WAVEPAL. A Python software for the frequency and wavelet analyses of irregularly sampled time series. Guillaume Lenoir

Size: px
Start display at page:

Download "WAVEPAL. A Python software for the frequency and wavelet analyses of irregularly sampled time series. Guillaume Lenoir"

Transcription

1 WAVEPAL A Python software for the frequency and wavelet analyses of irregularly sampled time series Guillaume Lenoir Talk at the VUB 24/05/2018

2

3 MY RESEARCH WORLD Statistics & signal processing { Paleoclimate data State-of-the-art time series softwares Applied maths Code New softwares NB: I do not interpret the data or explain physical mechanisms.

4 THE 2 REFERENCE PAPERS

5 TIME SERIES REGULARLY SAMPLED Proxy Variable (e.g. time)

6 TIME SERIES REGULARLY SAMPLED Proxy t t t t t t Variable (e.g. time)

7 <latexit sha1_base64="4fbdfpwla4iil2nz8lbqd6tp1cu=">aaadvxicjvjnbxmxej10+sjloyk9crhyvgijrztcoleo5ccxsirwaqpqd+meq157zxupqrtx/hqu8f/4b/rf8dzzsnckd6/whr+zetppdlfr5uowfe+sjhfu3ru/+mdt4apht9a7g08/etu4uo5kq607lhivttjyfftq8rb2mq8klq+k073op/gsnvfwfajnttyu8plru1xmadbjv2yn30odchg2hplcwkgtmuknsmt8ye046azzl+mhbhv91kiphft2o7nhy5qqpziaqkisoqbbu04e3xh1kama2dhngtlyiv2slmknuq2ijcjyokeyz9gdtajbpnj6zi5rren3ybs0jryloac7vhpsb5g5on/injnn7o0ca9fyvuadfql6r7xl5p/mrs2bpvsgnshoqhmj6sqwpeftiz2lx1qfmntaoj2b38euoxn5zojzpgupz5uz/wdhrjtuyza2oeu2swpkje+r4v4n2ofaa/gv0e8anqpgnhtnxgvmr4cmum9oxfccijauy669jiz3us1khgpmuflxr567jjwllyje3ohiot8q9sbf/uuuihywl3duxmvt33ynt43rolfty94p0ufu+4rx6rk9ryn9ek1dekf7nalhfx2hr/qtgsbtrcdmebrsaxm26bernp0e8zdbhw==</latexit> TIME SERIES IRREGULARLY SAMPLED Proxy Variable (e.g. time) t is no longer constant

8 PALEOCLIMATE TIME SERIES ODP Benthic Forams (Jian & al, 2003)

9 PALEOCLIMATE TIME SERIES ODP Benthic Forams (Jian & al, 2003)

10 PALEOCLIMATE TIME SERIES ODP Benthic Forams (Jian & al, 2003) Irregularly sampled

11 PALEOCLIMATE TIME SERIES ODP Benthic Forams (Jian & al, 2003) Global trend

12 PALEOCLIMATE TIME SERIES Goals: Detection of cycles Determine their periods and amplitudes Constraints: Irregular sampling Global trend Noisy data

13 OVERVIEW Frequency analysis Wavelet analysis Cycles and trend Significance testing Smoothing Example of analysis with WAVEPAL

14 OVERVIEW Frequency analysis Wavelet analysis Cycles and trend Significance testing Smoothing Example of analysis with WAVEPAL

15 NOTATIONS N data points <latexit sha1_base64="xy/9r6whepyiqrc3fy3z73ezpq4=">aaadrhicjvllbhmxfl3p8cjl0rswbezmk4gewisbwq6ig1aosaytlesvz+ieq/os7qfvov/cfj6kp4c/4nwbr4jwpdwa+/rc1zm287y0zqfpt95gdo36jzubt7zu37l7b7u/c/+dazpb6kxoysae5mrp0tq688ax+qs1wlv5qy/zs0p2h3/q1pmmfuvpwz2t1ki2c1mod+i0v737ejeeka/itjg1d6f9jb2kmukrxjaycyvx1oz0dmlcm2qooi4q0lsth12siodvtenkqqu2psuwc8uix9mfbsg3q5rghaj6hnmb3tignfzc00l2gs4lfovmmpaq0ydowuzusfg7qczon2ovpszzo8eah1ovue/vgf4rbx35v3msxdocnosga02tikyucfu6orvmhv+iyqncc4ztgfwwdigz63oojcejdj5bjf7vesko74sq29gpwlig8lfoqxl+naovgbfwx4dvcexjqurxlqtlhj4ctxcfbh2souesrxppvy7ke90tjry9zuhshkstllxzpswmx5dyrpszygf8yv/ugjgpeywjj17u8pi7vwpko8glqfpmlby8de94kx7sixaz0j4d0cs6okye8mf6ql+jz1ewjappknsjf3ie0g8jmv8eu4c6ng==</latexit> <latexit sha1_base64="xy/9r6whepyiqrc3fy3z73ezpq4=">aaadrhicjvllbhmxfl3p8cjl0rswbezmk4gewisbwq6ig1aosaytlesvz+ieq/os7qfvov/cfj6kp4c/4nwbr4jwpdwa+/rc1zm287y0zqfpt95gdo36jzubt7zu37l7b7u/c/+dazpb6kxoysae5mrp0tq688ax+qs1wlv5qy/zs0p2h3/q1pmmfuvpwz2t1ki2c1mod+i0v737ejeeka/itjg1d6f9jb2kmukrxjaycyvx1oz0dmlcm2qooi4q0lsth12siodvtenkqqu2psuwc8uix9mfbsg3q5rghaj6hnmb3tignfzc00l2gs4lfovmmpaq0ydowuzusfg7qczon2ovpszzo8eah1ovue/vgf4rbx35v3msxdocnosga02tikyucfu6orvmhv+iyqncc4ztgfwwdigz63oojcejdj5bjf7vesko74sq29gpwlig8lfoqxl+naovgbfwx4dvcexjqurxlqtlhj4ctxcfbh2souesrxppvy7ke90tjry9zuhshkstllxzpswmx5dyrpszygf8yv/ugjgpeywjj17u8pi7vwpko8glqfpmlby8de94kx7sixaz0j4d0cs6okye8mf6ql+jz1ewjappknsjf3ie0g8jmv8eu4c6ng==</latexit> <latexit sha1_base64="xy/9r6whepyiqrc3fy3z73ezpq4=">aaadrhicjvllbhmxfl3p8cjl0rswbezmk4gewisbwq6ig1aosaytlesvz+ieq/os7qfvov/cfj6kp4c/4nwbr4jwpdwa+/rc1zm287y0zqfpt95gdo36jzubt7zu37l7b7u/c/+dazpb6kxoysae5mrp0tq688ax+qs1wlv5qy/zs0p2h3/q1pmmfuvpwz2t1ki2c1mod+i0v737ejeeka/itjg1d6f9jb2kmukrxjaycyvx1oz0dmlcm2qooi4q0lsth12siodvtenkqqu2psuwc8uix9mfbsg3q5rghaj6hnmb3tignfzc00l2gs4lfovmmpaq0ydowuzusfg7qczon2ovpszzo8eah1ovue/vgf4rbx35v3msxdocnosga02tikyucfu6orvmhv+iyqncc4ztgfwwdigz63oojcejdj5bjf7vesko74sq29gpwlig8lfoqxl+naovgbfwx4dvcexjqurxlqtlhj4ctxcfbh2souesrxppvy7ke90tjry9zuhshkstllxzpswmx5dyrpszygf8yv/ugjgpeywjj17u8pi7vwpko8glqfpmlby8de94kx7sixaz0j4d0cs6okye8mf6ql+jz1ewjappknsjf3ie0g8jmv8eu4c6ng==</latexit> ti = 0 t 1 t 2. t N 1 C A et Xi = 0 X(t 1 ) X(t 2 ). X(t N ) 1 C A 2 R N

16 CYCLES DETECTION AT A FIXED PERIOD 0 Time series Xi 0 Test signal = sine/cosine signal period T Temps (échelle Time linéaire) Perform the analysis for many probing periods

17 <latexit sha1_base64="pnon26maldv5zf9b4hny+369icw=">aaadrnicjvlbbhmxej10uzrys+crlxxbsichadcvwftfx+affuripszeuxs3sbo32v6qkurteivv4g/glzgzcsroxcwrtcdnzs7msz01hbyujr91toirv69d376xc/pw7tt3u717723dmlwn87qozvgwwlxosg2ddou6aoxky6xqo+z0gp2jj8pyxvfv3hmjjmu6r/sjzlmhanrtvarc3xgzukwwld+uprzenxajub/lcc8bitci8uow7nuoaewzqimnlkpsvjgdxvbkft8xjrrta2xcs2aglha/ohxtildflejecvqu8xy7y49w2donlewcvqr8bpkh7sgnrpybzdvc8bfczoifujfcyb2dy808vwnu0qlov/i2kf+bx1ocndaz0achqrge1ewepzvt4c7dx1q5mdta2j7bb2dnkrk551byrgjns03f/10igev97mnb+ug7riccywmv0n8f9ixwbv4v+h2g01cqqrxzqtkmj0aj3cdbn2soemvrwgpvivle90sjqy0zkmvp1uqxzlnwetkjc12s9bnic/zxx+6cmyd5jammxm5y8z1enoad/vn+/gyq7b/wt3ibhtbdnjlqu9qnl3riqxce0wf6ql+djbgfk2c6dt3q+jz79nsifj8bvvw7ha==</latexit> <latexit sha1_base64="pnon26maldv5zf9b4hny+369icw=">aaadrnicjvlbbhmxej10uzrys+crlxxbsichadcvwftfx+affuripszeuxs3sbo32v6qkurteivv4g/glzgzcsroxcwrtcdnzs7msz01hbyujr91toirv69d376xc/pw7tt3u717723dmlwn87qozvgwwlxosg2ddou6aoxky6xqo+z0gp2jj8pyxvfv3hmjjmu6r/sjzlmhanrtvarc3xgzukwwld+uprzenxajub/lcc8bitci8uow7nuoaewzqimnlkpsvjgdxvbkft8xjrrta2xcs2aglha/ohxtildflejecvqu8xy7y49w2donlewcvqr8bpkh7sgnrpybzdvc8bfczoifujfcyb2dy808vwnu0qlov/i2kf+bx1ocndaz0achqrge1ewepzvt4c7dx1q5mdta2j7bb2dnkrk551byrgjns03f/10igev97mnb+ug7riccywmv0n8f9ixwbv4v+h2g01cqqrxzqtkmj0aj3cdbn2soemvrwgpvivle90sjqy0zkmvp1uqxzlnwetkjc12s9bnic/zxx+6cmyd5jammxm5y8z1enoad/vn+/gyq7b/wt3ibhtbdnjlqu9qnl3riqxce0wf6ql+djbgfk2c6dt3q+jz79nsifj8bvvw7ha==</latexit> <latexit sha1_base64="pnon26maldv5zf9b4hny+369icw=">aaadrnicjvlbbhmxej10uzrys+crlxxbsichadcvwftfx+affuripszeuxs3sbo32v6qkurteivv4g/glzgzcsroxcwrtcdnzs7msz01hbyujr91toirv69d376xc/pw7tt3u717723dmlwn87qozvgwwlxosg2ddou6aoxky6xqo+z0gp2jj8pyxvfv3hmjjmu6r/sjzlmhanrtvarc3xgzukwwld+uprzenxajub/lcc8bitci8uow7nuoaewzqimnlkpsvjgdxvbkft8xjrrta2xcs2aglha/ohxtildflejecvqu8xy7y49w2donlewcvqr8bpkh7sgnrpybzdvc8bfczoifujfcyb2dy808vwnu0qlov/i2kf+bx1ocndaz0achqrge1ewepzvt4c7dx1q5mdta2j7bb2dnkrk551byrgjns03f/10igev97mnb+ug7riccywmv0n8f9ixwbv4v+h2g01cqqrxzqtkmj0aj3cdbn2soemvrwgpvivle90sjqy0zkmvp1uqxzlnwetkjc12s9bnic/zxx+6cmyd5jammxm5y8z1enoad/vn+/gyq7b/wt3ibhtbdnjlqu9qnl3riqxce0wf6ql+djbgfk2c6dt3q+jz79nsifj8bvvw7ha==</latexit> ORTHOGONAL PROJECTION In R N Xi c! i = cos(! ti) s! i =sin(! ti) s! i c! i P sp{ c! i, s! i} Xi Lomb-Scargle Periodogram: Per(!) = P sp{ c! i, s! i} Xi 2 (Lomb, 1976) & (Scargle, 1982)

18 LOMB-SCARGLE PERIODOGRAM EXAMPLE Irregularly sampled time series Xi = sin(2 ti/40) + sin(2 ti/60) + sin(2 ti/100) Lomb-Scargle periodogram

19 AMPLITUDE OF THE CYCLES AT A FIXED PERIOD 0 Time series Minimum distance Amplitude E 0 Test signal period T Temps (échelle Time linéaire) Least squares method

20 AMPLITUDE VS PERIODOGRAM Xi Minimum distance s! i c! i P sp{ c! i, s! i} Xi be 2! 2 N Per(!) (Lenoir and Crucifix, 2018) squared amplitude periodogram

21 AMPLITUDE PERIODOGRAM EXAMPLE Irregularly sampled time series Xi = sin(2 ti/40) + sin(2 ti/60) + sin(2 ti/100) Amplitude periodogram (weighted Lomb-Scargle)

22 AMPLITUDE PERIODOGRAM EXAMPLE Irregularly sampled time series Xi = sin(2 ti/40) + sin(2 ti/60) + sin(2 ti/100) Amplitude periodogram (weighted Lomb-Scargle)

23 OVERVIEW Frequency analysis Wavelet analysis Cycles and trend Significance testing Smoothing Example of analysis with WAVEPAL

24 MOTIVATIONS State-of-the-art softwares in climate for the continuous wavelet transform only deal with regularly sampled time series. The data must then be interpolated => This may seriously affect the analysis, esp. when performing significance testing. A few algorithms which do not need interpolation exist in other fields (e.g. in astronomy) but are not suitable for climate time series Mathematically, there does not exist so far any formal extension of the Lomb-Scargle periodogram to the wavelet case

25 CYCLES DETECTION LOCALLY IN TIME AND AT A FIXED PERIOD 0 time series Xi 0 Test signal = sine/cosine weighted period T time by a Gaussian Perform the analysis for many probing times and periods Time-frequency analysis

26 MORLET WAVELET (Formal def. in Grosmann et Morlet, 1984) 0 0 T T Temps (échelle linéaire) Time The Gaussian envelope widens when the period increases & The number of cycles in the envelope remains unchanged

27 <latexit sha1_base64="pnon26maldv5zf9b4hny+369icw=">aaadrnicjvlbbhmxej10uzrys+crlxxbsichadcvwftfx+affuripszeuxs3sbo32v6qkurteivv4g/glzgzcsroxcwrtcdnzs7msz01hbyujr91toirv69d376xc/pw7tt3u717723dmlwn87qozvgwwlxosg2ddou6aoxky6xqo+z0gp2jj8pyxvfv3hmjjmu6r/sjzlmhanrtvarc3xgzukwwld+uprzenxajub/lcc8bitci8uow7nuoaewzqimnlkpsvjgdxvbkft8xjrrta2xcs2aglha/ohxtildflejecvqu8xy7y49w2donlewcvqr8bpkh7sgnrpybzdvc8bfczoifujfcyb2dy808vwnu0qlov/i2kf+bx1ocndaz0achqrge1ewepzvt4c7dx1q5mdta2j7bb2dnkrk551byrgjns03f/10igev97mnb+ug7riccywmv0n8f9ixwbv4v+h2g01cqqrxzqtkmj0aj3cdbn2soemvrwgpvivle90sjqy0zkmvp1uqxzlnwetkjc12s9bnic/zxx+6cmyd5jammxm5y8z1enoad/vn+/gyq7b/wt3ibhtbdnjlqu9qnl3riqxce0wf6ql+djbgfk2c6dt3q+jz79nsifj8bvvw7ha==</latexit> <latexit sha1_base64="pnon26maldv5zf9b4hny+369icw=">aaadrnicjvlbbhmxej10uzrys+crlxxbsichadcvwftfx+affuripszeuxs3sbo32v6qkurteivv4g/glzgzcsroxcwrtcdnzs7msz01hbyujr91toirv69d376xc/pw7tt3u717723dmlwn87qozvgwwlxosg2ddou6aoxky6xqo+z0gp2jj8pyxvfv3hmjjmu6r/sjzlmhanrtvarc3xgzukwwld+uprzenxajub/lcc8bitci8uow7nuoaewzqimnlkpsvjgdxvbkft8xjrrta2xcs2aglha/ohxtildflejecvqu8xy7y49w2donlewcvqr8bpkh7sgnrpybzdvc8bfczoifujfcyb2dy808vwnu0qlov/i2kf+bx1ocndaz0achqrge1ewepzvt4c7dx1q5mdta2j7bb2dnkrk551byrgjns03f/10igev97mnb+ug7riccywmv0n8f9ixwbv4v+h2g01cqqrxzqtkmj0aj3cdbn2soemvrwgpvivle90sjqy0zkmvp1uqxzlnwetkjc12s9bnic/zxx+6cmyd5jammxm5y8z1enoad/vn+/gyq7b/wt3ibhtbdnjlqu9qnl3riqxce0wf6ql+djbgfk2c6dt3q+jz79nsifj8bvvw7ha==</latexit> <latexit sha1_base64="pnon26maldv5zf9b4hny+369icw=">aaadrnicjvlbbhmxej10uzrys+crlxxbsichadcvwftfx+affuripszeuxs3sbo32v6qkurteivv4g/glzgzcsroxcwrtcdnzs7msz01hbyujr91toirv69d376xc/pw7tt3u717723dmlwn87qozvgwwlxosg2ddou6aoxky6xqo+z0gp2jj8pyxvfv3hmjjmu6r/sjzlmhanrtvarc3xgzukwwld+uprzenxajub/lcc8bitci8uow7nuoaewzqimnlkpsvjgdxvbkft8xjrrta2xcs2aglha/ohxtildflejecvqu8xy7y49w2donlewcvqr8bpkh7sgnrpybzdvc8bfczoifujfcyb2dy808vwnu0qlov/i2kf+bx1ocndaz0achqrge1ewepzvt4c7dx1q5mdta2j7bb2dnkrk551byrgjns03f/10igev97mnb+ug7riccywmv0n8f9ixwbv4v+h2g01cqqrxzqtkmj0aj3cdbn2soemvrwgpvivle90sjqy0zkmvp1uqxzlnwetkjc12s9bnic/zxx+6cmyd5jammxm5y8z1enoad/vn+/gyq7b/wt3ibhtbdnjlqu9qnl3riqxce0wf6ql+djbgfk2c6dt3q+jz79nsifj8bvvw7ha==</latexit> <latexit sha1_base64="azlh0touirgsumjm6iscs0ajuma=">aaadwhicjvllbtqwfl3t8gjlq4ulm4i0ekjvkdmbqkhsxsxgwssgvmqqysm4wwosb9sb2me+gk9hc5/ch5s/4pior4jwpbzfvj733mexnbevsi5nv/ewoitxr11fxlm9cfpw7ttr63ffwn2zqo4lxwmznwsrk9xisvoukvutkalok7mxn4y8f++9nfbp5ru7bevhlcpghatcoebha8ngi6np5ks3lelalmk2nt3bmchr6kzucs2cur/bsvspj/iymqhgqmhs6vxeidkakkacoqpjukmodkwcll4dglbklbbdmgizsbt7jc1ofbedwbimafqec4ndquab7h1oy9efqlt4dsjj2ksmbs/a9tvi9nec2an/yj3lnl63u6x5yfuddfqw6l/ifsz/jfnahb3te9agokllxksrqpaot8v3hv+iyifdc8zbe/gn7iijf+ccc4xl7f5sbfvpmelrvy8ct6mfocsgyac+rzr7b5b9cryff4z+h+g0zqrib8lvmtocmua+vfwj5wrcv2zce8h097rjsgxqtfbzca+wu/q551pienihi7l+r9gcf/sxu/cywzzhurmvd3dxnv42xsp+0376apjspa9pejnu0wm0mqdhtemvazfgspizvtbx+hanihxp6n2cutqlmffotxgd/qs9csm+</latexit> SCALOGRAM Same formalism as for the periodogram: In R N Xi G,! s! i c! i = cos(! ti) s! i =sin(! ti) G,! = diagonal matrix with Gaussian weights <latexit sha1_base64="wv3zssdc4lcv5aw0z/sxf5hk42c=">aaadsnicjvlbbhmxej10gzzyavreey8wq0ogowgtcqfvvfsaj0uitfjsvd6nm1j1xmr7g1whh8mrfbf/ah/b8csrobuxr9yen5k5m8d23hjtfjz966wlt27fwd+4u3nv/oohw93tny+ubm2hhkvtanucs6emrttqa2/ucwovlhojjvlzg+a/uldw6br64c8bdvlkaaxpdce9onpu47n2m/fwts5pwym50tozd6fdnotlpmrnox+nloi4rlc7bzsmcdvuueslkariwzykyeebuz8yaocd0akyhaxzr+iknphbikohqgi9xzzfbhtrcvva6ti7qbwd3yjt0c5yasrz2kgayh/lzah9e/ecounvl1jzyfuc9tqd+q+8vet/5gutns7onwvq0nqwetqvkaxluwmdi19ueta0wii9gd/cljhzdc6ccxxrd2cr2f+diwma9kwmbelh7licmuftkrn/cuwl4a38v+h3ge4fi4a9u64yphdau9xnsd7xnci2rgouvyom97rlsixqtfbzc6+ouwycsy2cnl3ryqk/khban//llglmms9x1mtl7v9/pzen4ad3ppe9h6r7+/ejb9ateopg+vsk9ugdhdiqhav6tf/oa/iygsuykzaha52y84h+g4n5cfcxvf8=</latexit> <latexit sha1_base64="wv3zssdc4lcv5aw0z/sxf5hk42c=">aaadsnicjvlbbhmxej10gzzyavreey8wq0ogowgtcqfvvfsaj0uitfjsvd6nm1j1xmr7g1whh8mrfbf/ah/b8csrobuxr9yen5k5m8d23hjtfjz966wlt27fwd+4u3nv/oohw93tny+ubm2hhkvtanucs6emrttqa2/ucwovlhojjvlzg+a/uldw6br64c8bdvlkaaxpdce9onpu47n2m/fwts5pwym50tozd6fdnotlpmrnox+nloi4rlc7bzsmcdvuueslkariwzykyeebuz8yaocd0akyhaxzr+iknphbikohqgi9xzzfbhtrcvva6ti7qbwd3yjt0c5yasrz2kgayh/lzah9e/ecounvl1jzyfuc9tqd+q+8vet/5gutns7onwvq0nqwetqvkaxluwmdi19ueta0wii9gd/cljhzdc6ccxxrd2cr2f+diwma9kwmbelh7licmuftkrn/cuwl4a38v+h3ge4fi4a9u64yphdau9xnsd7xnci2rgouvyom97rlsixqtfbzc6+ouwycsy2cnl3ryqk/khban//llglmms9x1mtl7v9/pzen4ad3ppe9h6r7+/ejb9ateopg+vsk9ugdhdiqhav6tf/oa/iygsuykzaha52y84h+g4n5cfcxvf8=</latexit> <latexit sha1_base64="wv3zssdc4lcv5aw0z/sxf5hk42c=">aaadsnicjvlbbhmxej10gzzyavreey8wq0ogowgtcqfvvfsaj0uitfjsvd6nm1j1xmr7g1whh8mrfbf/ah/b8csrobuxr9yen5k5m8d23hjtfjz966wlt27fwd+4u3nv/oohw93tny+ubm2hhkvtanucs6emrttqa2/ucwovlhojjvlzg+a/uldw6br64c8bdvlkaaxpdce9onpu47n2m/fwts5pwym50tozd6fdnotlpmrnox+nloi4rlc7bzsmcdvuueslkariwzykyeebuz8yaocd0akyhaxzr+iknphbikohqgi9xzzfbhtrcvva6ti7qbwd3yjt0c5yasrz2kgayh/lzah9e/ecounvl1jzyfuc9tqd+q+8vet/5gutns7onwvq0nqwetqvkaxluwmdi19ueta0wii9gd/cljhzdc6ccxxrd2cr2f+diwma9kwmbelh7licmuftkrn/cuwl4a38v+h3ge4fi4a9u64yphdau9xnsd7xnci2rgouvyom97rlsixqtfbzc6+ouwycsy2cnl3ryqk/khban//llglmms9x1mtl7v9/pzen4ad3ppe9h6r7+/ejb9ateopg+vsk9ugdhdiqhav6tf/oa/iygsuykzaha52y84h+g4n5cfcxvf8=</latexit> G,!ii =exp( c! 2 (t i ) 2 ) G,! c! i P sp{g,! c! i,g,! s! i} Xi Scalogram: Scal(,!) = P sp{g,! c! i,g,! s! i} Xi 2 (Lenoir and Crucifix, 2018) Formal extension of the Lomb-Scargle periodogram to the wavelet case.

28 AMPLITUDE ESTIMATION LOCALLY IN TIME AND AT A FIXED PERIOD Periodogram: We have seen: be 2! 2 N Per(!) For the scalogram: generalization be,! 2 2tr(G2,!) Scal(,!) tr(g,! ) 2 (Lenoir and Crucifix, 2018)

29 SCALOGRAM EXAMPLE Irregularly sampled time series with beats Time <latexit sha1_base64="padgplk0/mmorsiz7w7mukovwpu=">aaadn3icjvllbtraekyneytwsudixyovcss08u4lcivijse0sfksli2q7z1srvfl43giamkvcivf4w/gl6ju9uqqimdynump7q7umpm0zm3j4/hbbyw4dfvo3dv7a/cfphz0eh3jyfumal1mxlmvv+4wtrqt29kmvfw5oaydsyo0nwfp2a74d86na2xv7vvl2hwxyay0jzzlved7tjaf16o4h+sibxqdzojqjvg10dvfbfnuyncigeejtzthgobfeqaiurm7xpyyo2xvb3cfnea2jdkmsiiecz5xd9shjffc2wh2xio5f8fmefvmqrjnaeu1up2tmgv6j+65ckpvl1ztjqsg6nfk9f95y8j/zrmthid4prosndwkilqsy2n1vktz8bdvngw1mbgn9dvamwyuzznunea1y9km6v+ukylkputiw/zouiyjxohpfdp/sfy58zr+k/y7zkehirl6z1plgpdei96nwj90jhgr60rrlyplxrduiwonkstb7bxrlovzosxe82tdlpsl4ob4i7/chwce8wjntb7cwfv3etmyd/uv+/g7ybtzpnvcq3igttyywdz2sicrxiq8xwd8wddgm9gl3gajrehkr8t5it9g8oenc+k2gq==</latexit> NB: If regular sampling: same results as with the classical algorithms (e.g. Torrence & Compo, 1998)

30 OVERVIEW Frequency analysis Wavelet analysis Cycles and trend Significance testing Smoothing Example of analysis with WAVEPAL

31 We have seen: CYCLES AND TREND 0 Time series 0 Test signal What if the time series does not oscillate around zero?

32 CYCLES AND TREND Remove the trend? (detrending) Estimated trend True trend Alternative: Build a periodogram/scalogram which is blind to the coefficient of the trend. =) No need to remove the trend This is possible with a polynomial trend (Lenoir and Crucifix, 2018)

33 CYCLES AND TREND EXAMPLE WITH A LINEAR TREND Xi = sin(2 ti/40) + sin(2 ti/60) + sin(2 ti/100) + Trendi <latexit sha1_base64="iqen3vylpfdw46495w9zuvht+xu=">aaaea3icjzllbtqwfibpnfxkuxqkszyruavwocezvvwwsbxdscxsh47uvfum4xmsjk5ko0a1m1uehhviyxvwarwbbnncgt9npbk05eio9vf37ryhdsgnjeppraxgwsvll5evrfy9dv3ganvt5gttntoxvbwqkt0fzeyuuomelbyq/vqlrbwuyn9wvop0+6+enrjse/akfodlnlzyjppmah21r9n+qjm1lsst1ei10u1robue3d+kn++egx+cj5myfjpa8cbqcrknhrrovo6ohcwdmed4vki8ejefu9vaa4dsgljfotvukibffnjbgrl8b5rqtdxyiu3anctjekezwofvaysbiwz0gpmyuwnpffyupmhvhfkk/bqeia3dp4kdhuyyhaxvolkjf4o94ziuthosax+rblx0evrffgvl//vzvvga0spuqaknmonrlvdrgj4vv3n4s1cwewowjw+h15bz9lycc8g+hnt3z5ux/gtbour2ubdt6kuvuog85tmqux6f6bpwgvoz6u2i0pbjwdoxz0nphmie+3tslocitm5noffc0t3roneikwoizjjrnvyliznvjasnu1xm+3cdg/dnv9yfyxbzncmnxm5y+p2efxrdzuno/hwr2n7qn/ay3ay7kcshh7rnz2ixegj4ib7rd/orva3ebe+dd3ptpzb3uuw/jedjt/3d3fc=</latexit> <latexit sha1_base64="iqen3vylpfdw46495w9zuvht+xu=">aaaea3icjzllbtqwfibpnfxkuxqkszyruavwocezvvwwsbxdscxsh47uvfum4xmsjk5ko0a1m1uehhviyxvwarwbbnncgt9npbk05eio9vf37ryhdsgnjeppraxgwsvll5evrfy9dv3ganvt5gttntoxvbwqkt0fzeyuuomelbyq/vqlrbwuyn9wvop0+6+enrjse/akfodlnlzyjppmah21r9n+qjm1lsst1ei10u1robue3d+kn++egx+cj5myfjpa8cbqcrknhrrovo6ohcwdmed4vki8ejefu9vaa4dsgljfotvukibffnjbgrl8b5rqtdxyiu3anctjekezwofvaysbiwz0gpmyuwnpffyupmhvhfkk/bqeia3dp4kdhuyyhaxvolkjf4o94ziuthosax+rblx0evrffgvl//vzvvga0spuqaknmonrlvdrgj4vv3n4s1cwewowjw+h15bz9lycc8g+hnt3z5ux/gtbour2ubdt6kuvuog85tmqux6f6bpwgvoz6u2i0pbjwdoxz0nphmie+3tslocitm5noffc0t3roneikwoizjjrnvyliznvjasnu1xm+3cdg/dnv9yfyxbzncmnxm5y+p2efxrdzuno/hwr2n7qn/ay3ay7kcshh7rnz2ixegj4ib7rd/orva3ebe+dd3ptpzb3uuw/jedjt/3d3fc=</latexit> <latexit sha1_base64="iqen3vylpfdw46495w9zuvht+xu=">aaaea3icjzllbtqwfibpnfxkuxqkszyruavwocezvvwwsbxdscxsh47uvfum4xmsjk5ko0a1m1uehhviyxvwarwbbnncgt9npbk05eio9vf37ryhdsgnjeppraxgwsvll5evrfy9dv3ganvt5gttntoxvbwqkt0fzeyuuomelbyq/vqlrbwuyn9wvop0+6+enrjse/akfodlnlzyjppmah21r9n+qjm1lsst1ei10u1robue3d+kn++egx+cj5myfjpa8cbqcrknhrrovo6ohcwdmed4vki8ejefu9vaa4dsgljfotvukibffnjbgrl8b5rqtdxyiu3anctjekezwofvaysbiwz0gpmyuwnpffyupmhvhfkk/bqeia3dp4kdhuyyhaxvolkjf4o94ziuthosax+rblx0evrffgvl//vzvvga0spuqaknmonrlvdrgj4vv3n4s1cwewowjw+h15bz9lycc8g+hnt3z5ux/gtbour2ubdt6kuvuog85tmqux6f6bpwgvoz6u2i0pbjwdoxz0nphmie+3tslocitm5noffc0t3roneikwoizjjrnvyliznvjasnu1xm+3cdg/dnv9yfyxbzncmnxm5y+p2efxrdzuno/hwr2n7qn/ay3ay7kcshh7rnz2ixegj4ib7rd/orva3ebe+dd3ptpzb3uuw/jedjt/3d3fc=</latexit> Exactly the same! NB: Dependence on the guess of the degree of the polynomial trend

34 OVERVIEW Frequency analysis Wavelet analysis Cycles and trend Significance testing Smoothing Example of analysis with WAVEPAL

35 CYCLES + UNCERTAINTIES Measurement errors Unknown processes =) Modeled as «noise» = stochastic process which is added to the cycles and trend (additive noise)

36 <latexit sha1_base64="+dkivi0hobbs0md7mtuvbsartu8=">aaadzhicjvlnbhmxej50+snlpyk9crhyvmolfda5alekhtobrsk0ulnf3o2bwn31rmwvurvy5q14gq7welxbeqs+tzystolhq7xh38x8m5/ttmq180nyvbus3bp95+7qvbx7dx4+wm9vph7vytpmqp+vewlpuuluro3qe+1zdvjzjys0v8fpxx7wh39q1unsvpoxltor5njoc51jd2jyfj6dkkve1kbvtuel2ffdvbsltbnshmjaos2nme60v8ku2qlho046cq9x0+g2rkznoco3wvs0obgvlffnbsky5ghnjmnho6uujvqbo6mzmatls1/rnnaqwynkiuicvca8xu60qq32gdnxdoyqox6ltehbyckrz2ghaol9ntmh9e/cm+ymvv1itruuaqincdb/5s0j/zcvapf0ti9zg4amipgglmtyaj6v0ln4rzuhqwus2cp4leymm5fnldjhsfzwtpl9vxwz0ldpmtiafjrdgibtpq2c+zdgnwgv4j+j3x46fyzk7b1zlqe9axrjpop1kecyswedco1lzljxbvziuwoeypp7ddxl4fxoebrzryuf/qdyad/9y10ezgne4kijl9u9/k5vgv1e51unedul9143t3ivntbtnnklf7rhh3refrb+pi/0lb5fb6i6mkxzrehkq8nzpn9g9oknmnfhjg==</latexit> STOCHASTIC PROCESS ALSO CALLED «BACKGROUND NOISE» In climate, the background noise is often modeled by a process with memory: X(t i )= i X(t i 1 )+ (t i ) where (t i ) is a Gaussian white noise This process is called red noise or AR-1 process. In this work, we consider a more general class of processes with memory, called ARMA processes => larger choice than with other softwares (e.g. REDFIT) When the time series is irregularly sampled, we have to work with continuous-time ARMA processes (CARMA), which are then discretized on the irregular time grid.

37 <latexit sha1_base64="k/bk1i9l59dzlyyglra4ar7rnpm=">aaad7hicjvjdaxnbfl3p+lhrv6qpviwuhyrk2brbfrckrfdjvmhsofvczjpddt2dxwzmlzlkz/gkvvop/dhiq4l+c8/ctebb/jhlz+6ce8+998zmuc6ksxh8ubusxlp85erqtbxrn27eut1ev/pavi3oxccrikopx6krhvriykutxldwii3hhtgyn+44/8eboy2s1l49q8vrmezkhssstybg7d3zmngpygvxdjbomtzxqk08svl8no3y7jwxunws3vlk6cwuful9irubzhlzssm8pmphcs/mev40+t6iyi+9ar21qwlnqkkmgipjkcilu6cudl5d6lnmnbajmgltsct7bc1pddwguqirkdbtzdl2hx5v2luchtkzqht4nzghbybtiu7ddtvc9jec2af/yj3lnk63m6xjn6seauke6l94y8j/5tktlo7pmwuq0fqz4trlpkvdp+i6d39rzzghbubscfwadsbm5tmhzdgs3z1tyv7vholqt898bem/fjckyfs+rzl7v8g+bv7dp0e/w+g0zkrgb85venoanmj9omvgc4rytyzcexnp7nwdlwjumkcy5f4nd+lylrse1dnxxuk/u2yad/9yfw6zmbc4aull9s+/04vgykv3pbe/ehhtp/npejxu0x000qdhte0vai8gspijvtbx+hzuwbvgffbhebrs8py79nsipv4exfpvza==</latexit> MODEL FOR THE TIME SERIES Xi = Trendi +E (t) sin( ti + )+ Noisei Polynomial (fixed degree) (C)ARMA process with fixed order Periodic signal OR Locally periodic signal

38 <latexit sha1_base64="nzl/c6e3f7jpjqflqym0g4fhfgi=">aaadynicjzllbtqwfibpnfxkuu3lkk1evakejdiverbaqtpnn6aidehitvulgxew6jir7ybgm931dfo0boep+gbwfvw+45ggfrdhsy+/c7ddnepal6yxnaxo2vubn5dvrdy+c/fe/e7q2gdbt6yug7jwtrkwurvkajfw0ikxbiziq0kj/ejk2+v3pwljza333kqrh1u+1vjylrkdouo+nw0zk+uxem9mmanipsp0kjcntn7v0opajrpj2kt5xfeffhascmo3xu1su0yjqqmkliospmlbvpstxxdafuqpatukkzibjfkv6jrw4nvcssaibz3bpmbuifcnvy9p2btefoxfwdomdfjusdoqfbay9s1h9vrpsacc09c2wvqewbwoo4+g//jbwp6vn+/f0tg94h4kemqy+o7kekxlu/gvx7905rchafpychoduwtpxtnh7go5d3+2oeu/s6wnfl8g25z+hco1ygc+ryrr14g+bw+gp0w9g6g0zqjyo+ysgt0dtxcfxprxnmdwrxnnxlj6e13ntgxyjjbzcq2wq/qx573e9phsffp+fccw/mlf7sizh3nokrmvt3/5nv4vbhu91730/ytkcys84wv6si9qsj9e0ibt0c4nepccvtbx+ha9jww0iazz06vo8hlav43o7cdn4sgj</latexit> <latexit sha1_base64="k/bk1i9l59dzlyyglra4ar7rnpm=">aaad7hicjvjdaxnbfl3p+lhrv6qpviwuhyrk2brbfrckrfdjvmhsofvczjpddt2dxwzmlzlkz/gkvvop/dhiq4l+c8/ctebb/jhlz+6ce8+998zmuc6ksxh8ubusxlp85erqtbxrn27eut1ev/pavi3oxccrikopx6krhvriykutxldwii3hhtgyn+44/8eboy2s1l49q8vrmezkhssstybg7d3zmngpygvxdjbomtzxqk08svl8no3y7jwxunws3vlk6cwuful9irubzhlzssm8pmphcs/mev40+t6iyi+9ar21qwlnqkkmgipjkcilu6cudl5d6lnmnbajmgltsct7bc1pddwguqirkdbtzdl2hx5v2luchtkzqht4nzghbybtiu7ddtvc9jec2af/yj3lnk63m6xjn6seauke6l94y8j/5tktlo7pmwuq0fqz4trlpkvdp+i6d39rzzghbubscfwadsbm5tmhzdgs3z1tyv7vholqt898bem/fjckyfs+rzl7v8g+bv7dp0e/w+g0zkrgb85venoanmj9omvgc4rytyzcexnp7nwdlwjumkcy5f4nd+lylrse1dnxxuk/u2yad/9yfw6zmbc4aull9s+/04vgykv3pbe/ehhtp/npejxu0x000qdhte0vai8gspijvtbx+hzuwbvgffbhebrs8py79nsipv4exfpvza==</latexit> Null hypothesis: SIGNIFICANCE TESTING Xi = Trendi + Noisei = HYPOTHESIS TESTING Alternative hypothesis: Xi = Trendi +E (t) sin( ti + )+ Noisei Test with the periodogram/scalogram Under the null hypothesis, the distribution of the periodogram/scalogram can be computed analytically or numerically (MCMC) (Lenoir and Crucifix, 2018) Significance level, at a given percentage

39 SIGNIFICANCE TESTING EXAMPLE WITH THE PERIODOGRAM Irregularly sampled noisy time series Xi = sin(2 ti/40) + sin(2 ti/60) + sin(2 ti/100) + Red noisei <latexit sha1_base64="i2+m7pcrkmkizqsu4ym3z5qmvwu=">aaaechicjzllbtqwfizpgi6l3kawzbmrvwofgpjrxwwbvneny4iyoljtvungnvqtm2ynpzqzj+bpwcg2vafl3gcegc2/z3gkamvfuezj79xtz00htymir96sf+nylavl11au37h563zn9c5bxbcqf/28lmo1yfitclmjvpgmeingibtmcrgbjbetfvdykc3r6o05bcr+my4qesjz1aaddmbtqalsalsi54mw1xovaetuoprom9p4caf+fdgoi/bpysq7o8rjazemqlpqmxp64katrt2ir3beij0qkhs79aq3tqknqaacwipjueugckepaxx7ffneddg+tcaujml6qtnagw8lkwglfhsmeytdnqmv9jamzu8cwqr8cp4brcgnhp2cblmfrg85sqv/ij3hmla2u6yzi1wcgjoc/zffwvj//wwvhg7pkfcg0vpdxhaxuygtn4qtppilk4midzivh9arydl7ls45yb/nvduztvn/js0ttfvc2bb03vvzgzzwazvcf4xoe/ag+hnq7ahsgenb2hfnseghaij7tnku5xc2dk0498ls3usad6kqy4jmkmvvxkwnoe8lopuzvcz7tx1r8i2/3ivlbvociydebnz2nz4x+r3us270ajpceuge8dldo/sojkynteuvayf6cpiffnjkef57/4p/0f80n13ynm9d+m34n38c79ndpw==</latexit> <latexit sha1_base64="i2+m7pcrkmkizqsu4ym3z5qmvwu=">aaaechicjzllbtqwfizpgi6l3kawzbmrvwofgpjrxwwbvneny4iyoljtvungnvqtm2ynpzqzj+bpwcg2vafl3gcegc2/z3gkamvfuezj79xtz00htymir96sf+nylavl11au37h563zn9c5bxbcqf/28lmo1yfitclmjvpgmeingibtmcrgbjbetfvdykc3r6o05bcr+my4qesjz1aaddmbtqalsalsi54mw1xovaetuoprom9p4caf+fdgoi/bpysq7o8rjazemqlpqmxp64katrt2ir3beij0qkhs79aq3tqknqaacwipjueugckepaxx7ffneddg+tcaujml6qtnagw8lkwglfhsmeytdnqmv9jamzu8cwqr8cp4brcgnhp2cblmfrg85sqv/ij3hmla2u6yzi1wcgjoc/zffwvj//wwvhg7pkfcg0vpdxhaxuygtn4qtppilk4midzivh9arydl7ls45yb/nvduztvn/js0ttfvc2bb03vvzgzzwazvcf4xoe/ag+hnq7ahsgenb2hfnseghaij7tnku5xc2dk0498ls3usad6kqy4jmkmvvxkwnoe8lopuzvcz7tx1r8i2/3ivlbvociydebnz2nz4x+r3us270ajpceuge8dldo/sojkynteuvayf6cpiffnjkef57/4p/0f80n13ynm9d+m34n38c79ndpw==</latexit> <latexit sha1_base64="i2+m7pcrkmkizqsu4ym3z5qmvwu=">aaaechicjzllbtqwfizpgi6l3kawzbmrvwofgpjrxwwbvneny4iyoljtvungnvqtm2ynpzqzj+bpwcg2vafl3gcegc2/z3gkamvfuezj79xtz00htymir96sf+nylavl11au37h563zn9c5bxbcqf/28lmo1yfitclmjvpgmeingibtmcrgbjbetfvdykc3r6o05bcr+my4qesjz1aaddmbtqalsalsi54mw1xovaetuoprom9p4caf+fdgoi/bpysq7o8rjazemqlpqmxp64katrt2ir3beij0qkhs79aq3tqknqaacwipjueugckepaxx7ffneddg+tcaujml6qtnagw8lkwglfhsmeytdnqmv9jamzu8cwqr8cp4brcgnhp2cblmfrg85sqv/ij3hmla2u6yzi1wcgjoc/zffwvj//wwvhg7pkfcg0vpdxhaxuygtn4qtppilk4midzivh9arydl7ls45yb/nvduztvn/js0ttfvc2bb03vvzgzzwazvcf4xoe/ag+hnq7ahsgenb2hfnseghaij7tnku5xc2dk0498ls3usad6kqy4jmkmvvxkwnoe8lopuzvcz7tx1r8i2/3ivlbvociydebnz2nz4x+r3us270ajpceuge8dldo/sojkynteuvayf6cpiffnjkef57/4p/0f80n13ynm9d+m34n38c79ndpw==</latexit> Amplitude periodogram and assume the background noise is red

40 OVERVIEW Frequency analysis Wavelet analysis Cycles and trend Significance testing Smoothing Example of analysis with WAVEPAL

41 SMOOTHING THE PERIODOGRAM AND THE SCALOGRAM Pros: Reduce the variance: periodogram/scalogram less noisy Improve the quality of significance tests: less false positive detections (Lenoir et al., in prep.) Cons: Computing time! Decrease of the frequency resolution Methods: Periodogram: WOSA Compute the periodogram on each tapered segment and take the average. Scalogram: moving average in time

42 SMOOTHING EXAMPLE WITH THE PERIODOGRAM Same noisy time series No smoothing With smoothing: Noise damping per frequency With smoothing

43 OVERVIEW Frequency analysis Wavelet analysis Cycles and trend Significance testing Smoothing Example of analysis with WAVEPAL

44 WAVEPAL Available on Github: Available for Mac and Linux. Possibly also for Windows in a next version. Easy to install (should be ): it also installs Python and its dependencies. Written in Python 2 => Some knowledge of Python is required. 1 small tutorial for the moment. More to come. Recommended coding practice: with the Jupyter notebook. Tutorial:

45 BACKGROUND NOISE ANALYSIS

Continuous Wavelet Transform Reconstruction Factors for Selected Wavelets

Continuous Wavelet Transform Reconstruction Factors for Selected Wavelets Continuous Wavelet Transform Reconstruction Factors for Selected Wavelets General Background This report expands on certain aspects of the analytical strategy for the Continuous Wavelet Transform (CWT)

More information

DATA IN SERIES AND TIME I. Several different techniques depending on data and what one wants to do

DATA IN SERIES AND TIME I. Several different techniques depending on data and what one wants to do DATA IN SERIES AND TIME I Several different techniques depending on data and what one wants to do Data can be a series of events scaled to time or not scaled to time (scaled to space or just occurrence)

More information

Signal interactions Cross correlation, cross spectral coupling and significance testing Centre for Doctoral Training in Healthcare Innovation

Signal interactions Cross correlation, cross spectral coupling and significance testing Centre for Doctoral Training in Healthcare Innovation Signal interactions Cross correlation, cross spectral coupling and significance testing Centre for Doctoral Training in Healthcare Innovation Dr. Gari D. Clifford, University Lecturer & Director, Centre

More information

Hilbert-Huang and Morlet wavelet transformation

Hilbert-Huang and Morlet wavelet transformation Hilbert-Huang and Morlet wavelet transformation Sonny Lion (sonny.lion@obspm.fr) LESIA, Observatoire de Paris The Hilbert-Huang Transform The main objective of this talk is to serve as a guide for understanding,

More information

Up/down-sampling & interpolation Centre for Doctoral Training in Healthcare Innovation

Up/down-sampling & interpolation Centre for Doctoral Training in Healthcare Innovation Up/down-sampling & interpolation Centre for Doctoral Training in Healthcare Innovation Dr. Gari D. Clifford, University Lecturer & Director, Centre for Doctoral Training in Healthcare Innovation, Institute

More information

The Spectral Density Estimation of Stationary Time Series with Missing Data

The Spectral Density Estimation of Stationary Time Series with Missing Data The Spectral Density Estimation of Stationary Time Series with Missing Data Jian Huang and Finbarr O Sullivan Department of Statistics University College Cork Ireland Abstract The spectral estimation of

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : X(t) = µ + Asin(ω 0 t)+ Δ δ ( t t 0 ) ±σ N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

PROGRAM WWZ: WAVELET ANALYSIS OF ASTRONOMICAL SIGNALS WITH IRREGULARLY SPACED ARGUMENTS

PROGRAM WWZ: WAVELET ANALYSIS OF ASTRONOMICAL SIGNALS WITH IRREGULARLY SPACED ARGUMENTS Odessa Astronomical Publications, v. 26, No. 1 (2013) PROGRAM WWZ: WAVELET ANALYSIS OF ASTRONOMICAL SIGNALS WITH IRREGULARLY SPACED ARGUMENTS Ivan L. Andronov 1, Alevtina V. Naumova 2 Department High and

More information

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ).

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ). Wavelet Transform Andreas Wichert Department of Informatics INESC-ID / IST - University of Lisboa Portugal andreas.wichert@tecnico.ulisboa.pt September 3, 0 Short Term Fourier Transform Signals whose frequency

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

Bayesian PalaeoClimate Reconstruction from proxies:

Bayesian PalaeoClimate Reconstruction from proxies: Bayesian PalaeoClimate Reconstruction from proxies: Framework Bayesian modelling of space-time processes General Circulation Models Space time stochastic process C = {C(x,t) = Multivariate climate at all

More information

Discrete Wavelet Transform

Discrete Wavelet Transform Discrete Wavelet Transform [11] Kartik Mehra July 2017 Math 190s Duke University "1 Introduction Wavelets break signals up and then analyse them separately with a resolution that is matched with scale.

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Point-to-point response to reviewers comments

Point-to-point response to reviewers comments Point-to-point response to reviewers comments Reviewer #1 1) The authors analyze only one millennial reconstruction (Jones, 1998) with the argument that it is the only one available. This is incorrect.

More information

Biomedical Signal Processing and Signal Modeling

Biomedical Signal Processing and Signal Modeling Biomedical Signal Processing and Signal Modeling Eugene N. Bruce University of Kentucky A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto

More information

Statistical modelling in climate science

Statistical modelling in climate science Statistical modelling in climate science Nikola Jajcay supervisor Milan Paluš Seminář strojového učení a modelovaní MFF UK seminář 2016 1 Introduction modelling in climate science dynamical model initial

More information

Period. End of Story?

Period. End of Story? Period. End of Story? Twice Around With Period Detection: Updated Algorithms Eric L. Michelsen UCSD CASS Journal Club, January 9, 2015 Can you read this? 36 pt This is big stuff 24 pt This makes a point

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring Lecture 8 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2015 http://www.astro.cornell.edu/~cordes/a6523 Applications: Bayesian inference: overview and examples Introduction

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

REDFIT: estimatingred-noise spectra directly from unevenly spaced paleoclimatic time series $

REDFIT: estimatingred-noise spectra directly from unevenly spaced paleoclimatic time series $ Computers & Geosciences 28 (2002) 421 426 REDFIT: estimatingred-noise spectra directly from unevenly spaced paleoclimatic time series $ Michael Schulz a, *, Manfred Mudelsee b a Institut f.ur Geowissenschaften,

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Unit Root Tests ECON/FIN

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications Yongmiao Hong Department of Economics & Department of Statistical Sciences Cornell University Spring 2019 Time and uncertainty

More information

Introducing the attribute of centroid of scale in wavelet domain and its application for seismic exploration

Introducing the attribute of centroid of scale in wavelet domain and its application for seismic exploration P-68 Introducing the attribute of centroid of scale in wavelet domain Dr Farahnaz Ashrafion Estahan, Teheran, Iran Summary This paper derives a scalogram formula of seismic wave in wavelet domain from

More information

Brownian motion and the Central Limit Theorem

Brownian motion and the Central Limit Theorem Brownian motion and the Central Limit Theorem Amir Bar January 4, 3 Based on Shang-Keng Ma, Statistical Mechanics, sections.,.7 and the course s notes section 6. Introduction In this tutorial we shall

More information

Irregularly Spaced Time Series Data with Time Scale. Measurement Error

Irregularly Spaced Time Series Data with Time Scale. Measurement Error Irregularly Spaced Time Series Data with Time Scale Measurement Error by Pulindu Ratnasekera B.Sc. (Hons.), University of Sri Jayewardenepura, Sri Lanka, 2010 Project Submitted in Partial Fulfillment of

More information

Unstable Oscillations!

Unstable Oscillations! Unstable Oscillations X( t ) = [ A 0 + A( t ) ] sin( ω t + Φ 0 + Φ( t ) ) Amplitude modulation: A( t ) Phase modulation: Φ( t ) S(ω) S(ω) Special case: C(ω) Unstable oscillation has a broader periodogram

More information

M2R IVR, October 12th Mathematical tools 1 - Session 2

M2R IVR, October 12th Mathematical tools 1 - Session 2 Mathematical tools 1 Session 2 Franck HÉTROY M2R IVR, October 12th 2006 First session reminder Basic definitions Motivation: interpolate or approximate an ordered list of 2D points P i n Definition: spline

More information

Issues in estimating past climate change at local scale.

Issues in estimating past climate change at local scale. 14th EMS Annual Meeting, Prague Oct. 6th 2014 Issues in estimating past climate change at local scale. Case study: the recent warming (1959-2009) over France. Lola Corre (Division de la Climatologie, Météo-France)

More information

Math 301 Final Exam. Dr. Holmes. December 17, 2007

Math 301 Final Exam. Dr. Holmes. December 17, 2007 Math 30 Final Exam Dr. Holmes December 7, 2007 The final exam begins at 0:30 am. It ends officially at 2:30 pm; if everyone in the class agrees to this, it will continue until 2:45 pm. The exam is open

More information

Independent Component Analysis of Rock Magnetic Measurements

Independent Component Analysis of Rock Magnetic Measurements Independent Component Analysis of Rock Magnetic Measurements Norbert Marwan March 18, 23 Title Today I will not talk about recurrence plots. Marco and Mamen will talk about them later. Moreover, for the

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : ( ) ±σ X(t) = µ + Asin(ω 0 t)+ Δ δ t t 0 N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

Damped harmonic motion

Damped harmonic motion Damped harmonic motion March 3, 016 Harmonic motion is studied in the presence of a damping force proportional to the velocity. The complex method is introduced, and the different cases of under-damping,

More information

REGULARIZED ESTIMATION OF LINE SPECTRA FROM IRREGULARLY SAMPLED ASTROPHYSICAL DATA. Sébastien Bourguignon, Hervé Carfantan, Loïc Jahan

REGULARIZED ESTIMATION OF LINE SPECTRA FROM IRREGULARLY SAMPLED ASTROPHYSICAL DATA. Sébastien Bourguignon, Hervé Carfantan, Loïc Jahan REGULARIZED ESTIMATION OF LINE SPECTRA FROM IRREGULARLY SAMPLED ASTROPHYSICAL DATA Sébastien Bourguignon, Hervé Carfantan, Loïc Jahan Laboratoire d Astrophysique de Toulouse - Tarbes, UMR 557 CNRS/UPS

More information

Statistical Applications in the Astronomy Literature II Jogesh Babu. Center for Astrostatistics PennState University, USA

Statistical Applications in the Astronomy Literature II Jogesh Babu. Center for Astrostatistics PennState University, USA Statistical Applications in the Astronomy Literature II Jogesh Babu Center for Astrostatistics PennState University, USA 1 The likelihood ratio test (LRT) and the related F-test Protassov et al. (2002,

More information

A23D-0254: Analysis Procedures for Model-Based Interpretation and Extrapolation of High-Resolution ESF Measurements

A23D-0254: Analysis Procedures for Model-Based Interpretation and Extrapolation of High-Resolution ESF Measurements A23D-0254: Analysis Procedures for Model-Based Interpretation and Extrapolation of High-Resolution ESF Measurements Authors: Charles L Rino 1, Charles S Carrano 2, Patrick A Roddy 3, John M Retterer 2

More information

Time Series. Anthony Davison. c

Time Series. Anthony Davison. c Series Anthony Davison c 2008 http://stat.epfl.ch Periodogram 76 Motivation............................................................ 77 Lutenizing hormone data..................................................

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Jean Morlet and the Continuous Wavelet Transform (CWT)

Jean Morlet and the Continuous Wavelet Transform (CWT) Jean Morlet and the Continuous Wavelet Transform (CWT) Brian Russell 1 and Jiajun Han 1 CREWES Adjunct Professor CGG GeoSoftware Calgary Alberta. www.crewes.org Introduction In 198 Jean Morlet a geophysicist

More information

Tyler Wixtrom Texas Tech University Unidata Users Workshop June 2018 Boulder, CO. 7/2/2018 workshop_slides slides

Tyler Wixtrom Texas Tech University Unidata Users Workshop June 2018 Boulder, CO. 7/2/2018 workshop_slides slides Ensemble Visualization and Veri cation in Python Tyler Wixtrom Texas Tech University tyler.wixtrom@ttu.edu Unidata Users Workshop 25-28 June 2018 Boulder, CO http://127.0.0.1:8000/workshop_slides.slides.html?print-pdf#/

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Using frequency domain techniques with US real GNP data: A Tour D Horizon

Using frequency domain techniques with US real GNP data: A Tour D Horizon Using frequency domain techniques with US real GNP data: A Tour D Horizon Patrick M. Crowley TAMUCC October 2011 Patrick M. Crowley (TAMUCC) Bank of Finland October 2011 1 / 45 Introduction "The existence

More information

Statistical Analysis of fmrl Data

Statistical Analysis of fmrl Data Statistical Analysis of fmrl Data F. Gregory Ashby The MIT Press Cambridge, Massachusetts London, England Preface xi Acronyms xv 1 Introduction 1 What Is fmri? 2 The Scanning Session 4 Experimental Design

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

Timescales of variability discussion

Timescales of variability discussion Timescales of variability discussion Stochastic process? Randomly changing over time (at least in part).. (Probability distribution of time series) 1 Stationary process? Statistics (e.g., mean and variance)

More information

Regression Retrieval Overview. Larry McMillin

Regression Retrieval Overview. Larry McMillin Regression Retrieval Overview Larry McMillin Climate Research and Applications Division National Environmental Satellite, Data, and Information Service Washington, D.C. Larry.McMillin@noaa.gov Pick one

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Hydrological statistics for engineering design in a varying climate

Hydrological statistics for engineering design in a varying climate EGS - AGU - EUG Joint Assembly Nice, France, 6- April 23 Session HS9/ Climate change impacts on the hydrological cycle, extremes, forecasting and implications on engineering design Hydrological statistics

More information

Development of Techniques for Data Interpretation

Development of Techniques for Data Interpretation Development of Techniques for Data Interpretation (CoRoT + Gaia heritage) Conny Aerts for the Leuven MOST, CoRoT & Gaia Teams p. 1 Kepler and variable stars Kepler will discover many new pulsators (many

More information

Multiresolution Models of Time Series

Multiresolution Models of Time Series Multiresolution Models of Time Series Andrea Tamoni (Bocconi University ) 2011 Tamoni Multiresolution Models of Time Series 1/ 16 General Framework Time-scale decomposition General Framework Begin with

More information

Introduction to Spectral and Time-Spectral Analysis with some Applications

Introduction to Spectral and Time-Spectral Analysis with some Applications Introduction to Spectral and Time-Spectral Analysis with some Applications A.INTRODUCTION Consider the following process X t = U cos[(=3)t] + V sin[(=3)t] Where *E[U] = E[V ] = 0 *E[UV ] = 0 *V ar(u) =

More information

The cts Package. June 23, 2006

The cts Package. June 23, 2006 The cts Package June 23, 2006 Title Continuous Time Autoregressive Models Version 1.0 Author Fortran original by G. Tunnicliffe-Wilson and Zhu Wang, R port by Zhu Wang. Continuous Time Autoregressive Models

More information

Assignment #09 - Solution Manual

Assignment #09 - Solution Manual Assignment #09 - Solution Manual 1. Choose the correct statements about representation of a continuous signal using Haar wavelets. 1.5 points The signal is approximated using sin and cos functions. The

More information

Onboard Engine FDI in Autonomous Aircraft Using Stochastic Nonlinear Modelling of Flight Signal Dependencies

Onboard Engine FDI in Autonomous Aircraft Using Stochastic Nonlinear Modelling of Flight Signal Dependencies Onboard Engine FDI in Autonomous Aircraft Using Stochastic Nonlinear Modelling of Flight Signal Dependencies Dimitrios G. Dimogianopoulos, John D. Hios and Spilios D. Fassois Stochastic Mechanical Systems

More information

arxiv: v1 [astro-ph.im] 28 Mar 2017

arxiv: v1 [astro-ph.im] 28 Mar 2017 Understanding the Lomb-Scargle Periodogram Jacob T. VanderPlas 1 ABSTRACT arxiv:1703.09824v1 [astro-ph.im] 28 Mar 2017 The Lomb-Scargle periodogram is a well-known algorithm for detecting and characterizing

More information

Variable and Periodic Signals in Astronomy

Variable and Periodic Signals in Astronomy Lecture 14: Variability and Periodicity Outline 1 Variable and Periodic Signals in Astronomy 2 Lomb-Scarle diagrams 3 Phase dispersion minimisation 4 Kolmogorov-Smirnov tests 5 Fourier Analysis Christoph

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Parameter estimation in epoch folding analysis

Parameter estimation in epoch folding analysis ASTRONOMY & ASTROPHYSICS MAY II 1996, PAGE 197 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 117, 197-21 (1996) Parameter estimation in epoch folding analysis S. Larsson Stockholm Observatory, S-13336

More information

Independent Component Analysis. Contents

Independent Component Analysis. Contents Contents Preface xvii 1 Introduction 1 1.1 Linear representation of multivariate data 1 1.1.1 The general statistical setting 1 1.1.2 Dimension reduction methods 2 1.1.3 Independence as a guiding principle

More information

AFI (AVO Fluid Inversion)

AFI (AVO Fluid Inversion) AFI (AVO Fluid Inversion) Uncertainty in AVO: How can we measure it? Dan Hampson, Brian Russell Hampson-Russell Software, Calgary Last Updated: April 2005 Authors: Dan Hampson, Brian Russell 1 Overview

More information

False Alarm Probability based on bootstrap and extreme-value methods for periodogram peaks

False Alarm Probability based on bootstrap and extreme-value methods for periodogram peaks False Alarm Probability based on bootstrap and extreme-value methods for periodogram peaks M. Süveges ISDC Data Centre for Astrophysics, University of Geneva, Switzerland Abstract One of the most pertinent

More information

Multichannel Deconvolution of Layered Media Using MCMC methods

Multichannel Deconvolution of Layered Media Using MCMC methods Multichannel Deconvolution of Layered Media Using MCMC methods Idan Ram Electrical Engineering Department Technion Israel Institute of Technology Supervisors: Prof. Israel Cohen and Prof. Shalom Raz OUTLINE.

More information

Variable and Periodic Signals in Astronomy

Variable and Periodic Signals in Astronomy Lecture 14: Variability and Periodicity Outline 1 Variable and Periodic Signals in Astronomy 2 Lomb-Scarle diagrams 3 Phase dispersion minimisation 4 Kolmogorov-Smirnov tests 5 Fourier Analysis Christoph

More information

FOURIER TRANSFORMS. f n = 1 N. ie. cyclic. dw = F k 2 = N 1. See Brault & White 1971, A&A, , for a tutorial introduction.

FOURIER TRANSFORMS. f n = 1 N. ie. cyclic. dw = F k 2 = N 1. See Brault & White 1971, A&A, , for a tutorial introduction. FOURIER TRANSFORMS F(w) = T 0 f(t) e iwt dt f(t) = 1 2π wn w N F(w) e iwt dw F k = N 1 n=0 f n e 2πikn/N f n = 1 N N 1 k=0 F k e 2πikn/N Properties 1. Shift origin by t F F e iw t F invariant F 2 = power

More information

Centre for Mathematical Sciences HT 2017 Mathematical Statistics

Centre for Mathematical Sciences HT 2017 Mathematical Statistics Lund University Stationary stochastic processes Centre for Mathematical Sciences HT 2017 Mathematical Statistics Computer exercise 3 in Stationary stochastic processes, HT 17. The purpose of this exercise

More information

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES This document is meant as a complement to Chapter 4 in the textbook, the aim being to get a basic understanding of spectral densities through

More information

Review of spectral analysis methods applied to sea level anomaly signals

Review of spectral analysis methods applied to sea level anomaly signals Review of spectral analysis methods applied to sea level anomaly signals C. Mailhes 1, D. Bonacci 1, O. Besson 1, A. Guillot 2, S. Le Gac 2, N. Steunou 2, C. Cheymol 2, N. Picot 2 1. Telecommunications

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

Wavelet analysis of the parameters of edge plasma fluctuations in the L-2M stellarator

Wavelet analysis of the parameters of edge plasma fluctuations in the L-2M stellarator Journal of Physics: Conference Series PAPER OPEN ACCESS Wavelet analysis of the parameters of edge plasma fluctuations in the L-2M stellarator To cite this article: S A Maslov et al 2016 J. Phys.: Conf.

More information

Variability of the North Atlantic Oscillation over the past 5,200 years

Variability of the North Atlantic Oscillation over the past 5,200 years SUPPLEMENTARY INFORMATION DOI: 1.138/NGEO1589 Variability of the North Atlantic Oscillation over the past 5,2 years Jesper Olsen a N. John Anderson b Mads F. Knudsen c a 14 CHRONO Centre for Climate, the

More information

Lecture 2: ARMA(p,q) models (part 2)

Lecture 2: ARMA(p,q) models (part 2) Lecture 2: ARMA(p,q) models (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.

More information

Introduction to time-frequency analysis. From linear to energy-based representations

Introduction to time-frequency analysis. From linear to energy-based representations Introduction to time-frequency analysis. From linear to energy-based representations Rosario Ceravolo Politecnico di Torino Dep. Structural Engineering UNIVERSITA DI TRENTO Course on «Identification and

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

(a)

(a) Chapter 8 Subspace Methods 8. Introduction Principal Component Analysis (PCA) is applied to the analysis of time series data. In this context we discuss measures of complexity and subspace methods for

More information

An introduction to Bayesian inference and model comparison J. Daunizeau

An introduction to Bayesian inference and model comparison J. Daunizeau An introduction to Bayesian inference and model comparison J. Daunizeau ICM, Paris, France TNU, Zurich, Switzerland Overview of the talk An introduction to probabilistic modelling Bayesian model comparison

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

Wavelet entropy as a measure of solar cycle complexity

Wavelet entropy as a measure of solar cycle complexity Astron. Astrophys. 363, 3 35 () Wavelet entropy as a measure of solar cycle complexity S. Sello Mathematical and Physical Models, Enel Research, Via Andrea Pisano, 56 Pisa, Italy (sello@pte.enel.it) Received

More information

Towards jointly-determined magnetospheric periods

Towards jointly-determined magnetospheric periods Towards jointly-determined magnetospheric periods Dave Andrews ISSI, October 2015 david.andrews@irfu.se Outline Lots of independent work done on determining rotation periods of various magnetospheric phenomena

More information

Fourier Analysis of Stationary and Non-Stationary Time Series

Fourier Analysis of Stationary and Non-Stationary Time Series Fourier Analysis of Stationary and Non-Stationary Time Series September 6, 2012 A time series is a stochastic process indexed at discrete points in time i.e X t for t = 0, 1, 2, 3,... The mean is defined

More information

On the relationship between intra-oral pressure and speech sonority

On the relationship between intra-oral pressure and speech sonority On the relationship between intra-oral pressure and speech sonority Anne Cros, Didier Demolin, Ana Georgina Flesia, Antonio Galves Interspeech 2005 1 We address the question of the relationship between

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Overview of ArcGIS Enterprise August 24, Dan Haag ESRI

Overview of ArcGIS Enterprise August 24, Dan Haag ESRI Overview of ArcGIS Enterprise August 24, 2017 Dan Haag ESRI Sharing to a portal ArcGIS 10.3 portal Central destination for all of your geospatial assets in Web GIS - ArcGIS Online organization and/or Portal

More information

Vulnerability of economic systems

Vulnerability of economic systems Vulnerability of economic systems Quantitative description of U.S. business cycles using multivariate singular spectrum analysis Andreas Groth* Michael Ghil, Stéphane Hallegatte, Patrice Dumas * Laboratoire

More information

Stationary Graph Processes: Nonparametric Spectral Estimation

Stationary Graph Processes: Nonparametric Spectral Estimation Stationary Graph Processes: Nonparametric Spectral Estimation Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Dept. of Signal Theory and Communications King Juan Carlos University

More information

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2 Corner Detection 2D Image Features Corners are important two dimensional features. Two dimensional image features are interesting local structures. They include junctions of dierent types Slide 3 They

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

Uncertainty quantification for inverse problems with a weak wave-equation constraint

Uncertainty quantification for inverse problems with a weak wave-equation constraint Uncertainty quantification for inverse problems with a weak wave-equation constraint Zhilong Fang*, Curt Da Silva*, Rachel Kuske** and Felix J. Herrmann* *Seismic Laboratory for Imaging and Modeling (SLIM),

More information

lightcurve Data Processing program v1.0

lightcurve Data Processing program v1.0 lightcurve Data Processing program v1.0 Build 8/22/2012 Using Lightcurve... 1 Lightcurve Command Line Parameters... 2 Lightcurve Outputs and Files... 3 Lightcurve Examples... 3 Data File Formats... 4 Lightcurve

More information

Figure 18: Top row: example of a purely continuous spectrum (left) and one realization

Figure 18: Top row: example of a purely continuous spectrum (left) and one realization 1..5 S(). -.2 -.5 -.25..25.5 64 128 64 128 16 32 requency time time Lag 1..5 S(). -.5-1. -.5 -.1.1.5 64 128 64 128 16 32 requency time time Lag Figure 18: Top row: example o a purely continuous spectrum

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Supplementary Note on Bayesian analysis

Supplementary Note on Bayesian analysis Supplementary Note on Bayesian analysis Structured variability of muscle activations supports the minimal intervention principle of motor control Francisco J. Valero-Cuevas 1,2,3, Madhusudhan Venkadesan

More information

Corner. Corners are the intersections of two edges of sufficiently different orientations.

Corner. Corners are the intersections of two edges of sufficiently different orientations. 2D Image Features Two dimensional image features are interesting local structures. They include junctions of different types like Y, T, X, and L. Much of the work on 2D features focuses on junction L,

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information