!"#$%&'(#)*'+*,+ %#--./&+0&'-&+1*"&-+ 0*2'+(*+! #"#1(&".9.'$+:"*(*1;<(&"-+

Size: px
Start display at page:

Download "!"#$%&'(#)*'+*,+ %#--./&+0&'-&+1*"&-+ 0*2'+(*+! #"#1(&".9.'$+:"*(*1;<(&"-+"

Transcription

1 !"#$%&'(#)*'+*,+ %#--./&+0&'-&+1*"&-+ 0*2'+(*+! #"#1(&".9.'$+:"*(*1;<(&"-+ 5.'#+=#;#<+!"#$%&'("')*(+&*,$%&#&-.*'/'0,$%&1,+2*'' '689+2&:' ;'

2 !"#$%&'(#)*'+*,+ %#--./&+0&'-&+1*"&-+ 0*2'+(*+! V'

3 >'("*0<1)*'+ 6"$M&('W'C+%,$')",A>$,' X#"',$"S'Y&%Z*%(['("#,+$/'*#('F' \'

4 Cone Nebula and Snowflake cluster, Spitzer, NASA, JPL-Caltech, P. S. Teixeira?*2+#"&+ -("<1(<"&-+,*"%&0+ 2.(8.'+%*;&1<;#"+ turbulence-regulated, quasi-equilibrium scenario (Mac Low & Klessen 04; Vázquez- Semadeni +00) global-hierarchical chaotic gravitational contraction (Hartmann +01; Vázquez-Semadeni 14) ]'

5 'A<"B<;&'1&C"&$<;#(&0D+E<#-.C&E<.;.B".<%+-1&'#".*+! 6!,'*%"'P>&I*>>/',ASS&%$"('I/',AS"%,&#+2'$A%IA>"#2"'*#(' 2>&,"'$&'"BA+>+I%+A-'! 6!,'"_&>_"'+#'>&#P'`-",2*>",'3,"_"%*>'$ 2%&,, :'! KAS"%,&#+2'$A%IA>"#2"'"'>&2*>'2&-S%",,+&#,'"''Y%*P-"#$,' 6!,'+#$&'("#,"',M""$,7'a>*-"#$,'*#('2&%",'3M+PM>/'%*(+*`_"',M&2b,:'! U*%P"O,2*>",['$A%IA>"#2"'P+_",',ASS&%$'*P*+#,$'P%*_+$/'+#' *((+`&#'$&'$M"%-*>',ASS&%$''''' ^'

6 'A<"B<;&'1&C"&$<;#(&0D+E<#-.C&E<.;.B".<%+-1&'#".*+ Chandrasekhar+53 see Mac Low & Klessen 04 Fragmentation: turbulent-jeans! very few grav. unstable density fluctuations in a core! naturally yields massive fragments c'

7 'F;*B#;G8.&"#"18.1#;G18#*)1+$"#/.(#)*'#;+1*'("#1)*'+! 6!,'%*S+(>/'"_&>_+#P'3;'$ 2%&,, :7'A#,$*I>"7'(/#*-+2',$%A2<'! =9S"2$"('Y%&-'6!'Y&%-*`&#['! >*%P"O,2*>"'2&-S%",,+&#,'+#'e*%-'5"A$%*>'6"(+A-'!,A(("#'SM*,"'$%*#,+`&#'$&'!&>('56'"'6 D"*#, '("2%"*,",' I/';f ] g'"'!s%",,a%">",,'fhij5h'2&>>*s,"'! 0-S>+a2*`&#'&Y'*#/'*#+,&$%&S/'"'2&>>*S,"'a%,$'*>&#P',M&%$",$' (+-"#,+&#'3U+#Wc^:['">>+S,&+('"',M""$'"'a>*-"#$'! h#$"%#*>'$a%ia>"#2"'"'2>a-s,w2&%",['2&%",'2&>>*s,"'y*,$"%' $M*#'"#`%"'2>&A('"'?>KL5LM?>M5H+#'0+M?5IA>M+ d'

8 'F;*B#;G8.&"#"18.1#;G18#*)1+$"#/.(#)*'#;+1*'("#1)*'+ Fragmentation: thermal-jeans! efficient to produce low-mass fragments! formation of massive fragments through! accretion from regions not originally bound to the protostellar core! radiative feedback?! magnetic field? M crit = M J + M " = M J + c " #R 2 B/G 1/2 i'

9 MHD simulations of the collapse of a turbulent and magnetized cloud: higher B supresses fragmentation Hennebelle et al. 2011, Commerçon et al Increasing magnetization degree Also: e.g., Vázquez-Semadeni+05,+11, Ziegler+05, Banerjee & Pudritz 06, Price & Bate 07, Peters+11, Myers+13, etc., etc.

10 !"#$%&'(#)*'+1#'+B&+%#.';N+1*'("*;;&0+BN7+! $A%IA>"#2"'3$A%IO%"PA>*$"('BA*,+O"BA+>+I%<',2"#*%+&:'! P%*_+$/'3P>&I*>OM+"%*%2M+2*>O2M*&`2'P%*_<'2&#$%*2`&#:'! Is any of these ingredients dominating? ;f'

11 h#$%&(a2`&#' O&(8*0+G+!."-(+L&-<;(-+ X#"',$"S'Y&%Z*%(['("#,+$/'*#('F' ;;'

12 Lagoon Nebula (M8), Fred Vanderhaven (image processed to remove stars) IB-&"/#)*'#;+ #::"*#187+ Y%*P-"#$*`&#'&Y' -*,,+_"'("#,"'2&%",' Massive dense core ~ M sun 0.1 pc fragment XI,"%_"'$M"-['! (&Z#'$&'!;fff'04'! (&Z#'$&'6 -+#!f<^'6,a#'

13 Literature (5 yr ago): massive star-forming regions studied with mm interferometers down to M min ~0.5 M sun Already 5 regions with ~1000 AU Select 6 new regions:! < 2.5 kpc! associated with strong mm emission! cover range of L bol! very similar evolutionary stages Total: ~10 regions

14 We used most extended A configuration " beam ~ 0.4 High observational pressure! Observed 4 out of 6 regions

15 Single-dish submm/mm continuum archive observations of dense cores of all the sample: JCMT, Hawaii, USA SCUBA bolometer 450 & 850 μm Di Francesco et al IRAM30m Granada, Spain MAMBO bolometer 1.2 mm Motte et al. 2007

16 In the meantime: 10 regions more in the literature! Total: 19 regions (Palau+13, +14, including Bontemps+10)

17 CB3-mm NGC7129-FIRS2

18

19

20

21

22

23

24 ~30% low fragmentation level: 1 source dominating ~50% high fragmentation: split up into ~4 fragments or more Spatial resolution: 300 AU Mass sensitivity: 0.1 M sun Spatial resolution: 700 AU Mass sensitivity: 0.9 M sun

25 Using the mm/submm single-dish emission: Flux Half power contour Mass (T d, opacity) Avg surface density: M/!R 2 Avg density entire core: 3M/4!R 3

26 SEDs: IRAC,MIPS, MSX, IRAS, AKARI, SCUBA Calculate: L bol and L bol /M sd

27 In addition M max : mass of strongest mm source measured by an interf in extended config. Core Formation Efficiency: CFE = Σ m i M sd

28 Dependence of N mm with L bol, M sd Dependence of N mm with evolutionary stage and density of entire core, and CFE Palau et al. 2013, ApJ, 762, 120

29 h#$%&(a2`&#' 6"$M&('W'C+%,$')",A>$,' I'&+-(&:+,*"2#"07+0&'-.(N+#'0+A+ Vj'

30 Model density and temperature structure of the dense cores Assumptions: spherically symmetric envelope dust opacity! $ % $ " density profile # = # 0 (r/r 0 ) -p temperature profile T = T 0 (r/r 0 ) q, with q = 2/(4+") external heating: T = 10 K in the outer envelope no assumption of optically thin emission no R-J approximation First approximation (R-J, optically thin, no external heating): power-law radial intensity profile, I $ % b 1-(p+q) Meaningful comparison: convolution with beam (main+error model beams) chopping with 120" chop-throw (circularly averaged) Fit simultaneously: intensity profiles at 850 and 450!m SED from cm to 60!m wavelengths (sensitive to T)

31 Model density and temperature profiles of the dense cores Assumptions: spherically symmetric envelope dust opacity! $ % $ " density profile # = # 0 (r/r 0 ) -p temperature profile T = T 0 (r/r 0 ) q, with q = 2/(4+") external heating: T = 10 K in the outer envelope no assumption of optically thin emission no R-J approximation First approximation (R-J, optically thin, no external heating): power-law radial intensity profile, I $ % b 1-(p+q) Meaningful comparison: convolution with beam (main+error model beams) chopping with 120" chop-throw (circularly averaged) Fit simultaneously: intensity profiles at 850 and 450!m SED from cm to 60!m wavelengths (sensitive to T)

32 Model density and temperature profiles of the dense cores Palau et al. 2014, ApJ, 785, 42

33 Model density and temperature profiles of the dense cores Palau et al. 2014, ApJ, 785, 42

34 Model density and temperature profiles of the dense cores Palau et al. 2014, ApJ, 785, 42

35 Dependence of N mm with density power law index p Dependence of N mm with density at r=1000 AU Palau et al. 2014, ApJ, 785, 42

36 Dependence of N mm with density within diameter of 0.1 pc 0.1 pc is the region where fragmentation (N mm ) was assessed! Palau et al. 2014, ApJ, 785, 42

37 From the modeled n, T profiles: M 0.1pc n 0.1pc T 0.1pc Palau, Ballesteros-Paredes, Vázquez-Semadeni et al. 2015, in prep.

38 According to global-hierarc.-chaotic gravit. contract. scenario: T calculated from model (avg in 0.1pc) Palau, Ballesteros-Paredes, Vázquez-Semadeni et al. 2015, in prep.

39 According to global-hierarc.-chaotic gravit. contract. scenario: T calculated from model (avg in 0.1pc) consistent with Louvet+14 for n~10 5 cm -3 Palau, Ballesteros-Paredes, Vázquez-Semadeni et al. 2015, in prep.

40 h#$%&(a2`&#' 6"$M&('W'C+%,$')",A>$,' X#"',$"S'Y&%Z*%(['("#,+$/'*#('F' L*;&+*,+(<"B<;&'1&+#'0+J+ ]f'

41 What about turbulence? VLA, USA Archive + Sánchez-Monge, Palau et al. 2013, MNRAS + literature IRAM30m, Spain Fontani, Palau et al literature NH3(1,1): VLA, beam~5, largest angular scale ~30 N2H+(1 0): IRAM30m, beam~26

42 NH3(1,1) emission with the VLA Study the kinematics of the massive dense cores Sánchez-Monge, Palau et al. 2013, MNRAS, 432, 3288

43 NH3(1,1) emission with the VLA Moment 2 maps: " no-th : non-thermal velocity dispersion

44 From the modeled temperature profile... estimate non-thermal contribution NH 3 (1,1) N 2 H + (1 0) Palau, Ballesteros-Paredes, Vázquez-Semadeni et al. 2015, in prep.

45 Relation of N mm with non-thermal vel. dispersion Correl coeff: 0.26 Reminder: Correl coeff: 0.89 Correl coeff: 0.39 Palau, Ballesteros-Paredes, Vázquez- Semadeni et al. 2015, in prep.

46 assuming CFE=100% According to turbulence-regulated quasi-equilibrium scenario: Palau, Ballesteros-Paredes, Vázquez-Semadeni et al. 2015, in prep.

47 Correl coeff: 0.66 Correl coeff: 0.23 Slope: 0.13 According to turbulence-regulated quasi-equilibrium scenario: Palau, Ballesteros-Paredes, Vázquez-Semadeni et al. 2015, in prep.

48 assuming CFE=100% According to turbulence-regulated quasi-equilibrium scenario: Palau, Ballesteros-Paredes, Vázquez-Semadeni et al. 2015, in prep.

49 Correl coeff: 0.66 Correl coeff: 0.19 Slope: 0.18 According to turbulence-regulated quasi-equilibrium scenario: Palau, Ballesteros-Paredes, Vázquez-Semadeni et al. 2015, in prep.

50 I<"+0#(#+#"&+B&P&"+0&-1".B&0+BN+:<"&+(8&"%#;+ -<::*"(Q+A8.-+%&#'-+(8#(7+ ;: "+$M"%'Z"'*%"'#&$'S%&S"%>/'-"*,A%+#P'$M"' $A%IA>"#2"'>"_">'&Y'("#,"'2&%",' V: &%'$A%I'2*##&$'I"'$%"*$"('*,'*#'*((+`&#*>' S%",,A%"'$"%-'$&'$M"%-*>'S%",,A%"'3+"7'6 D"*#, ',M&A>('I"'(",2%+I"('+#'*'(+k"%"#$'Z*/:' \: &%''$A%IA>"#2"'(&",'#&$'M*_"'*'2%A2+*>'%&>"'+#' ("$"%-+#+#P'$M"'Y%*P-"#$*`&#'>"_">'&Y'("#,"' 2&%",' ^f'

51 What about magnetic field? B knwon to suppress fragmentation: How would simulations including different B compare in this plot?

52 Magnetohydrodynamical simulations including radiation transport: Commerçon et al. 2011, after Hennebelle et al Strongly magnetized core Weakly magnetized core

53 Convolution with Plateau de Bure A uv-coverage Compare fragmentation level

54 Palau et al. 2013, ApJ, 762, 120 Compare fragmentation level

55 Compare density profiles Red line: µ=130 Green line: µ=2 Palau et al. 2014, ApJ, 785, 42

56 Compare density within 0.1 pc Palau et al. 2014, ApJ, 785, 42

57 Need to constrain B from observations CSO, Hawaii Palau et al., in prep. SMA, Hawaii Palau et al., in prep. Observations of polarized submm emission: work in progress

58 M*'1;<-.*'-+!,*-S>"'&Y';j'-*,,+_"'("#,"'2&%",[',$A(/' Y%*P-"#$*`&#'>"_">'_,',"_"%*>'S%&S"%`",'&Y'$M"' 2&%",'! 0#(#+-&&%+(*+B&+B&P&"+0&-1".B&0+BN+:<"&+ (8&"%#;+R&#'-+,"#$%&'(#)*'+! J+:*(&')#;;N+8&;:-+,*"%+1*'1&'("#(&0+:"*S;&-+ #'0+-%#;;&"+0&'-.)&-+.'-.0&+#+$./&'+"#0.<-+ ^i'

59 Thanks! ^j'

60 T fixed at 20 K T calculated from model (avg in 0.1pc) Distribution of masses of the 75 fragments (in the 19 cores) M min of Pillai+11 and Zhang+09

Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel

Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel Asunción Fuente, Roberto Neri, Aina Palau, José Cernicharo and many excellent collaborators Low-mass star formation Pre-stellar

More information

Early Stages of (Low-Mass) Star Formation: The ALMA Promise

Early Stages of (Low-Mass) Star Formation: The ALMA Promise Early Stages of (Low-Mass) Star Formation: The ALMA Promise Philippe André, CEA/SAp Saclay Outline Introduction: Prestellar cores and the origin of the IMF Identifying proto-brown dwarfs Bate et al. 1995

More information

Gravity or Turbulence?

Gravity or Turbulence? Gravity or Turbulence? On the dynamics of Molecular Clouds Javier Ballesteros-Paredes On Sabbatical at Institut für Theoretische Astrophysik, University of Heidelberg Instituto de Radioastronomía y Astrofísica,

More information

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps Cloud structure and high-mass star formation in HOBYS, the Herschel imaging survey of OB Young Stellar objects Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) http://hobys-herschel.cea.fr

More information

Summary and Future work

Summary and Future work 299 Chapter 7 Summary and Future work 7.1 Summary In this thesis I have utilized large-scale millimeter and mid- to far-infrared surveys to address a number of outstanding questions regarding the formation

More information

Frédérique Motte (AIM Paris-Saclay)

Frédérique Motte (AIM Paris-Saclay) Clusters of high-mass protostars: From extreme clouds to minibursts of star formation Frédérique Motte (AIM Paris-Saclay) Special thanks to S. Bontemps, T. Csengeri, P. Didelon, M. Hennemann, T. Hill,

More information

Observing Magnetic Field In Molecular Clouds. Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong

Observing Magnetic Field In Molecular Clouds. Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong Observing Magnetic Field In Molecular Clouds Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong B t = v B + η 2 B (Induction Equation) Coupling between gas and B-field Image courtesy: of NASA

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Abroad: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Recent PhDs: Alejandro González

More information

Origin of high-mass protostars in Cygnus-X

Origin of high-mass protostars in Cygnus-X T. Csengeri Service d Astrophysique, CEA-Saclay Supervisor: Co-advisor: Collaborators: S. Bontemps N. Schneider F. Motte F. Gueth P. Hennebelle S. Dib Ph. André 7. April 2010 - From stars to Galaxies,

More information

Ionization Feedback in Massive Star Formation

Ionization Feedback in Massive Star Formation Ionization Feedback in Massive Star Formation Thomas Peters Institut für Theoretische Astrophysik Zentrum für Astronomie der Universität Heidelberg Ralf Klessen, Robi Banerjee (ITA, Heidelberg) Mordecai-Mark

More information

Enrique Vázquez-Semadeni. Instituto de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Instituto de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Instituto de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Manuel Zamora-Avilés Abroad: Robi Banerjee

More information

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998:

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998: igure 4 of McMullin et al. 1994. Figure 1 of Testi & Sargent 1998: McMullin et al. 1994 BIMA with (only!) three elements Eight configurationsàcoverage of 2 kλ to 30 kλ Naturally wtd. Beam of 11" x 6" (for

More information

Magnetic fields and massive star formation. Qizhou Zhang Harvard-Smithsonian Center for Astrophysics

Magnetic fields and massive star formation. Qizhou Zhang Harvard-Smithsonian Center for Astrophysics Magnetic fields and massive star formation Qizhou Zhang Harvard-Smithsonian Center for Astrophysics Role of Magnetic Field in Star Formation Cloud scale: formation/support magnetic or turbulent? Clump

More information

Formation of massive stars: a review

Formation of massive stars: a review Formation of massive stars: a review Patrick Hennebelle Thanks to: Benoît Commerçon, Marc Joos, Andrea Ciardi Gilles Chabrier, Romain Teyssier How massive stars form? -Can we form massive stars in spite

More information

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain)

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain) STARLESS CORES Mario Tafalla (Observatorio Astronómico Nacional, Spain) Outline: 1. Internal Structure a. Introduction b. How to characterize the internal strcuture of starless cores c. L1498 & L1517B:

More information

SMA observations of Magnetic fields in Star Forming Regions. Josep Miquel Girart Institut de Ciències de l Espai (CSIC-IEEC)

SMA observations of Magnetic fields in Star Forming Regions. Josep Miquel Girart Institut de Ciències de l Espai (CSIC-IEEC) SMA observations of Magnetic fields in Star Forming Regions Josep Miquel Girart Institut de Ciències de l Espai (CSIC-IEEC) SMA Community Day, July 11, 2011 Simultaneous process of infall and outflow"

More information

The role of magnetic fields during massive star formation

The role of magnetic fields during massive star formation The role of magnetic fields during massive star formation Wouter Vlemmings Chalmers University of Technology / Onsala Space Observatory / Nordic ALMA Regional Center with: Gabriele Surcis, Kalle Torstensson,

More information

within entire molecular cloud complexes

within entire molecular cloud complexes The earliest phases of high-mass stars within entire molecular cloud complexes Frédérique Motte (CEA-Saclay, AIM) Collaborators: S. Bontemps (Obs Bordeaux), N. Schneider, J. Grac (CEA-Saclay), P. Schilke,

More information

Fragmentation in Hi-GAL clumps

Fragmentation in Hi-GAL clumps Fragmentation in Hi-GAL clumps Davide Elia M. Pestalozzi, S. Molinari, S. Pezzuto, E. Schisano, A.M. Di Giorgio ALMA Cycle 2 Proposal Fragmentation in Hi-GAL clumps (ID 2013.1.01193) Pestalozzi, M., Busquet,

More information

Magnetic Fields over all Scales

Magnetic Fields over all Scales Magnetic Fields over all Scales Patrick Koch (ASIAA) 1 pc with: Hsuan-Gu Chou, Paul Ho, Ya-Wen Tang, Hsi-Wei Yen 30 mpc (CSO / Hertz @ 350µm, ~20 ) (JCMT / SCUPOL @850µm, ~10 ) (SMA@ 345 GHz: ~ 3 to 0.7

More information

The Early Phases of Disc Formation and Disc Evolution

The Early Phases of Disc Formation and Disc Evolution The Early Phases of Disc Formation and Disc Evolution modelling prospective Robi Banerjee Hamburger Sternwarte Topics Angular momentum Fragmentation Disc-envelope evolution Initial angular momentum of

More information

NRAO Instruments Provide Unique Windows On Star Formation

NRAO Instruments Provide Unique Windows On Star Formation NRAO Instruments Provide Unique Windows On Star Formation Crystal Brogan North American ALMA Science Center Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank

More information

Collapse of magnetized dense cores. Is there a fragmentation crisis?

Collapse of magnetized dense cores. Is there a fragmentation crisis? Collapse of magnetized dense cores Is there a fragmentation crisis? Patrick Hennebelle (ENS-Observatoire de Paris) Collaborators: Benoît Commerçon, Andréa Ciardi, Sébastien Fromang, Romain Teyssier, Philippe

More information

Formation of massive stars : a review

Formation of massive stars : a review Formation of massive stars : a review Patrick Hennebelle (a former «star formation ignorant» Ant s postdoc) Benoit Commerçon, Marc Joos, Andrea Ciardi, Gilles Chabrier One of the Constellation network

More information

Infrared Dark Clouds seen by Herschel and ALMA

Infrared Dark Clouds seen by Herschel and ALMA Infrared Dark Clouds seen by Herschel and ALMA Ke Wang ESO Fellow www.eso.org/~kwang Collaborators: Qizhou Zhang, Xing (Walker) Lu, Izaskun Jimenez-Serra 1 IR-dark clouds: shadows in infrared sky Image

More information

Probing the embedded phase of star formation with JWST spectroscopy

Probing the embedded phase of star formation with JWST spectroscopy Probing the embedded phase of star formation with JWST spectroscopy NIRSPEC Spitzer NGC 1333 Low mass Herschel Cygnus X High mass Jorgensen et al. Gutermuth et al. 10 10 Motte, Henneman et al. E.F. van

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Javier Ballesteros-Paredes Centro de Radioastronomía y Astrofísica, UNAM, México 2 Collaborators: Javier Ballesteros-Paredes

More information

An evolutionary sequence for high-mass stars formation

An evolutionary sequence for high-mass stars formation Introduction Results & Conclusions Summary An evolutionary sequence for high-mass stars formation Andrea Giannetti Dipartimento di Astronomia, Università di Bologna; Istituto di Radioastronomia In collaboration

More information

How do protostars get their mass?

How do protostars get their mass? How do protostars get their mass? Phil Myers Harvard-Smithsonian Center for Astrophysics Origin of Stellar Masses Tenerife, Spain October 18, 2010 Introduction How does nature make a star? a star of particular

More information

High mass star formation in the Herschel era: highlights of the HOBYS key program

High mass star formation in the Herschel era: highlights of the HOBYS key program Recent Advances in Star Formation ASI Conference Series, 2012, Vol. 4, pp 55 62 Edited by Annapurni Subramaniam & Sumedh Anathpindika High mass star formation in the Herschel era: highlights of the HOBYS

More information

Accretion-Disk-outflow System in High Mass Star Formation. Yuefang Wu Astronomy Department Peking University, China

Accretion-Disk-outflow System in High Mass Star Formation. Yuefang Wu Astronomy Department Peking University, China Accretion-Disk-outflow System in High Mass Star Formation Yuefang Wu Astronomy Department Peking University, China Outline 1. A debate two models of high mass star formation 2. Our related work- observational

More information

Interferometric Observations of S140-IRS1

Interferometric Observations of S140-IRS1 Interferometric Observations of S140-IRS1 e-merlin early science workshop April 2014 Luke T. Maud University of Leeds, UK Melvin G. Hoare University of Leeds Star formation scenario Collapse of a core

More information

Star forming filaments: Chemical modeling and synthetic observations!

Star forming filaments: Chemical modeling and synthetic observations! Star forming filaments: Chemical modeling and synthetic observations Daniel Seifried I. Physikalisches Institut, University of Cologne The 6th Zermatt ISM Symposium 11.9.2015, Zermatt Collaborators: Stefanie

More information

(Numerical) study of the collapse and of the fragmentation of prestellar dense core

(Numerical) study of the collapse and of the fragmentation of prestellar dense core (Numerical) study of the collapse and of the fragmentation of prestellar dense core Benoît Commerçon Supervisors: E. Audit, G. Chabrier and P. Hennebelle Collaborator: R. Teyssier (3D - AMR) CEA/DSM/IRFU/SAp

More information

The Formation of Star Clusters

The Formation of Star Clusters The Formation of Star Clusters Orion Nebula Cluster (JHK) - McCaughrean Jonathan Tan University of Florida & KITP In collaboration with: Brent Buckalew (ERAU), Michael Butler (UF u-grad), Jayce Dowell

More information

Zooming into high-mass star-forming regions

Zooming into high-mass star-forming regions Zooming into high-mass star-forming regions Henrik Beuther SMA ATCA PdBI VLA Important questions - What are the characteristics of accretion disks/large toroid in high-mass star formation? - Can we constrain

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2])

Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2]) Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2]) Massive interstellar gas clouds Up to ~10 5 M 100 s of LY in diameter. Giant Molecular Clouds (GMCs) defined to be M > 10 4 M High

More information

Observational Programme in Kent

Observational Programme in Kent Observational Programme in Kent ASTRO-F, WFCAM, SCUBA-2, SALT UKIRT: individual protostellar outflows SAO/MMT/LBT: individual high- mass protostars NTT/Calar Alto + SEST: rho Ophiuchus 2MASS/NTT: Rosette

More information

Star Cluster Formation and the Origin of Stellar Properties. Matthew Bate University of Exeter

Star Cluster Formation and the Origin of Stellar Properties. Matthew Bate University of Exeter Star Cluster Formation and the Origin of Stellar Properties Matthew Bate University of Exeter Typical molecular cloud (Bate et al. 2003) Denser cloud (Bate & Bonnell 2005) Jeans mass 1 M, Opacity limit

More information

! what determines the initial mass function of stars (IMF)? dn /dm

! what determines the initial mass function of stars (IMF)? dn /dm ! what determines the initial mass function of stars (IMF)? dn /dm M ! what determines the initial mass function of stars (IMF)?! What determines the total mass of stars that can form in the cloud? dn

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

The Competitive Accretion Debate

The Competitive Accretion Debate The Competitive Accretion Debate 1,2 Paul C. Clark 2 Ralf S. Klessen 3 Ian A. Bonnell 3 Rowan J. Smith 1 KITP 2 University of Heidelberg 3 University of St Andrews What is CA and how does it work? Theory

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Ram Pressure Stripping in NGC 4330

Ram Pressure Stripping in NGC 4330 The Evolving ISM in the Milky Way & Nearby Galaxies Ram Pressure Stripping in NGC 4330 Anne Abramson 1 & Jeffrey D. P. Kenney 1 1 Astronomy Department, Yale University, P.O. Box 208101 New Haven, CT 06520-8101

More information

Magnetic fields in the early phase of massive star formation

Magnetic fields in the early phase of massive star formation Magnetic fields in the early phase of massive star formation FLASH workshop in Hamburg 16.2.2012 Daniel Seifried Hamburger Sternwarte, University of Hamburg (Robi Banerjee, Ralf Klessen, Ralph Pudritz,

More information

Early Phases of Star Formation

Early Phases of Star Formation Early Phases of Star Formation Philippe André, CEA/SAp Saclay Outline Introduction: The earliest stages of the star formation process Probing the formation and evolution of prestellar cores with Herschel

More information

Protostars and pre-main sequence evolution. Definitions. Timescales

Protostars and pre-main sequence evolution. Definitions. Timescales Protostars and pre-main sequence evolution 1. Timescales 2. Early growth and collapse 3. Dust envelope 4. Stellar structure I. Mass-radius relation II. Deuterium burning III. Lithium destruction IV. Hydrogen

More information

From Filaments to Stars: a Theoretical Perspective

From Filaments to Stars: a Theoretical Perspective From Filaments to Stars: a Theoretical Perspective NRAO Filaments. Oct. 10-11, 2014 Ralph E. Pudritz Origins Institute, McMaster U. Collaborators McMaster: Mikhail Klassen, Corey Howard, (Ph.D.s) Helen

More information

Theory of star formation

Theory of star formation Theory of star formation Monday 8th 17.15 18.00 Molecular clouds and star formation: Introduction Tuesday 9th 13.15 14.00 Molecular clouds: structure, physics, and chemistry 16.00 16.45 Cloud cores: statistics

More information

High-redshift galaxies

High-redshift galaxies High-redshift galaxies Houjun Mo May 4, 2004 Galaxies can now be observed to z 6 Normal galaxies with 0.2 < z < 1 The Lyman-break population at z 3 The sub-mm sources at z 3 Between 1 2, spectroscopy desert,

More information

Star Formation in GMCs: Lessons from Herschel Observations of the Aquila Complex

Star Formation in GMCs: Lessons from Herschel Observations of the Aquila Complex Herschel PACS/SPIRE map of Aquila (Gould Belt survey) ORISTARS erc project Lab. AIM, Paris-Saclay, France Ph. André, A. Men'shchikov, N. Schneider, S. Bontemps, D. Arzoumanian, N. Peretto, P. Didelon,

More information

Challenges for the Study of Hot Cores with ALMA: NGC 6334I

Challenges for the Study of Hot Cores with ALMA: NGC 6334I Challenges for the Study of Hot Cores with ALMA: NGC 6334I Crystal Brogan (NRAO/North American ALMA Science Center) Collaborators: Todd Hunter (NRAO) Remy Indebetouw (UVa/NRAO), Ken (Taco) Young (CfA),

More information

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009 Formation Mechanisms of Brown Dwarfs: Observations & Theories Dan Li April 2009 What is brown dwarf (BD)? BD Mass : upper-limit ~ 0.075 M lower-limit ~ 0.013 M (?) Differences between BD and giant planet:

More information

Observed Relationships between Filaments and Star Formation

Observed Relationships between Filaments and Star Formation Observed Relationships between Filaments and Star Formation James Di Francesco (Ph. André, J. Pineda, R. Pudritz, D. Ward-Thompson, S.Inutsuka & the Herschel GBS, JCMT GBS and HOBYS Teams Herschel Gould

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Submillimeter studies of circumstellar disks in Taurus and Orion

Submillimeter studies of circumstellar disks in Taurus and Orion Revealing the Molecular Universe: One Telescope is Never Enough ASP Conference Series, Vol. VOLUME, 2006 D. C. Backer & J. L. Turner Submillimeter studies of circumstellar disks in Taurus and Orion Jonathan

More information

The relation between cold dust and star formation in nearby galaxies

The relation between cold dust and star formation in nearby galaxies The relation between cold dust and star formation in nearby galaxies George J. Bendo (with the Herschel Local Galaxies Guaranteed-Time Surveys and the Herschel Virgo Cluster Survey) Outline Analyses before

More information

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG Stellar structure and evolution Pierre Hily-Blant 2017-18 April 25, 2018 IPAG pierre.hily-blant@univ-grenoble-alpes.fr, OSUG-D/306 10 Protostars and Pre-Main-Sequence Stars 10.1. Introduction 10 Protostars

More information

The Initial Mass Function Elisa Chisari

The Initial Mass Function Elisa Chisari The Initial Mass Function AST 541 Dec 4 2012 Outline The form of the IMF Summary of observations Ingredients of a complete model A Press Schechter model Numerical simulations Conclusions The form of the

More information

Chemical Diagnostics of Star Forming Regions

Chemical Diagnostics of Star Forming Regions School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Chemical Diagnostics of Star Forming Regions Paola Caselli N 2 H + (1-0) Di Francesco et al. 2004 N 2 H + (3-2) Bourke et al.

More information

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter The dependence of star cluster formation on initial conditions Matthew Bate University of Exeter Stellar properties do not greatly depend on initial conditions constellation Little evidence for variation

More information

Massive Star Formation with RT-MHD Simulations

Massive Star Formation with RT-MHD Simulations Massive Star Formation with RT-MHD Simulations Robi Banerjee Hamburg University Collaborators: Thomas Peters (Zurich), Daniel Seifried (Hamburg), Philipp Girichidis (MPA), Roberto Galvan-Madrid (UNAM,

More information

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012 The First Stars Simone Ferraro Princeton University Sept 25, 2012 Outline Star forming minihalos at high z Cooling physics and chemistry Gravitational Collapse and formation of protostar Magnetic fields

More information

Unraveling the Envelope and Disk: The ALMA Perspective

Unraveling the Envelope and Disk: The ALMA Perspective Unraveling the Envelope and Disk: The ALMA Perspective Leslie Looney (UIUC) Lee Mundy (UMd), Hsin-Fang Chiang (UIUC), Kostas Tassis (UChicago), Woojin Kwon (UIUC) The Early Disk Disks are probable generic

More information

Brown Dwarf Formation from Disk Fragmentation and Ejection

Brown Dwarf Formation from Disk Fragmentation and Ejection Brown Dwarf Formation from Disk Fragmentation and Ejection Shantanu Basu Western University, London, Ontario, Canada Collaborator: Eduard Vorobyov (University of Vienna) 50 years of Brown Dwarfs Ringberg

More information

Some recent work I. Cosmic microwave background, seeds of large scale structure (Planck) Formation and evolution of galaxies (Figure: Simpson et al.

Some recent work I. Cosmic microwave background, seeds of large scale structure (Planck) Formation and evolution of galaxies (Figure: Simpson et al. Radio astronomy Radio astronomy studies celestial objects at wavelengths longward of λ 100 µm (frequencies below ν 3 THz) A radio telecope can see cold gas and dust (Wien s displacement law of BB emision,

More information

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics Turbulence, kinematics & galaxy structure in star formation in dwarfs Mordecai-Mark Mac Low Department of Astrophysics Outline Turbulence inhibits star formation, but slowly Interplay between turbulence

More information

Lecture 22 Stability of Molecular Clouds

Lecture 22 Stability of Molecular Clouds Lecture 22 Stability of Molecular Clouds 1. Stability of Cloud Cores 2. Collapse and Fragmentation of Clouds 3. Applying the Virial Theorem References Myers, Physical Conditions in Molecular Clouds in

More information

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds Lecture 26 Clouds, Clumps and Cores 1. Review of Dense Gas Observations 2. Atomic Hydrogen and GMCs 3. Formation of Molecular Clouds 4. Internal Structure 5. Observing Cores 6. Preliminary Comments on

More information

Radiative MHD. in Massive Star Formation and Accretion Disks. Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning

Radiative MHD. in Massive Star Formation and Accretion Disks. Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning Radiative MHD in Massive Star Formation and Accretion Disks, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning, Radiative MHD with Makemake and Pluto : We developed a fast 3D frequency-dependent

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

GMC as a site of high-mass star formation

GMC as a site of high-mass star formation ALMA Image: N159W GMC as a site of high-mass star formation From galaxy evolution to individual star formation kpc 1-100pc GMCs: 10 4-10 6 Mo n(h 2 ) ~ 1000cm -3 Clumps, Cores 10 2-10 3 Mo n(h 2 ) ~ >10

More information

INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks

INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks Paola Caselli School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Protoplanetary disks INITIAL CONDITIONS Boley 2009 Quiescent molecular clouds High-mass star forming regions Pre-stellar

More information

arxiv: v1 [astro-ph.ga] 31 Jan 2014

arxiv: v1 [astro-ph.ga] 31 Jan 2014 Draft version February 3, 204 Preprint typeset using L A TEX style emulateapj v. 2/6/0 FRAGMENTATION OF MASSIVE DENSE CORES DOWN TO 000 AU: RELATION BETWEEN FRAGMENTATION AND DENSITY STRUCTURE Aina Palau,

More information

Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys

Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys W. J. Welch Radio Astronomy Laboratory, Depts of EECS and Astronomy University of California Berkeley, CA 94720 Tel: (510) 643-6543

More information

arxiv: v1 [astro-ph.sr] 10 Mar 2015

arxiv: v1 [astro-ph.sr] 10 Mar 2015 Fragmentation of Molecular Clumps and Formation of Protocluster arxiv:1503.03017v1 [astro-ph.sr] 10 Mar 2015 Qizhou Zhang 1, Ke Wang 2, Xing Lu 1,3, Izaskun Jiménez-Serra 2 ABSTRACT Sufficiently massive

More information

The Class 0 Source Barnard 1c (most recent results ) Brenda Matthews Herzberg Institute of Astrophysics National Research Council of Canada

The Class 0 Source Barnard 1c (most recent results ) Brenda Matthews Herzberg Institute of Astrophysics National Research Council of Canada The Class 0 Source Barnard 1c (most recent results ) Brenda Matthews Herzberg Institute of Astrophysics National Research Council of Canada Edwin Bergin (University of Michigan) Antonio Crapsi & Michiel

More information

The Early Evolution of low mass stars and Brown Dwarfs. I. Baraffe University of Exeter

The Early Evolution of low mass stars and Brown Dwarfs. I. Baraffe University of Exeter The Early Evolution of low mass stars and Brown Dwarfs I. Baraffe University of Exeter 1. Some observational/theoretical facts Spread in the HRD Lithium depletion Evidence for episodic accretion - Embedded

More information

RAMPS: The Radio Ammonia Mid-Plane Survey. James Jackson Institute for Astrophysical Research Boston University

RAMPS: The Radio Ammonia Mid-Plane Survey. James Jackson Institute for Astrophysical Research Boston University RAMPS: The Radio Ammonia Mid-Plane Survey James Jackson Institute for Astrophysical Research Boston University High Frequency Workshop, Green Bank, 21 September 2015 Collaborators (partial list) Taylor

More information

Accretion Mechanisms

Accretion Mechanisms Massive Protostars Accretion Mechanism Debate Protostellar Evolution: - Radiative stability - Deuterium shell burning - Contraction and Hydrogen Ignition Stahler & Palla (2004): Section 11.4 Accretion

More information

Protoclusters in the Milky Way: Physical properties of massive starless & star-forming clumps from the BGPS. Brian Svoboda (Arizona)

Protoclusters in the Milky Way: Physical properties of massive starless & star-forming clumps from the BGPS. Brian Svoboda (Arizona) Protoclusters in the Milky Way: Physical properties of massive starless & star-forming clumps from the BGPS Brian Svoboda (Arizona) Cygnus X in BGPS & WISE Image Credit: Adam Ginsburg Y. Shirley (Arizona)

More information

arxiv: v2 [astro-ph] 26 Aug 2008

arxiv: v2 [astro-ph] 26 Aug 2008 DRAFT VERSION OCTOBER 29, 2018 Preprint typeset using LATEX style emulateapj v. 08/22/09 THE SUPER-ALFVÉNIC MODEL OF MOLECULAR CLOUDS: PREDICTIONS FOR ZEEMAN SPLITTING MEASUREMENTS TUOMAS LUNTTILA 1, PAOLO

More information

An Evolutionary Model of Massive Star Formation and Radiation Transfer

An Evolutionary Model of Massive Star Formation and Radiation Transfer An Evolutionary Model of Massive Star Formation and Radiation Transfer Yichen Zhang Universidad de Chile Collaborators: Jonathan Tan (UF), Christopher McKee (UC Berkeley), Takashi Hosokawa (U. Tokyo),

More information

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2 Next Generation Very Large Array Working Group 2 HI in M74: Walter+ 08 CO in M51: Schinnerer+ 13 Continuum in M82: Marvil & Owen Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of

More information

Polarimetry with the SMA

Polarimetry with the SMA Polarimetry with the SMA Ramprasad Rao Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA) Collaborators: J. M. Girart (IEEC-CSIC), D. P. Marrone (NRAO/U. Chicago), Y. Tang (ASIAA), and a

More information

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel Philippe André, CEA/SAp Saclay Herschel GB survey Ophiuchus 70/250/500 µm composite With: A. Menshchikov,

More information

Star formation. Protostellar accretion disks

Star formation. Protostellar accretion disks Star formation Protostellar accretion disks Summary of previous lectures and goal for today Collapse Protostars - main accretion phase - not visible in optical (dust envelope) Pre-main-sequence phase -

More information

Initial conditions for massive star formation

Initial conditions for massive star formation Initial conditions for massive star formation Friedrich Wyrowski Max Planck Institute for Radioastronomy Bonn, Germany Zoom into l~29 8mu MSX GLIMPSE 8mu + PdBI NH2D Remarks & Scope Literature growing

More information

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation 15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation Continuum Instrumentation 5120 bolometers (4 sub arrays x 1280 bolometers) at

More information

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae) Astrophysics: Stellar Evolution 1 Stellar Birth Stellar Formation A. Interstellar Clouds (Nebulae) B. Protostellar Clouds 2 C. Protostars Dr. Bill Pezzaglia Updated: 10/02/2006 A. Interstellar Clouds 1.

More information

An overview of star formation

An overview of star formation An overview of star formation Paul Clark ITA: Ralf Klessen Robi Banerjee Simon Glover Ian Bonnell Clare Dobbs Jim Dale Why study star formation? Stars chemically the enrich the Universe, so star formation

More information

Molecular Cloud Turbulence and Star Formation

Molecular Cloud Turbulence and Star Formation Molecular Cloud Turbulence and Star Formation Javier Ballesteros-Paredes1, Ralf Klessen2, MordecaiMark Mac Low3, Enrique Vazquez-Semadeni1 1UNAM Morelia, Mexico, 2AIP, Potsdam, Germany, 3AMNH New York,

More information

The dynamics of photon-dominated regions (PDRs)

The dynamics of photon-dominated regions (PDRs) The dynamics of photon-dominated regions (PDRs) V. Ossenkopf, M. Röllig, N. Schneider, B. Mookerjea, Z. Makai, O. Ricken, P. Pilleri, Y. Okada, M. Gerin Page 1 Main question: What happens here? Impact

More information

Star formation history in high redshift radio galaxies

Star formation history in high redshift radio galaxies Cygnus A Star formation history in high redshift radio galaxies Collaborators: B. Rocca-Volmerange (IAP), C. De Breuck (ESO), J. Vernet (ESO), N. Seymour (CASS), D. Stern (JPL), M. Lehnert (IAP), P. Barthel

More information

Deuterium Fractionation in Massive Star Forming Clumps in Infrared Dark Clouds

Deuterium Fractionation in Massive Star Forming Clumps in Infrared Dark Clouds Deuterium Fractionation in Massive Star Forming Clumps in Infrared Dark Clouds Sheng-Yuan Liu (ASIAA) in collaboration with Vivien H.-R. Chen (NTHU) Y.-N. Su (ASIAA) Qizhou Zhang (CfA) Massive Star Formation

More information

Chapter 11 The Formation and Structure of Stars

Chapter 11 The Formation and Structure of Stars Chapter 11 The Formation and Structure of Stars Guidepost The last chapter introduced you to the gas and dust between the stars that are raw material for new stars. Here you will begin putting together

More information

arxiv:astro-ph/ v1 14 Jan 2002

arxiv:astro-ph/ v1 14 Jan 2002 The Central kpc of Starbursts and AGN ASP Conference Series, Vol. xxx, 2001 J. H. Knapen, J. E. Beckman, I. Shlosman, and T. J. Mahoney Molecular Gas in The Central Kpc of Starbursts and AGN Shardha Jogee

More information

- AGN feedback in action?

- AGN feedback in action? Gas outflows and star formation in type 2 AGNs - AGN feedback in action? Jong-Hak Woo (Seoul National Univ.) & Hyun-Jin Bae, Donghoon Son, Marios Karouzos Muse view of OIII outflows in NGC 7582 (Juneau+16

More information

Intracluster Age Gradients And Disk Longevities In Numerous MYStIX And SFiNCs Young Stellar Clusters

Intracluster Age Gradients And Disk Longevities In Numerous MYStIX And SFiNCs Young Stellar Clusters Intracluster Age Gradients And Disk Longevities In Numerous MYStIX And SFiNCs Young Stellar Clusters K. Getman, E. Feigelson, M. Kuhn, A. Richert, M. Bate, P. Broos, M. Povich, G. Garmire Pennsylvania

More information