Multiresolution Models of Time Series

Size: px
Start display at page:

Download "Multiresolution Models of Time Series"

Transcription

1 Multiresolution Models of Time Series Andrea Tamoni (Bocconi University ) 2011 Tamoni Multiresolution Models of Time Series 1/ 16

2 General Framework Time-scale decomposition General Framework Begin with a univariate time series {x t i } i Z For a specified positive integer m, define the process x s (m) by x (m) s = 1 m m 1 i=0 x t+(s 1)m i The x s (m) values are the averages of non-overlapping groups of m consecutive x values Refer to m as the coarsening window, x t as the fine-level process and x s (m) as the coarse-level aggregate process Tamoni Multiresolution Models of Time Series 2/ 16

3 Time-scale Decomposition General Framework Let {x t i } i Z be the observed time series Let us focus on block of length N = 4 (for convenience, we assume N = 2 J for some J) X t = [x t 3, x t 2, x t 1, x t ] Consider the two-level (orthogonal) transform matrix, i.e W 2 = Tamoni Multiresolution Models of Time Series 3/ 16

4 General Framework Time-scale Decomposition - Cont d Two-level decomposition is performed as follows W = W 2 X t where W = (a 2,t, w 2,t, w 1,t 2, w 1,t ) a 2,t = (xt + x t 1 + x t 2 + x t 3 ) 4 w 2,t = (xt + x t 1 x t 2 x t 3 ) 4 w 1,t 2 = (x t 2 x t 3 ) 2 w 1,t = (xt x t 1) 2 It is possible to reconstruct the time series at different levels of aggregation, i.e. x t = a 2,t + w 2,t + w 1,t x (2) t = a 2,t + w 2,t x (4) t = a 2,t Tamoni Multiresolution Models of Time Series 4/ 16

5 General Framework Decomposition in time-scale components - Interpretation Note that the j-th coefficient is in general obtained as follows w j,t = 2 j 1 i=0 x t i }{{ 2 j } [ low pass filter 0, ] 1 2 j 2 j 1 1 i=0 x t 2 j 1 i } 2{{ j 1 } [ low pass filter 0, Overall w j,t is a band-pass filter with [ 1 2 j 1, 1 2 j ] ] 1 2 j 1 Recall that x t = 2 j=1 w j,t + a 2,t and x (2) t = w 2,t + a 2,t and x (4) t = a 2,t Intuitively w 1,t yields changes on scale 1, i.e. [... t, t + 1, t + 2,...] w 2,t yields changes on scale 2, i.e. [... t, t + 2, t + 4,...] a 2,t yields changes on scale 2, i.e. [... t, t + 4, t + 8,...] Tamoni Multiresolution Models of Time Series 5/ 16

6 General Framework Decomposition in time-scale components - Extensions Let X t = [x t N+1,..., x t 2, x t 1, x t ] where N = 2 J Consider the J-level (orthogonal) transform matrix W J and construct W = W J X t We can partition W as follows W = a J W J W J 1. W 1 We obtain J + 1 time series {{W j } j, a J } each containing N 2 j coefficients, i.e. W j = (w j,t 2 J +1,..., w j,t 2 j, w j,t ) The series W j is related to times spaced 2 j units apart Tamoni Multiresolution Models of Time Series 6/ 16

7 Statistical Properties of the coefficients W j Let {x t i } i Z be a wide-sense stationary process Wong (1993) establishes that {w j,k } are wide-sense stationary for a fixed j We can write the following representation (understood to be in mean square sense) where x t = J j=1 k=0 w j,k ɛ j,t k 2 j (1) ɛ j,t = x (2j ) t P x (2j ) Mj,t 2 j t are called Haar innovations and we let M j,t = sp { x (2j ) t k2 j }k N The spectral representation (1) holds for a broader class of processes known as Affine stationary processes (see Yazici, 1996) Tamoni Multiresolution Models of Time Series 7/ 16

8 Statistical Properties of the coefficients W j - Cont d Whenever ɛ j,t }{{} x (2j ) t P Mj,t 2 j x(2j ) t = 2 j 1 i=0 ɛ t i 2 j }{{} 2 j 1 i=0 x t i P Mt i 1 x t i { where M j,t = sp x (2j ) t k2 }k N and M j t = sp {x t k } k N then we obtain the standard wold decomposition { The sp x (2j ) is the set of all linear combinations of t k2 }k N j and therefore is a subset of the sigma-algebra { } generated by x (2j ) t, x (2j ),... t 2 j x (2j ) t k2 j Tamoni Multiresolution Models of Time Series 8/ 16

9 Time series and shocks at different time scales Tamoni Multiresolution Models of Time Series 9/ 16

10 Classical vs. Multiscale modeling Illustrative Example ARMA time series model for fine-level process In this section we not only aggregate data but we also aggregate the model! Let x t be an ARMA(p,q) process Brewer (1973) shows that the time series model governing x s (m) is an ARMA(p,q ) where p = p and q = p (q p 1) m for any finite m Assume x t follows an AR(1) process with autoregressive coefficient equal to ρ The pattern of autocorrelations of the temporally aggregated variable x s (m) is determined by the autoregressive coefficient ρ m Tamoni Multiresolution Models of Time Series 10/ 16

11 Multi-scale time-series modeling Classical vs. Multiscale modeling Illustrative Example What if instead the autocorrelation function at horizon h has a decay governed by ρ h > ρ? The question is how can we make the autocorrelation functions at the fine- and coarse-level compatible We use the approach suggested by Dijkerman (1994) and define a multiresolution model on the {W j } series. The multi-scale autoregressive process is defined by an AR(1) process at each level j, i.e. w j,t+2 j = ρ j w j,t + ɛ j,t+2 j for all j, where ɛ j,t+2 j is Gaussian noise with variance equal to σ j independent across scales Tamoni Multiresolution Models of Time Series 11/ 16

12 An example Time-scale decomposition Classical vs. Multiscale modeling Illustrative Example The fine scale interval is 1 year. Suppose J = 3. a 3,t = ρ 4 a 3,t 8 + ɛ 3,t+4 w 3,t = ɛ 3,t w 2,t = ɛ 2,t w 1,t = ρ 1 w 1,t 2 + ɛ 1,t Recall that x (8) t = a 3,t thus a 3,t pins down the autocorrelation of the process at coarse level. Moreover x t = w 1,t + w 2,t + w 3,t + a 3,t. The decay of the autocorrelation function at the fine-level is controlled by the parameters σ j j = 1,..., J (only through the ratio) Tamoni Multiresolution Models of Time Series 12/ 16

13 Classical vs. Multiscale modeling Illustrative Example Correlation functions on different time scales Tamoni Multiresolution Models of Time Series 13/ 16

14 Classical vs. Multiscale modeling Illustrative Example Correlation functions on different time scales - Cont d Tamoni Multiresolution Models of Time Series 14/ 16

15 Literature Time-scale decomposition Classical vs. Multiscale modeling Illustrative Example Tiao, G.C., 1972, Asymptotic behavior of temporal aggregates of time series, Biometrika 59, Brewer, K.R.W, 1973, Some Consequences of Temporal Aggregation and Systematic Sampling for ARMA and ARMAX Models, Journal of Econometrics, 1, Wong, P.W., 1993, Multiresolution Decomposition of Harmonizable Random Processes, IEEE Transactions on Information Theory, pp R.W. Dijkerman and R.R. Mazumdar, 1994, Wavelet Representations of Stochastic Processes and Multiresolution Stochastic Models. IEEE Transactions on Signal Processing, Vol. 42. No. 7 B. Yazici and R. L. Kashyap, 1996, Affine stationary processes, Proceedings of Conference on Information Sciences and Systems, pp , Princeton NJ. March Tamoni Multiresolution Models of Time Series 15/ 16

16 Affine Stationary Processes Classical vs. Multiscale modeling Illustrative Example A stochastic process x j,t is called affine stationary if it satisfies the following conditions: ( j E[x j,t x j,t ] = R j, 1 ) j (t t ) Within the same scale, i.e. j = j an affine stationary process reduces to an ordinary wide sense stationary process Across the scales for a fixed shift index, i.e. t = t the process reduces to a class of self-similar processes known as scale stationary process. Example: the increments of the fractional Brownian motion Wold decomposition Tamoni Multiresolution Models of Time Series 16/ 16

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Lecture 2: ARMA(p,q) models (part 2)

Lecture 2: ARMA(p,q) models (part 2) Lecture 2: ARMA(p,q) models (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d)

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d) Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d) Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

Trend-Cycle Decompositions

Trend-Cycle Decompositions Trend-Cycle Decompositions Eric Zivot April 22, 2005 1 Introduction A convenient way of representing an economic time series y t is through the so-called trend-cycle decomposition y t = TD t + Z t (1)

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

Wavelet Neural Networks for Nonlinear Time Series Analysis

Wavelet Neural Networks for Nonlinear Time Series Analysis Applied Mathematical Sciences, Vol. 4, 2010, no. 50, 2485-2495 Wavelet Neural Networks for Nonlinear Time Series Analysis K. K. Minu, M. C. Lineesh and C. Jessy John Department of Mathematics National

More information

Using wavelet tools to estimate and assess trends in atmospheric data

Using wavelet tools to estimate and assess trends in atmospheric data NRCSE Using wavelet tools to estimate and assess trends in atmospheric data Wavelets Fourier analysis uses big waves Wavelets are small waves Requirements for wavelets Integrate to zero Square integrate

More information

ARIMA Models. Richard G. Pierse

ARIMA Models. Richard G. Pierse ARIMA Models Richard G. Pierse 1 Introduction Time Series Analysis looks at the properties of time series from a purely statistical point of view. No attempt is made to relate variables using a priori

More information

Univariate Nonstationary Time Series 1

Univariate Nonstationary Time Series 1 Univariate Nonstationary Time Series 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Introduction

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA Applied Time Series Analysis Wayne A. Woodward Southern Methodist University Dallas, Texas, USA Henry L. Gray Southern Methodist University Dallas, Texas, USA Alan C. Elliott University of Texas Southwestern

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes Chapter 2 Some basic tools 2.1 Time series: Theory 2.1.1 Stochastic processes A stochastic process is a sequence of random variables..., x 0, x 1, x 2,.... In this class, the subscript always means time.

More information

An Introduction to Wavelets with Applications in Environmental Science

An Introduction to Wavelets with Applications in Environmental Science An Introduction to Wavelets with Applications in Environmental Science Don Percival Applied Physics Lab, University of Washington Data Analysis Products Division, MathSoft overheads for talk available

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

Cointegrated VARIMA models: specification and. simulation

Cointegrated VARIMA models: specification and. simulation Cointegrated VARIMA models: specification and simulation José L. Gallego and Carlos Díaz Universidad de Cantabria. Abstract In this note we show how specify cointegrated vector autoregressive-moving average

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

THIS work addresses a class of inverse problems that are

THIS work addresses a class of inverse problems that are 494 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 3, MARCH 2004 Stochastic Deconvolution Over Groups Birsen Yazici, Member, IEEE Abstract In this paper, we address a class of inverse problems that

More information

Multiresolution analysis & wavelets (quick tutorial)

Multiresolution analysis & wavelets (quick tutorial) Multiresolution analysis & wavelets (quick tutorial) Application : image modeling André Jalobeanu Multiresolution analysis Set of closed nested subspaces of j = scale, resolution = 2 -j (dyadic wavelets)

More information

ECON 616: Lecture 1: Time Series Basics

ECON 616: Lecture 1: Time Series Basics ECON 616: Lecture 1: Time Series Basics ED HERBST August 30, 2017 References Overview: Chapters 1-3 from Hamilton (1994). Technical Details: Chapters 2-3 from Brockwell and Davis (1987). Intuition: Chapters

More information

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 6.3. FORECASTING ARMA PROCESSES 123 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

M O N A S H U N I V E R S I T Y

M O N A S H U N I V E R S I T Y ISSN 440-77X ISBN 0 736 066 4 M O N A S H U N I V E R S I T Y AUSTRALIA A Test for the Difference Parameter of the ARIFMA Model Using the Moving Blocks Bootstrap Elizabeth Ann Mahara Working Paper /99

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

Nonparametric and Parametric Defined This text distinguishes between systems and the sequences (processes) that result when a WN input is applied

Nonparametric and Parametric Defined This text distinguishes between systems and the sequences (processes) that result when a WN input is applied Linear Signal Models Overview Introduction Linear nonparametric vs. parametric models Equivalent representations Spectral flatness measure PZ vs. ARMA models Wold decomposition Introduction Many researchers

More information

Quantitative Finance II Lecture 10

Quantitative Finance II Lecture 10 Quantitative Finance II Lecture 10 Wavelets III - Applications Lukas Vacha IES FSV UK May 2016 Outline Discrete wavelet transformations: MODWT Wavelet coherence: daily financial data FTSE, DAX, PX Wavelet

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Tessa L. Childers-Day February 8, 2013 1 Introduction Today s section will deal with topics such as: the mean function, the auto- and cross-covariance

More information

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8]

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] 1 Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] Insights: Price movements in one market can spread easily and instantly to another market [economic globalization and internet

More information

Time Series 3. Robert Almgren. Sept. 28, 2009

Time Series 3. Robert Almgren. Sept. 28, 2009 Time Series 3 Robert Almgren Sept. 28, 2009 Last time we discussed two main categories of linear models, and their combination. Here w t denotes a white noise: a stationary process with E w t ) = 0, E

More information

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations Ch 15 Forecasting Having considered in Chapter 14 some of the properties of ARMA models, we now show how they may be used to forecast future values of an observed time series For the present we proceed

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

Ch. 14 Stationary ARMA Process

Ch. 14 Stationary ARMA Process Ch. 14 Stationary ARMA Process A general linear stochastic model is described that suppose a time series to be generated by a linear aggregation of random shock. For practical representation it is desirable

More information

Spectral Analysis. Jesús Fernández-Villaverde University of Pennsylvania

Spectral Analysis. Jesús Fernández-Villaverde University of Pennsylvania Spectral Analysis Jesús Fernández-Villaverde University of Pennsylvania 1 Why Spectral Analysis? We want to develop a theory to obtain the business cycle properties of the data. Burns and Mitchell (1946).

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Time Series Outlier Detection

Time Series Outlier Detection Time Series Outlier Detection Tingyi Zhu July 28, 2016 Tingyi Zhu Time Series Outlier Detection July 28, 2016 1 / 42 Outline Time Series Basics Outliers Detection in Single Time Series Outlier Series Detection

More information

5: MULTIVARATE STATIONARY PROCESSES

5: MULTIVARATE STATIONARY PROCESSES 5: MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalarvalued random variables on the same probability

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be ed to

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be  ed to TIME SERIES Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be emailed to Y.Chen@statslab.cam.ac.uk. 1. Let {X t } be a weakly stationary process with mean zero and let

More information

KALMAN-TYPE RECURSIONS FOR TIME-VARYING ARMA MODELS AND THEIR IMPLICATION FOR LEAST SQUARES PROCEDURE ANTONY G AU T I E R (LILLE)

KALMAN-TYPE RECURSIONS FOR TIME-VARYING ARMA MODELS AND THEIR IMPLICATION FOR LEAST SQUARES PROCEDURE ANTONY G AU T I E R (LILLE) PROBABILITY AND MATHEMATICAL STATISTICS Vol 29, Fasc 1 (29), pp 169 18 KALMAN-TYPE RECURSIONS FOR TIME-VARYING ARMA MODELS AND THEIR IMPLICATION FOR LEAST SQUARES PROCEDURE BY ANTONY G AU T I E R (LILLE)

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Adaptive wavelet decompositions of stochastic processes and some applications

Adaptive wavelet decompositions of stochastic processes and some applications Adaptive wavelet decompositions of stochastic processes and some applications Vladas Pipiras University of North Carolina at Chapel Hill SCAM meeting, June 1, 2012 (joint work with G. Didier, P. Abry)

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Econometrics II Heij et al. Chapter 7.1

Econometrics II Heij et al. Chapter 7.1 Chapter 7.1 p. 1/2 Econometrics II Heij et al. Chapter 7.1 Linear Time Series Models for Stationary data Marius Ooms Tinbergen Institute Amsterdam Chapter 7.1 p. 2/2 Program Introduction Modelling philosophy

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Some basic properties of cross-correlation functions of n-dimensional vector time series

Some basic properties of cross-correlation functions of n-dimensional vector time series Journal of Statistical and Econometric Methods, vol.4, no.1, 2015, 63-71 ISSN: 2241-0384 (print), 2241-0376 (online) Scienpress Ltd, 2015 Some basic properties of cross-correlation functions of n-dimensional

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

Ch 5. Models for Nonstationary Time Series. Time Series Analysis

Ch 5. Models for Nonstationary Time Series. Time Series Analysis We have studied some deterministic and some stationary trend models. However, many time series data cannot be modeled in either way. Ex. The data set oil.price displays an increasing variation from the

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

Cointegration, Stationarity and Error Correction Models.

Cointegration, Stationarity and Error Correction Models. Cointegration, Stationarity and Error Correction Models. STATIONARITY Wold s decomposition theorem states that a stationary time series process with no deterministic components has an infinite moving average

More information

Long-range dependence

Long-range dependence Long-range dependence Kechagias Stefanos University of North Carolina at Chapel Hill May 23, 2013 Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 1 / 45 Outline 1 Introduction to time series

More information

Haar wavelets. Set. 1 0 t < 1 0 otherwise. It is clear that {φ 0 (t n), n Z} is an orthobasis for V 0.

Haar wavelets. Set. 1 0 t < 1 0 otherwise. It is clear that {φ 0 (t n), n Z} is an orthobasis for V 0. Haar wavelets The Haar wavelet basis for L (R) breaks down a signal by looking at the difference between piecewise constant approximations at different scales. It is the simplest example of a wavelet transform,

More information

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036

More information

A Tutorial on Stochastic Models and Statistical Analysis for Frequency Stability Measurements

A Tutorial on Stochastic Models and Statistical Analysis for Frequency Stability Measurements A Tutorial on Stochastic Models and Statistical Analysis for Frequency Stability Measurements Don Percival Applied Physics Lab, University of Washington, Seattle overheads for talk available at http://staff.washington.edu/dbp/talks.html

More information

Expressions for the covariance matrix of covariance data

Expressions for the covariance matrix of covariance data Expressions for the covariance matrix of covariance data Torsten Söderström Division of Systems and Control, Department of Information Technology, Uppsala University, P O Box 337, SE-7505 Uppsala, Sweden

More information

An Evaluation of Errors in Energy Forecasts by the SARFIMA Model

An Evaluation of Errors in Energy Forecasts by the SARFIMA Model American Review of Mathematics and Statistics, Vol. 1 No. 1, December 13 17 An Evaluation of Errors in Energy Forecasts by the SARFIMA Model Leila Sakhabakhsh 1 Abstract Forecasting is tricky business.

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information

Analysis of Fractals, Image Compression and Entropy Encoding

Analysis of Fractals, Image Compression and Entropy Encoding Analysis of Fractals, Image Compression and Entropy Encoding Myung-Sin Song Southern Illinois University Edwardsville Jul 10, 2009 Joint work with Palle Jorgensen. Outline 1. Signal and Image processing,

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Nonstationary Time Series:

Nonstationary Time Series: Nonstationary Time Series: Unit Roots Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board Summer School in Financial Mathematics Faculty of Mathematics & Physics University of Ljubljana September

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of Index* The Statistical Analysis of Time Series by T. W. Anderson Copyright 1971 John Wiley & Sons, Inc. Aliasing, 387-388 Autoregressive {continued) Amplitude, 4, 94 case of first-order, 174 Associated

More information

Nontechnical introduction to wavelets Continuous wavelet transforms Fourier versus wavelets - examples

Nontechnical introduction to wavelets Continuous wavelet transforms Fourier versus wavelets - examples Nontechnical introduction to wavelets Continuous wavelet transforms Fourier versus wavelets - examples A major part of economic time series analysis is done in the time or frequency domain separately.

More information

Wavelet methods and null models for spatial pattern analysis

Wavelet methods and null models for spatial pattern analysis Wavelet methods and null models for spatial pattern analysis Pavel Dodonov Part of my PhD thesis, by the Federal University of São Carlos (São Carlos, SP, Brazil), supervised by Dr Dalva M. Silva-Matos

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

Mohsen Pourahmadi. 1. A sampling theorem for multivariate stationary processes. J. of Multivariate Analysis, Vol. 13, No. 1 (1983),

Mohsen Pourahmadi. 1. A sampling theorem for multivariate stationary processes. J. of Multivariate Analysis, Vol. 13, No. 1 (1983), Mohsen Pourahmadi PUBLICATIONS Books and Editorial Activities: 1. Foundations of Time Series Analysis and Prediction Theory, John Wiley, 2001. 2. Computing Science and Statistics, 31, 2000, the Proceedings

More information

ARIMA Modelling and Forecasting

ARIMA Modelling and Forecasting ARIMA Modelling and Forecasting Economic time series often appear nonstationary, because of trends, seasonal patterns, cycles, etc. However, the differences may appear stationary. Δx t x t x t 1 (first

More information