop XIV IfA Edinburgh Cosmology with weak-lensing peak counts Chieh-An Lin January 8 th, 2018 Durham University, UK Outline Motivation Why do we study WL peaks? Problems

More information

Some issues in cluster cosmology

Some issues in cluster cosmology Some issues in cluster cosmology Tim McKay University of Michigan Department of Physics 1/30/2002 CFCP Dark Energy Workshop 1 An outline Cluster counting in theory Cluster counting in practice General

More information

RCSLenS galaxy cross-correlations with WiggleZ and BOSS

RCSLenS galaxy cross-correlations with WiggleZ and BOSS RCSLenS galaxy cross-correlations with WiggleZ and BOSS Chris Blake, 24 June 2013 1 Scope The scope of this investigation is to measure the cross-correlation between RCSLenS shapes (two-thirds of which

More information

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias Hao-Yi Wu University of Michigan Galaxies are not necessarily test particles Probing dark energy with growth

More information

The shapes of faint galaxies: A window unto mass in the universe

The shapes of faint galaxies: A window unto mass in the universe Lecture 15 The shapes of faint galaxies: A window unto mass in the universe Intensity weighted second moments Optimal filtering Weak gravitational lensing Shear components Shear detection Inverse problem:

More information

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on Precision Cosmology With Large Scale Structure, Ohio State University ICTP Cosmology Summer School 2015 Lecture 3: Observational Prospects I have cut this lecture back to be mostly about BAO because I

More information

Large Imaging Surveys for Cosmology:

Large Imaging Surveys for Cosmology: Large Imaging Surveys for Cosmology: cosmic magnification AND photometric calibration Alexandre Boucaud Thesis work realized at APC under the supervision of James G. BARTLETT and Michel CRÉZÉ Outline Introduction

More information

eboss Lyman-α Forest Cosmology

eboss Lyman-α Forest Cosmology Moriond Cosmology Conference, La Thuile, 18th March 2018 eboss Lyman-α Forest Cosmology Matthew Pieri and BOSS & eboss Lyα Working Groups Quasar Spectra and Lyman α Forest Quasar Intergalactic medium Line-of-sight

More information

LSS: Achievements & Goals. John Peacock Munich 20 July 2015

LSS: Achievements & Goals. John Peacock Munich 20 July 2015 LSS: Achievements & Goals John Peacock LSS @ Munich 20 July 2015 Outline (pre-)history and empirical foundations The ΛCDM toolkit Open issues and outlook Fundamentalist Astrophysical A century of galaxy

More information

New Probe of Dark Energy: coherent motions from redshift distortions Yong-Seon Song (Korea Institute for Advanced Study)

New Probe of Dark Energy: coherent motions from redshift distortions Yong-Seon Song (Korea Institute for Advanced Study) New Probe of Dark Energy: coherent motions from redshift distortions Yong-Seon Song (Korea Institute for Advanced Study) 1 Future wide-deep surveys Photometric wide-deep survey Spectroscopic wide-deep

More information

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Yun Wang Univ. of Oklahoma II Jayme Tiomno School of Cosmology August 6-10, 2012 Plan of the Lectures Lecture I: Overview

More information

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli Coupled Dark University of Rome La Sapienza Roma, October 28th 2011 Outline 1 2 3 4 5 1 2 3 4 5 Accelerated Expansion Cosmological data agree with an accelerated expansion of the Universe d L [Mpc] 16000

More information

Cosmology with Peculiar Velocity Surveys

Cosmology with Peculiar Velocity Surveys Cosmology with Peculiar Velocity Surveys Simulations Fest, Sydney 2011 Morag I Scrimgeour Supervisors: Lister Staveley-Smith, Tamara Davis, Peter Quinn Collaborators: Chris Blake, Brian Schmidt What are

More information

ITP, Universität Heidelberg Jul Weak Lensing of SNe. Marra, Quartin & Amendola ( ) Quartin, Marra & Amendola ( ) Miguel Quartin

ITP, Universität Heidelberg Jul Weak Lensing of SNe. Marra, Quartin & Amendola ( ) Quartin, Marra & Amendola ( ) Miguel Quartin ITP, Universität Heidelberg Jul 2013 Measuring σ8 with Weak Lensing of SNe Marra, Quartin & Amendola (1304.7689) Quartin, Marra & Amendola (1307.1155) Miguel Quartin Instituto de Física Univ. Federal do

More information

EUCLID Spectroscopy. Andrea Cimatti. & the EUCLID-NIS Team. University of Bologna Department of Astronomy

EUCLID Spectroscopy. Andrea Cimatti. & the EUCLID-NIS Team. University of Bologna Department of Astronomy EUCLID Spectroscopy Andrea Cimatti University of Bologna Department of Astronomy & the EUCLID-NIS Team Observing the Dark Universe with EUCLID, ESA ESTEC, 17 November 2009 DARK Universe (73% Dark Energy

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

THE PAU (BAO) SURVEY. 1 Introduction

THE PAU (BAO) SURVEY. 1 Introduction THE PAU (BAO) SURVEY E. Fernández Department of Physics, Universitat Autònoma de Barcelona/IFAE, Campus UAB, Edif. Cn, 08193 Bellaterra, Barcelona, Spain In this talk we present a proposal for a new galaxy

More information

RADIO-OPTICAL-cmb SYNERGIES. Alkistis Pourtsidou ICG Portsmouth

RADIO-OPTICAL-cmb SYNERGIES. Alkistis Pourtsidou ICG Portsmouth RADIO-OPTICAL-cmb SYNERGIES Alkistis Pourtsidou ICG Portsmouth Image credit: Hayden Planetarium, 2014 New Frontiers in Observational Cosmology [Planck 2015] 95% of our Universe is very strange - new physics!

More information

Angular power spectra and correlation functions Notes: Martin White

Angular power spectra and correlation functions Notes: Martin White Introduction Angular power spectra and correlation functions Notes: Martin White An action item on the last telecon was for me to prepare some background on angular clustering. I slightly enlarged upon

More information

CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case!

CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case! CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case! X Blake D. Sherwin Einstein Fellow, LBNL Outline! I. Brief Introduction: CMB lensing + LSS as probes of growth of structure II.

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501.

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501. CONSTRAINTS AND TENSIONS IN MG PARAMETERS FROM PLANCK, CFHTLENS AND OTHER DATA SETS INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS arxiv:1501.03119 1 Mustapha Ishak The University of Texas at Dallas Jason

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

From quasars to dark energy Adventures with the clustering of luminous red galaxies

From quasars to dark energy Adventures with the clustering of luminous red galaxies From quasars to dark energy Adventures with the clustering of luminous red galaxies Nikhil Padmanabhan 1 1 Lawrence Berkeley Labs 04-15-2008 / OSU CCAPP seminar N. Padmanabhan (LBL) Cosmology with LRGs

More information

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence Antony Lewis http://cosmologist.info/ Evolution of the universe Opaque Transparent Hu & White, Sci. Am., 290 44 (2004) CMB temperature

More information

Dark Energy Survey. Josh Frieman DES Project Director Fermilab and the University of Chicago

Dark Energy Survey. Josh Frieman DES Project Director Fermilab and the University of Chicago Dark Energy Survey Josh Frieman DES Project Director Fermilab and the University of Chicago Seeing the Big Picture: DECam Community Workshop Tucson, August 2011 www.darkenergysurvey.org Dark Energy What

More information

Approximate Bayesian computation: an application to weak-lensing peak counts

Approximate Bayesian computation: an application to weak-lensing peak counts STATISTICAL CHALLENGES IN MODERN ASTRONOMY VI Approximate Bayesian computation: an application to weak-lensing peak counts Chieh-An Lin & Martin Kilbinger SAp, CEA Saclay Carnegie Mellon University, Pittsburgh

More information

The Degeneracy of Dark Energy and Curvature

The Degeneracy of Dark Energy and Curvature The Degeneracy of Dark Energy and Curvature Department of Physics and Astronomy, UWC, Cape Town Department of MAM, UCT, Cape Town PhD student: Amadeus Witzemann Collaborators: Philip Bull, HIRAX coll.

More information

Morphology and Topology of the Large Scale Structure of the Universe

Morphology and Topology of the Large Scale Structure of the Universe Morphology and Topology of the Large Scale Structure of the Universe Stephen Appleby KIAS Research Fellow Collaborators Changbom Park, Juhan Kim, Sungwook Hong The 6th Survey Science Group Workshop 28th

More information

Precision Cosmology from Redshift-space galaxy Clustering

Precision Cosmology from Redshift-space galaxy Clustering 27th June-1st July, 2011 WKYC2011@KIAS Precision Cosmology from Redshift-space galaxy Clustering ~ Progress of high-precision template for BAOs ~ Atsushi Taruya RESearch Center for the Early Universe (RESCEU),

More information

Warm dark matter with future cosmic shear data

Warm dark matter with future cosmic shear data Workshop CIAS Meudon, Tuesday, June 7, 2011 Warm dark matter with future cosmic shear data Katarina Markovic (University Observatory Munich) markovic@usm.lmu.de in collaboration with Jochen Weller and

More information

Fisher Matrix Analysis of the Weak Lensing Spectrum

Fisher Matrix Analysis of the Weak Lensing Spectrum Fisher Matrix Analysis of the Weak Lensing Spectrum Manuel Rabold Institute for Theoretical Physics, University of Zurich Fisher Matrix Analysis of the Weak Lensing Spectrum Manuel Rabold Aarhus University,

More information

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS.

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. CONSTRAINTS AND TENSIONS IN MG PARAMETERS FROM PLANCK, CFHTLENS AND OTHER DATA SETS INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS 1 Mustapha Ishak The University of Texas at Dallas Jason Dossett INAF Osservatorio

More information

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Modified gravity. Kazuya Koyama ICG, University of Portsmouth Modified gravity Kazuya Koyama ICG, University of Portsmouth Cosmic acceleration Cosmic acceleration Big surprise in cosmology Simplest best fit model LCDM 4D general relativity + cosmological const. H

More information

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering Alison Coil UCSD Talk Outline 1. Brief review of what we know about galaxy clustering from observations 2.

More information

Mapping Dark Matter with the Dark Energy Survey

Mapping Dark Matter with the Dark Energy Survey Mapping Dark Matter with the Dark Energy Survey Tim Eifler On behalf of many people in the DES collaboration DaMaSC IV: Beyond WIMP Dark Matter Aug. 30, 2017 Disclaimer DES has recently published Year

More information

arxiv: v1 [astro-ph.co] 3 Apr 2019

arxiv: v1 [astro-ph.co] 3 Apr 2019 Forecasting Cosmological Bias due to Local Gravitational Redshift Haoting Xu, Zhiqi Huang, Na Zhang, and Yundong Jiang School of Physics and Astronomy, Sun Yat-sen University, 2 Daxue Road, Tangjia, Zhuhai,

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland Neutrino Mass & the Lyman-α Forest Kevork Abazajian University of Maryland INT Workshop: The Future of Neutrino Mass Measurements February 9, 2010 Dynamics: the cosmological density perturbation spectrum

More information

Dark Energy Survey: Year 1 results summary

Dark Energy Survey: Year 1 results summary Dark Energy Survey: Year 1 results summary The DES Collabora:on Ignacio Sevilla- Noarbe (CIEMAT) V Fundamental Cosmology Mee:ng Teruel 2017 The Dark Energy Survey has recently released various results

More information

Present and future redshift survey David Schlegel, Berkeley Lab

Present and future redshift survey David Schlegel, Berkeley Lab Present and future redshift survey David Schlegel, Berkeley Lab David Schlegel, COSMO-17 @Paris, 30 Aug 2017 1 Redshift surveys = one of ~few probes of inflationary epoch Inflation-era parameters: non-gaussianity,

More information

Lensing with KIDS. 1. Weak gravitational lensing

Lensing with KIDS. 1. Weak gravitational lensing Lensing with KIDS studying dark matter and dark energy with light rays Konrad Kuijken Leiden Observatory Outline: 1. Weak lensing introduction 2. The KIDS survey 3. Galaxy-galaxy lensing (halos) 4. Cosmic

More information

Signatures of Cosmic Reionization on the 21cm 3-Point Correlation

Signatures of Cosmic Reionization on the 21cm 3-Point Correlation Tsinghua Center for Astrophysics (Beijing) Signatures of Cosmic Reionization on the 21cm 3-Point Correlation Kai Hoffmann collaborators: Yi Mao, Houjun Mo, Benjamin D. Wandelt Motivation 21cm clustering

More information

Cosmological Perturbation Theory

Cosmological Perturbation Theory Cosmological Perturbation Theory! Martin Crocce! Institute for Space Science, Barcelona! Cosmology School in Canary Islands, Fuerteventura 18/09/2017 Why Large Scale Structure? Number of modes in CMB (temperature)

More information

Exploring Dark Energy

Exploring Dark Energy Lloyd Knox & Alan Peel University of California, Davis Exploring Dark Energy With Galaxy Cluster Peculiar Velocities Exploring D.E. with cluster v pec Philosophy Advertisement Cluster velocity velocity

More information

Weak Gravitational Lensing

Weak Gravitational Lensing Weak Gravitational Lensing Sofia Sivertsson October 2006 1 General properties of weak lensing. Gravitational lensing is due to the fact that light bends in a gravitational field, in the same fashion as

More information

Euclid cosmological simulations WG: the Flagship mock

Euclid cosmological simulations WG: the Flagship mock Euclid cosmological simulations WG: the Flagship mock P.Fosalba (ICE, CSIC) on behalf of the CosmoSim-SWG Simulated Skies meeting, Madrid, April 2018 1 CosmoSim-SWG in a nutshell Objectives: Develop simulations

More information

Testing gravity. Camille Bonvin Kavli Institute for Cosmology and DAMTP Cambridge

Testing gravity. Camille Bonvin Kavli Institute for Cosmology and DAMTP Cambridge Testing gravity Camille Bonvin Kavli Institute for Cosmology and DAMTP Cambridge Non-Linear Structure in the Modified Universe Lorentz Center Leiden July 2014 Testing gravity with relativistic effects

More information

Cosmological Tests of Gravity

Cosmological Tests of Gravity Cosmological Tests of Gravity Levon Pogosian Simon Fraser University, Canada VIA Lecture, 16 May, 2014 Workshop on Testing Gravity at SFU Harbour Centre January 15-17, 2015 Alternative theories of gravity

More information

Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy

Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy Changbom Park (Korea Institute for Advanced Study) with Xiao-Dong Li, Juhan Kim (KIAS), Sungwook Hong, Cris Sabiu, Hyunbae

More information

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch. Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS In collaboration with: Marcello Cacciato (Leiden), Surhud More (IPMU), Houjun Mo (UMass), Xiaohu Yang

More information

The angular homogeneity scale of the Universe

The angular homogeneity scale of the Universe The angular homogeneity scale of the Universe Alicia Bueno Belloso ITP, Heidelberg Work in collaboration with: David Alonso, Juan García-Bellido, Eusebio Sánchez and Javier Sánchez in preparation 2 nd

More information

Relativistic effects in large-scale structure

Relativistic effects in large-scale structure Relativistic effects in large-scale structure Camille Bonvin Kavli Institute for Cosmology and DAMTP Cambridge Benasque August 2014 Outline How do relativistic effects distort our observables? Effect on:

More information

The Dark Energy Spectrometer (DESpec): A Multi-Fiber Spectroscopic Upgrade of the Dark Energy Camera and Survey for the Blanco Telescope

The Dark Energy Spectrometer (DESpec): A Multi-Fiber Spectroscopic Upgrade of the Dark Energy Camera and Survey for the Blanco Telescope The Dark Energy Spectrometer (DESpec): A Multi-Fiber Spectroscopic Upgrade of the Dark Energy Camera and Survey for the Blanco Telescope September 11, 2012 Authors: F. Abdalla (1), J. Annis (2), D. Bacon

More information

Introduction to CosmoMC

Introduction to CosmoMC Introduction to CosmoMC Part I: Motivation & Basic concepts Institut de Ciències del Cosmos - Universitat de Barcelona Dept. de Física Teórica y del Cosmos, Universidad de Granada, 1-3 Marzo 2016 What

More information

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK Large-scale structure as a probe of dark energy David Parkinson University of Sussex, UK Question Who was the greatest actor to portray James Bond in the 007 movies? a) Sean Connery b) George Lasenby c)

More information

Elise Jennings University of Chicago

Elise Jennings University of Chicago Pacific 2014 Testing gravity with large scale structure dynamics Elise Jennings University of Chicago THE UNIVERSITY OF CHICAGO THE ENRICO FERMI INSTITUTE EJ, B. Li, C.M. Baugh, G. Zhao, K. Kazuya 2013

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Measuring Baryon Acoustic Oscillations with Angular Two-Point Correlation Function

Measuring Baryon Acoustic Oscillations with Angular Two-Point Correlation Function Measuring Baryon Acoustic Oscillations with Angular Two-Point Correlation Function Jailson S. Alcaniz, Gabriela C. Carvalho, Armando Bernui, Joel C. Carvalho and Micol Benetti Abstract The Baryon Acoustic

More information

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK Millennium simulation of the cosmic web MEASUREMENTS OF THE LINEAR BIAS OF RADIO GALAXIES USING CMB LENSING FROM PLANCK Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle

More information

Énergie noire Formation des structures. N. Regnault C. Yèche

Énergie noire Formation des structures. N. Regnault C. Yèche Énergie noire Formation des structures N. Regnault C. Yèche Outline Overview of DE probes (and recent highlights) Hubble Diagram of supernovae Baryon accoustic oscillations Lensing Matter clustering (JLA)

More information

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models Modified gravity as an alternative to dark energy Lecture 3. Observational tests of MG models Observational tests Assume that we manage to construct a model How well can we test the model and distinguish

More information

BAO errors from past / future surveys. Reid et al. 2015, arxiv:

BAO errors from past / future surveys. Reid et al. 2015, arxiv: BAO errors from past / future surveys Reid et al. 2015, arxiv:1509.06529 Dark Energy Survey (DES) New wide-field camera on the 4m Blanco telescope Survey started, with first year of data in hand Ω = 5,000deg

More information

Primordial Non-Gaussianity and Galaxy Clusters

Primordial Non-Gaussianity and Galaxy Clusters Primordial Non-Gaussianity and Galaxy Clusters Dragan Huterer (University of Michigan) Why study non-gaussianity (NG)? 1. NG presents a window to the very early universe (t~10-35 seconds after Big Bang).

More information

Precise measurement of the radial BAO scale in galaxy redshift surveys

Precise measurement of the radial BAO scale in galaxy redshift surveys Precise measurement of the radial BAO scale in galaxy redshift surveys David Alonso (Universidad Autónoma de Madrid - IFT) Based on the work arxiv:1210.6446 In collaboration with: E. Sánchez, F. J. Sánchez,

More information