Measuring Neutrino Masses and Dark Energy

Size: px
Start display at page:

Download "Measuring Neutrino Masses and Dark Energy"

Transcription

1 Huitzu Tu UC Irvine June 7, 2007 Dark Side of the Universe, Minnesota, June In collaboration with: Steen Hannestad, Yvonne Wong, Julien Lesgourgues, Laurence Perotto, Ariel Goobar, Edvard Mörtsell

2 Motivation Era of precision cosmology: CMB, LSS, SNIa,... Neutrino masses? (0.056 (0.095) ev < m ν < ev, vs 6 ev from lab) Dark energy? (w 1, Ω X 0.7, w(z)?) Breaking the ( m ν,w) degeneracy Baryon acoustic oscillations detected by SDSS Weak lensing (tomography): CFHTLS, SNAP, LSST,... Other observations

3 Neutrino Mass Effects Present matter density: Ω ν h 2 Slow down fluctuation growth: P mν 93.2 ev P lin (k)/p lin (k) 8 Ω ν /Ω m at k k nr [Hu,Eisenstein,Tegmark 97] Late time infall into CDM halos: ρ halo (r, M, z) P nl (k)/p nl (k) 1% at k 1 h Mpc 1 [Abazajian et al. 04; Hannestad,Ringwald, HT,Wong 05]

4 Neutrino Mass Effects (II) no ν s f ν =0 f ν = l(l+1) C l / 2π (µk) P(k) (Mpc/h) no ν s f ν =0 f ν = l k (h/mpc) 10-1 [Lesgourgues,Pastor 06] [Hannestad,HT,Wong 05]

5 Dark Energy Effects Redshift-distance relation: [ [ H 2 (z) = H0 2 Ω m (1 + z) 3 + Ω X exp 3 ]] z 0 dz 1+w(z ) 1+z Structure growth suppression: 2 d2 g d ln a 2 + [5 3 w(a)ω X (a)] for the growth function D(a) = ag(a) dg d ln a + 3 [1 w(a)] Ω X(a)g(a) = 0 Degeneracy with m ν : due to (w X, Ω X ) and ( m ν, Ω m = 1 Ω X ) Baryon Acoustic Oscillations Weak gravitational lensing w SNLS 1st Year BAO Ω M

6 Baryon Acoustic Oscillations (BAO) Oscillations in the photon-baryon fluid before recombination [Peeble,Yu 70;...] Sound horizon at recombination r s (η rec ) 147 Mpc (Ω m h 2 /0.13) 0.25 (Ω b h 2 /0.024) 0.08 Standard ruler : r = z/h(z), r = (1 + z)d A (z) θ [Spergel et al. 06] [Tegmark et al. 06]

7 BAO (II): SDSS Detection in Galaxy Correlation Function ξ( r) δ( x) δ( x + r) ξ(r) = 1 R dk P(k) (2π) 3 sin kr 4πk 2 kr SDSS constraints on dark energy: [Eisenstein et al. 05] parameter WMAP+Main WMAP+LRG w (constant) 0.92 ± ± 0.18 With massive neutrinos we found at z = 0.35 [Goobar,Hannestad,Mörtsell,HT 06] A D V (z) ΩmH 2 0 cz = ( n 0.98) 0.35 ( Ων /Ω m ) ± [Eisenstein et al. 05]

8 Our Current Bounds on m ν : 2 models 11 parameters: ( Ω m, h, Ω b h 2, N ν, w X, n s, α s, τ, Q, b, ) m ν Data mν (95% C.L.) 1: CMB, LSS, SNIa 1.72 ev 2. CMB, LSS, SNIa, BAO 0.62 ev 3. CMB, LSS, SNIa, Ly-α 0.83 ev 4. CMB, LSS, SNIa, BAO, Ly-α 0.49 ev 8 parameters: (..., w X = 1, α s = 0, N ν = 3) Data mν (95% C.L.) 1: CMB, LSS, SNIa 0.70 ev 2. CMB, LSS, SNIa, BAO 0.48 ev 3. CMB, LSS, SNIa, Ly-α 0.35 ev 4. CMB, LSS, SNIa, BAO, Ly-α 0.27 ev [Goobar,Hannestad,Mörtsell,HT 06]

9 Future BAO Surveys Statistical errors σ P P (k) 2π Large volume ( 1 Gpc 3 ) 1 V surveyk 2 k ( ) n P(k) Aim at high redshifts still in linear regime Need spectroscopic redshifts (otherwise 20 larger area) With redshift slicing (5-7 slices, 1 < z < 3) w(z) WFMOS, HETDEX, JEDI, LSST, VADER (?)... Constraints on dark energy: σ(w 0 ) 10% and σ(w 1 ) 20% [Glazebrook,Blake 05; Wang 06;...] Constraints on neutrino masses: a full MCMC to be done [Hannestad,Lesgourgues,Perotto,HT,Wong, in preparation] Model/scenario comparison: with H(z) and D A (z) data [Goobar,Hannestad,Mörtsell,HT]

10 Future BAO Surveys (II) Dependence on fiducial model Sensitivity comparison to weak lensing [LSST Collaboration,

11 Gravitational Weak Lensing (Tomography) Convergence power spetrum C ij l = 9 16 H4 0 Ω2 m χh 0 dχ g i(χ)g j (χ) P( l a 2 χ 2 χ,z) (0.7, -1) (0.7, -1.2) (0.65, -1) (0.65, -1.2)

12 WL Systematics Photometric redshift uncertainties 0.05 n i(z) = R zi+1 ph dz z ph i ph n gal (z)p(z ph z) σ z,z bias [Ma,Hu,Huterer 05] Shear calibration [STEP: Heymans et al. 05] Multiplicative errors 1 2% Ĉ ij l = C ij l (1 + fi + fj) [Huterer,Takada,Bernstein,Jain 05] Additive errors 10 4 Ĉ ij l = C ij l + Cadd l Nonlinear corrections to matter power spectrum 5 10% halo model P nl (k) [Seljak 00; Ma,Fry 00; Smith et al. 03]

13 Our Analysis: Parameters and Surveys WL tomography with 1,3,5,8 bins, 0 < z < 3 Fiducial cosmological model (11 parameters): (w 0 = 1, w a = 0, m ν = 0.07 ev, N eff = 3, Ω c h 2 = , Ω DE = 0.7, Ω b h 2 = , n s = 1, α s = 0, τ = 0.05, σ 8 = 0.9) Systematics: priors on σ z = 0.05 and z bias = 0, f i = 0 Generic WL survey parameters: f sky z 0 γ rms n gal (arcmin 2 ) Wide, LSST-like Deep, SNAP-like

14 Error Forecast for m ν and w WL tomography (wide) + Planck Model Cosmological probes σ( P m ν) 11 parameters Planck only 0.48 ev 11 parameters Planck+Wide ev 11 parameters Planck+Wide ev 7 parameters Planck+Wide ev 7 parameters Planck+Wide ev Planck + Wide-1 + Wide-5 σ(w 0) σ(w a) [Hannestad,Tu,Wong 06]

15 Summary Breaking ( m ν, w) degeneracy m ν from WMAP3 + LSS + SNIa + BAO Future WL tomography constraints: σ( m ν ) = ev CMB lensing σ( m ν ) 0.15 ev (Planck) Cosmological observations pin down m ν to < 0.1 ev, distinguish between normal hierarchy and inverted hierarchy σ(w 0 ) 10%, σ(w a ) 20% from future BAO σ(w 0 ) 3.5%, σ(w a ) 8% from future WL with 5 bins

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 NEUTRINO COSMOLOGY n e n m n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 LIMITS ON THE PROPERTIES OF LIGHT NEUTRINOS FROM COSMOLOGICAL DATA THE MASS OF THE ACTIVE SPECIES BOUNDS ON OTHER

More information

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 NEUTRINO COSMOLOGY ν e ν µ ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 OUTLINE A BRIEF REVIEW OF PRESENT COSMOLOGICAL DATA BOUNDS ON THE NEUTRINO MASS STERILE NEUTRINOS WHAT IS TO COME

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

Cosmological neutrinos

Cosmological neutrinos Cosmological neutrinos Yvonne Y. Y. Wong CERN & RWTH Aachen APCTP Focus Program, June 15-25, 2009 2. Neutrinos and structure formation: the linear regime Relic neutrino background: Temperature: 4 T,0 =

More information

Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample

Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample BOMEE LEE 1. Brief Introduction about BAO In our previous class we learned what is the Baryon Acoustic Oscillations(BAO).

More information

Neutrinos and cosmology

Neutrinos and cosmology Neutrinos and cosmology Yvonne Y. Y. Wong RWTH Aachen LAUNCH, Heidelberg, November 9--12, 2009 Relic neutrino background: Temperature: 4 T,0 = 11 Origin of density perturbations? 1 /3 T CMB, 0=1.95 K Number

More information

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland Neutrino Mass & the Lyman-α Forest Kevork Abazajian University of Maryland INT Workshop: The Future of Neutrino Mass Measurements February 9, 2010 Dynamics: the cosmological density perturbation spectrum

More information

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Yun Wang Univ. of Oklahoma II Jayme Tiomno School of Cosmology August 6-10, 2012 Plan of the Lectures Lecture I: Overview

More information

Determining neutrino masses from cosmology

Determining neutrino masses from cosmology Determining neutrino masses from cosmology Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia NuFact 2013, Beijing, August 19 24, 2013 The cosmic neutrino background... Embedding the

More information

Massive neutrinos and cosmology

Massive neutrinos and cosmology Massive neutrinos and cosmology Yvonne Y. Y. Wong RWTH Aachen Theory colloquium, Padova, November 18, 2009 Relic neutrino background: Temperature: 4 T,0 = 11 Origin of density perturbations? 1 /3 T CMB,

More information

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004 NeoClassical Probes in of the Dark Energy Wayne Hu COSMO04 Toronto, September 2004 Structural Fidelity Dark matter simulations approaching the accuracy of CMB calculations WMAP Kravtsov et al (2003) Equation

More information

BAO and Lyman-α with BOSS

BAO and Lyman-α with BOSS BAO and Lyman-α with BOSS Nathalie Palanque-Delabrouille (CEA-Saclay) BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass

More information

Results from the Baryon Oscillation Spectroscopic Survey (BOSS)

Results from the Baryon Oscillation Spectroscopic Survey (BOSS) Results from the Baryon Oscillation Spectroscopic Survey (BOSS) Beth Reid for SDSS-III/BOSS collaboration Hubble Fellow Lawrence Berkeley National Lab Outline No Ly-α forest here, but very exciting!! (Slosar

More information

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on Observational cosmology: Large scale structure Filipe B. Abdalla Kathleen Lonsdale Building G.22 http://zuserver2.star.ucl.ac.uk/~hiranya/phas3136/phas3136 Large Scale Structure After these lectures, you

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

Neutrinos in Cosmology (IV)

Neutrinos in Cosmology (IV) Neutrinos in Cosmology (IV) Sergio Pastor (IFIC Valencia) Cinvestav 8-12 June 2015 Outline Prologue: the physics of (massive) neutrinos IntroducBon: neutrinos and the history of the Universe Basics of

More information

Baryon acoustic oscillations A standard ruler method to constrain dark energy

Baryon acoustic oscillations A standard ruler method to constrain dark energy Baryon acoustic oscillations A standard ruler method to constrain dark energy Martin White University of California, Berkeley Lawrence Berkeley National Laboratory... with thanks to Nikhil Padmanabhan

More information

arxiv:astro-ph/ v1 7 Feb 2006

arxiv:astro-ph/ v1 7 Feb 2006 A new bound on the neutrino mass from the SDSS baryon acoustic peak arxiv:astro-ph/0602155v1 7 Feb 2006 Ariel Goobar 1, Steen Hannestad 2, Edvard Mörtsell 3, Huitzu Tu 2 1 Department of Physics, Stockholm

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch. Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS In collaboration with: Marcello Cacciato (Leiden), Surhud More (IPMU), Houjun Mo (UMass), Xiaohu Yang

More information

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK Recent BAO observations and plans for the future David Parkinson University of Sussex, UK Baryon Acoustic Oscillations SDSS GALAXIES CMB Comparing BAO with the CMB CREDIT: WMAP & SDSS websites FLAT GEOMETRY

More information

Baryon Acoustic Oscillations Part I

Baryon Acoustic Oscillations Part I Baryon Acoustic Oscillations Part I Yun Wang (on behalf of the Euclid collaboration) ESTEC, November 17, 2009 Outline Introduction: BAO and galaxy clustering BAO as a standard ruler BAO as a robust dark

More information

Warm dark matter with future cosmic shear data

Warm dark matter with future cosmic shear data Workshop CIAS Meudon, Tuesday, June 7, 2011 Warm dark matter with future cosmic shear data Katarina Markovic (University Observatory Munich) markovic@usm.lmu.de in collaboration with Jochen Weller and

More information

Shear Power of Weak Lensing. Wayne Hu U. Chicago

Shear Power of Weak Lensing. Wayne Hu U. Chicago Shear Power of Weak Lensing 10 3 N-body Shear 300 Sampling errors l(l+1)c l /2π εε 10 4 10 5 Error estimate Shot Noise θ y (arcmin) 200 100 10 6 100 1000 l 100 200 300 θ x (arcmin) Wayne Hu U. Chicago

More information

H 0 is Undervalued BAO CMB. Wayne Hu STSCI, April 2014 BICEP2? Maser Lensing Cepheids. SNIa TRGB SBF. dark energy. curvature. neutrinos. inflation?

H 0 is Undervalued BAO CMB. Wayne Hu STSCI, April 2014 BICEP2? Maser Lensing Cepheids. SNIa TRGB SBF. dark energy. curvature. neutrinos. inflation? H 0 is Undervalued BICEP2? 74 Maser Lensing Cepheids Eclipsing Binaries TRGB SBF SNIa dark energy curvature CMB BAO neutrinos inflation? Wayne Hu STSCI, April 2014 67 The 1% H 0 =New Physics H 0 : an end

More information

The Degeneracy of Dark Energy and Curvature

The Degeneracy of Dark Energy and Curvature The Degeneracy of Dark Energy and Curvature Department of Physics and Astronomy, UWC, Cape Town Department of MAM, UCT, Cape Town PhD student: Amadeus Witzemann Collaborators: Philip Bull, HIRAX coll.

More information

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University 1 Physics of the Large Scale Structure Pengjie Zhang Department of Astronomy Shanghai Jiao Tong University The observed galaxy distribution of the nearby universe Observer 0.7 billion lys The observed

More information

Gravitational Lensing of the CMB

Gravitational Lensing of the CMB Gravitational Lensing of the CMB SNAP Planck 1 Ω DE 1 w a.5-2 -1.5 w -1 -.5 Wayne Hu Leiden, August 26-1 Outline Gravitational Lensing of Temperature and Polarization Fields Cosmological Observables from

More information

Large Scale Structure (Galaxy Correlations)

Large Scale Structure (Galaxy Correlations) Large Scale Structure (Galaxy Correlations) Bob Nichol (ICG,Portsmouth) QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor

More information

Cosmological observables and the nature of dark matter

Cosmological observables and the nature of dark matter Cosmological observables and the nature of dark matter Shiv Sethi Raman Research Institute March 18, 2018 SDSS results: power... SDSS results: BAO at... Planck results:... Planck-SDSS comparison Summary

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

Cosmology with Wide Field Astronomy

Cosmology with Wide Field Astronomy M. Moniez To cite this version: M. Moniez.. 35th International Conference on High Energy Physics (ICHEP2010), Jul 2010, Paris, France. Proceedings of Science, 441 (4 p.), 2010. HAL Id:

More information

Fisher Matrix Analysis of the Weak Lensing Spectrum

Fisher Matrix Analysis of the Weak Lensing Spectrum Fisher Matrix Analysis of the Weak Lensing Spectrum Manuel Rabold Institute for Theoretical Physics, University of Zurich Fisher Matrix Analysis of the Weak Lensing Spectrum Manuel Rabold Aarhus University,

More information

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis Absolute Neutrino Mass from Cosmology Manoj Kaplinghat UC Davis Kinematic Constraints on Neutrino Mass Tritium decay (Mainz Collaboration, Bloom et al, Nucl. Phys. B91, 273, 2001) p and t decay Future

More information

The State of Tension Between the CMB and LSS

The State of Tension Between the CMB and LSS The State of Tension Between the CMB and LSS Tom Charnock 1 in collaboration with Adam Moss 1 and Richard Battye 2 Phys.Rev. D91 (2015) 10, 103508 1 Particle Theory Group University of Nottingham 2 Jodrell

More information

Neutrinos in the era of precision Cosmology

Neutrinos in the era of precision Cosmology Neutrinos in the era of precision Cosmology Marta Spinelli Rencontres du Vietnam Quy Nhon - 21 July 2017 The vanilla model: -CDM (Late times) cosmological probes Supernovae Ia standard candles fundamental

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

Cosmology from Topology of Large Scale Structure of the Universe

Cosmology from Topology of Large Scale Structure of the Universe RESCEU 2008 Cosmology from Topology of Large Scale Structure of the Universe RESCEU Symposium on Astroparticle Physics and Cosmology 11-14, November 2008 Changbom Park (Korea Institute for Advanced Study)

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime Ben Wibking Department of Astronomy Ohio State University with Andres Salcedo, David Weinberg,

More information

From quasars to dark energy Adventures with the clustering of luminous red galaxies

From quasars to dark energy Adventures with the clustering of luminous red galaxies From quasars to dark energy Adventures with the clustering of luminous red galaxies Nikhil Padmanabhan 1 1 Lawrence Berkeley Labs 04-15-2008 / OSU CCAPP seminar N. Padmanabhan (LBL) Cosmology with LRGs

More information

arxiv:astro-ph/ v2 28 Jun 2006

arxiv:astro-ph/ v2 28 Jun 2006 MPP-2006-15 Measuring neutrino masses and dark energy with weak lensing tomography arxiv:astro-ph/0603019v2 28 Jun 2006 Steen Hannestad Department of Physics and Astronomy University of Aarhus, DK-8000

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

Weak gravitational lensing of CMB

Weak gravitational lensing of CMB Weak gravitational lensing of CMB (Recent progress and future prospects) Toshiya Namikawa (YITP) Lunch meeting @YITP, May 08, 2013 Cosmic Microwave Background (CMB) Precise measurements of CMB fluctuations

More information

Secondary Polarization

Secondary Polarization Secondary Polarization z i =25 0.4 Transfer function 0.2 0 z=1 z i =8 10 100 l Reionization and Gravitational Lensing Wayne Hu Minnesota, March 2003 Outline Reionization Bump Model independent treatment

More information

Neutrino properties from cosmology

Neutrino properties from cosmology Neutrino properties from cosmology Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia Rencontres de Moriond EW 2014, La Thuile, March 15 22, 2014 The concordance flat ΛCDM model... The

More information

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory Cross-correlations of CMB lensing as tools for cosmology and astrophysics Alberto Vallinotto Los Alamos National Laboratory Dark matter, large scales Structure forms through gravitational collapse......

More information

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

COSMIC MICROWAVE BACKGROUND ANISOTROPIES COSMIC MICROWAVE BACKGROUND ANISOTROPIES Anthony Challinor Institute of Astronomy & Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K. a.d.challinor@ast.cam.ac.uk 26

More information

Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing

Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing A 5-month internship under the direction of Simon Prunet Adrien Kuntz Ecole Normale Supérieure, Paris July 08, 2015 Outline 1 Introduction

More information

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models Modified gravity as an alternative to dark energy Lecture 3. Observational tests of MG models Observational tests Assume that we manage to construct a model How well can we test the model and distinguish

More information

Exploring Dark Energy

Exploring Dark Energy Lloyd Knox & Alan Peel University of California, Davis Exploring Dark Energy With Galaxy Cluster Peculiar Velocities Exploring D.E. with cluster v pec Philosophy Advertisement Cluster velocity velocity

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Introductory Review on BAO

Introductory Review on BAO Introductory Review on BAO David Schlegel Lawrence Berkeley National Lab 1. What are BAO? How does it measure dark energy? 2. Current observations From 3-D maps From 2-D maps (photo-z) 3. Future experiments

More information

BAO from the DR14 QSO sample

BAO from the DR14 QSO sample BAO analysis from the DR14 QSO sample Héctor Gil-Marín (on behalf of the eboss QC WG) Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE) Institut Lagrange de Paris (ILP) COSMO17 @ Paris 28th

More information

Non-linear structure in the Universe Cosmology on the Beach

Non-linear structure in the Universe Cosmology on the Beach Non-linear structure in the Universe Cosmology on the Beach Puerto Vallarta January, 2011 Martin White UC Berkeley/LBNL (http://mwhite.berkeley.edu/talks) Non-linearities and BAO Acoustic oscillations

More information

Neutrinos in Large-scale structure

Neutrinos in Large-scale structure Neutrinos in Large-scale structure Marilena LoVerde University of Chicago ( Fall 2015 > Yang Institute for Theoretical Physics, Stony Brook University) Neutrinos in Large-scale structure Marilena LoVerde

More information

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect The Outtakes CMB Transfer Function Testing Inflation Weighing Neutrinos Decaying Neutrinos Testing Λ Testing Quintessence Polarization Sensitivity SDSS Complementarity Secondary Anisotropies Doppler Effect

More information

Weak Gravitational Lensing. Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005

Weak Gravitational Lensing. Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005 Weak Gravitational Lensing Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005 astrophysics is on the 4th floor... President Amy Gutmann 215 898 7221 Physics Chair Tom

More information

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016 Fundamental cosmology from the galaxy distribution John Peacock Subaru @ Hiroshima 1 Dec 2016 What we learn from LSS Fundamental: Astrophysical: Matter content (CDM, baryons, neutrino mass) Properties

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 9, sections 9.4 and 9.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

CMB Polarization and Cosmology

CMB Polarization and Cosmology CMB Polarization and Cosmology Wayne Hu KIPAC, May 2004 Outline Reionization and its Applications Dark Energy The Quadrupole Gravitational Waves Acoustic Polarization and Initial Power Gravitational Lensing

More information

DARK MATTER AND DARK ENERGY AT HIGH REDSHIFT. MATTEO VIEL INAF & INFN Trieste

DARK MATTER AND DARK ENERGY AT HIGH REDSHIFT. MATTEO VIEL INAF & INFN Trieste DARK MATTER AND DARK ENERGY AT HIGH REDSHIFT MATTEO VIEL INAF & INFN Trieste SISSA IDEALS WORKSHOP --- 11th November 2011 RATIONALE HIGHLIGHT THE IMPORTANCE OF HIGH REDSHIFT (z>1) OBSERVABLES IN ORDER

More information

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002 The Silk Damping Tail of the CMB 100 T (µk) 10 10 100 1000 l Wayne Hu Oxford, December 2002 Outline Damping tail of temperature power spectrum and its use as a standard ruler Generation of polarization

More information

Cosmology with high (z>1) redshift galaxy surveys

Cosmology with high (z>1) redshift galaxy surveys Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong Texas Cosmology Center and Astronomy Department University of Texas at Austin Ph. D. thesis defense talk, 17 May 2010 Cosmology with HETDEX

More information

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey David Weinberg, Ohio State University Dept. of Astronomy and CCAPP Based partly on Observational Probes of Cosmic Acceleration

More information

Neutrino Mass Limits from Cosmology

Neutrino Mass Limits from Cosmology Neutrino Physics and Beyond 2012 Shenzhen, September 24th, 2012 This review contains limits obtained in collaboration with: Emilio Ciuffoli, Hong Li and Xinmin Zhang Goal of the talk Cosmology provides

More information

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK Large-scale structure as a probe of dark energy David Parkinson University of Sussex, UK Question Who was the greatest actor to portray James Bond in the 007 movies? a) Sean Connery b) George Lasenby c)

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

Refining Photometric Redshift Distributions with Cross-Correlations

Refining Photometric Redshift Distributions with Cross-Correlations Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White Introduction Talk Overview Weak lensing tomography can improve

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You BARYON ACOUSTIC OSCILLATIONS Cosmological Parameters and You OUTLINE OF TOPICS Definitions of Terms Big Picture (Cosmology) What is going on (History) An Acoustic Ruler(CMB) Measurements in Time and Space

More information

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Nguyen Quynh Lan Hanoi National University of Education, Vietnam (University of Notre Dame, USA) Rencontres du Vietnam:

More information

EUCLID Spectroscopy. Andrea Cimatti. & the EUCLID-NIS Team. University of Bologna Department of Astronomy

EUCLID Spectroscopy. Andrea Cimatti. & the EUCLID-NIS Team. University of Bologna Department of Astronomy EUCLID Spectroscopy Andrea Cimatti University of Bologna Department of Astronomy & the EUCLID-NIS Team Observing the Dark Universe with EUCLID, ESA ESTEC, 17 November 2009 DARK Universe (73% Dark Energy

More information

Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos

Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos Eva-Maria Mueller Work in collaboration with Francesco De Bernardis, Michael D. Niemack, Rachel Bean [arxiv:1408.6248,

More information

Efficient calculation of cosmological neutrino clustering

Efficient calculation of cosmological neutrino clustering Efficient calculation of cosmological neutrino clustering MARIA ARCHIDIACONO RWTH AACHEN UNIVERSITY ARXIV:50.02907 MA, STEEN HANNESTAD COSMOLOGY SEMINAR HELSINKI INSTITUTE OF PHYSICS 06.04.206 Cosmic history

More information

arxiv: v1 [astro-ph.co] 3 Apr 2019

arxiv: v1 [astro-ph.co] 3 Apr 2019 Forecasting Cosmological Bias due to Local Gravitational Redshift Haoting Xu, Zhiqi Huang, Na Zhang, and Yundong Jiang School of Physics and Astronomy, Sun Yat-sen University, 2 Daxue Road, Tangjia, Zhuhai,

More information

Cosmological information from large-scale structure

Cosmological information from large-scale structure Cosmological information from large-scale structure Amedeo Balbi Dipartimento di Fisica, Università di Roma Tor Vergata School of Astrophysics Francesco Lucchin X Cycle, III Course - Bertinoro, May 24-29,

More information

NEUTRINO PROPERTIES FROM COSMOLOGY

NEUTRINO PROPERTIES FROM COSMOLOGY NEUTRINO PROPERTIES FROM COSMOLOGY Cosmology 2018 in Dubrovnik 26 October 2018 OKC, Stockholm University Neutrino cosmology BOOKS: Lesgourgues, Mangano, Miele, Pastor, Neutrino Cosmology, Cambridge U.Press,

More information

Planck 2015 parameter constraints

Planck 2015 parameter constraints Planck 2015 parameter constraints Antony Lewis On behalf of the Planck Collaboration http://cosmologist.info/ CMB temperature End of inflation Last scattering surface gravity+ pressure+ diffusion Observed

More information

Imprint of Scalar Dark Energy on CMB polarization

Imprint of Scalar Dark Energy on CMB polarization Imprint of Scalar Dark Energy on CMB polarization Kin-Wang Ng ( 吳建宏 ) Institute of Physics & Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan Cosmology and Gravity Pre-workshop NTHU, Apr

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More (MPIA) Kunming,

More information

Complementarity in Dark Energy measurements. Complementarity of optical data in constraining dark energy. Licia Verde. University of Pennsylvania

Complementarity in Dark Energy measurements. Complementarity of optical data in constraining dark energy. Licia Verde. University of Pennsylvania Complementarity in Dark Energy measurements Complementarity of optical data in constraining dark energy Licia Verde University of Pennsylvania www.physics.upenn.edu/~lverde The situation: SN 1A (Riess

More information

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum The Cosmic Microwave Background Part II Features of the Angular Power Spectrum Angular Power Spectrum Recall the angular power spectrum Peak at l=200 corresponds to 1o structure Exactly the horizon distance

More information

WL and BAO Surveys and Photometric Redshifts

WL and BAO Surveys and Photometric Redshifts WL and BAO Surveys and Photometric Redshifts Lloyd Knox University of California, Davis Yong-Seon Song (U Chicago) Tony Tyson (UC Davis) and Hu Zhan (UC Davis) Also: Chris Fassnacht, Vera Margoniner and

More information

Aspects of large-scale structure. John Peacock UniverseNet Mytilene Sept 2007

Aspects of large-scale structure. John Peacock UniverseNet Mytilene Sept 2007 Aspects of large-scale structure John Peacock UniverseNet Mytilene Sept 2007 WMAP 2003 2dFGRS cone diagram: 4-degree wedge 220,000 redshifts 1997-2003 Simulating structure formation The Virgo consortium

More information

Physical Cosmology 18/5/2017

Physical Cosmology 18/5/2017 Physical Cosmology 18/5/2017 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2017 Summary If we consider perturbations in a pressureless

More information

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Modified gravity. Kazuya Koyama ICG, University of Portsmouth Modified gravity Kazuya Koyama ICG, University of Portsmouth Cosmic acceleration Cosmic acceleration Big surprise in cosmology Simplest best fit model LCDM 4D general relativity + cosmological const. H

More information

Jorge Cervantes-Cota, ININ. on behalf of the DESI Collaboration

Jorge Cervantes-Cota, ININ. on behalf of the DESI Collaboration Jorge Cervantes-Cota, ININ on behalf of the DESI Collaboration PPC 2014 DESI Overview DESI is the Dark Energy Spectroscopic Instrument Pioneering Stage-IV Experiment recommended by Community DE report

More information

The Principal Components of. Falsifying Cosmological Paradigms. Wayne Hu FRS, Chicago May 2011

The Principal Components of. Falsifying Cosmological Paradigms. Wayne Hu FRS, Chicago May 2011 The Principal Components of Falsifying Cosmological Paradigms Wayne Hu FRS, Chicago May 2011 The Standard Cosmological Model Standard ΛCDM cosmological model is an exceedingly successful phenomenological

More information

What do we really know about Dark Energy?

What do we really know about Dark Energy? What do we really know about Dark Energy? Ruth Durrer Département de Physique Théorique & Center of Astroparticle Physics (CAP) ESTEC, February 3, 2012 Ruth Durrer (Université de Genève ) Dark Energy ESTEC

More information

Large Scale Structure (Galaxy Correlations)

Large Scale Structure (Galaxy Correlations) Large Scale Structure (Galaxy Correlations) Bob Nichol (ICG,Portsmouth) QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. majority of its surface area is only about 10 feet

More information

Late time cosmology with GWs

Late time cosmology with GWs Late time cosmology with elisa Institut de Physique Théorique CEA-Saclay CNRS Université Paris-Saclay Outline Standard sirens: Concept and issues Forecast cosmological constraints for elisa: Approach:

More information

BAO analysis from the DR14 QSO sample

BAO analysis from the DR14 QSO sample BAO analysis from the DR14 QSO sample Héctor Gil-Marín (on behalf of the eboss QC WG) Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE) Institut Lagrange de Paris (ILP) Understanding Cosmological

More information

Cosmology with the ESA Euclid Mission

Cosmology with the ESA Euclid Mission Cosmology with the ESA Euclid Mission Andrea Cimatti Università di Bologna Dipartimento di Astronomia On behalf of the Euclid Italy Team ESA Cosmic Vision 2015-2025 M-class Mission Candidate Selected in

More information

Probing the Dark Side. of Structure Formation Wayne Hu

Probing the Dark Side. of Structure Formation Wayne Hu Probing the Dark Side 1 SDSS 100 MAP Planck P(k) 10 3 T 80 60 0.1 LSS Pψ 10 4 10 5 40 20 CMB 10 100 l (multipole) 0.01 k (h Mpc -1 ) 10 6 10 7 10 100 Lensing l (multipole) of Structure Formation Wayne

More information

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on Precision Cosmology With Large Scale Structure, Ohio State University ICTP Cosmology Summer School 2015 Lecture 3: Observational Prospects I have cut this lecture back to be mostly about BAO because I

More information

How many neutrino species are there?

How many neutrino species are there? How many neutrino species are there? Jan Hamann 6. Kosmologietag, Bielefeld 5-6 May 2011 Radiation content of the Universe Microwave background Neutrino background standard model expectation: [Mangano

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino Stefano Gariazzo University and INFN, Torino gariazzo@to.infn.it http://personalpages.to.infn.it/~gariazzo/ Light sterile neutrinos with pseudoscalar interactions in cosmology Based on [JCAP 08 (2016)

More information

EUCLID Cosmology Probes

EUCLID Cosmology Probes EUCLID Cosmology Probes Henk Hoekstra & Will Percival on behalf of the EUCLID The presented document is Proprietary information of the. This document shall be used and disclosed by the receiving Party

More information