Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel

Size: px
Start display at page:

Download "Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel"

Transcription

1 Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel Philippe André, CEA/SAp Saclay Herschel GB survey Ophiuchus 70/250/500 µm composite With: A. Menshchikov, V. Könyves, N. Schneider, D. Arzoumanian, S. Bontemps, F. Motte,P.Didelon, N. Peretto, D. Ward-Thompson, J. Di Francesco, P. Martin, P. Saraceno, P. Palmeirim, J. Kirk & the Herschel Gould Belt KP Consortium Ph. André - The millimeter and submillimeter sky in the Planck mission era - Paris 12 Jan 2011

2 The Herschel Gould Belt Survey SPIRE/PACS µm imaging of the bulk of nearby (d < 0.5 kpc) molecular clouds (~ 160 deg 2 ), mostly located in Gould s Belt. Complete census of prestellar cores and Class 0 protostars. Taurus Perseus Cepheus Serpens Aquila Ophiuchus Lupus Gould Belt Chamaeleon CrA Orion IRAS 100 µm ~ 15 resolution at λ ~ 200 µm ~ 0.02 pc < Jeans d = 300 pc Motivation: Key issues on the early stages of star formation Nature of the relationship between the CMF and the IMF? What generates prestellar cores and what governs their evolution to protostars and proto-brown dwarfs?

3 Outline: First images from the Herschel Gould Belt survey Preliminary results on cores (e.g. CMF vs. IMF) The role of filaments in the core formation process Implications/Speculations Herschel GB survey L /250/500 µm composite Ph. André - Planck 2011 Conference - Paris 12 Jan 2011 PACS

4 First images from the Gould Belt Survey PACS/SPIRE // mode 70/160/250/350/500 µm 1) Aquila Rift star-forming cloud (d ~ 260 pc) cf. Red : SPIRE 500 µm Green : PACS 160 µm Blue : PACS 70 µm ~ 3.3 o x 3.3 o field André et al Könyves et al Bontemps et al Men shchikov et al A&A special issue (vol. 518)

5 First images from the Gould Belt Survey PACS/SPIRE // mode SPIRE 250 µm image 2) Polaris flare translucent cloud (d ~ 150 pc) ~ 5500 M (CO+HI) Heithausen & Thaddeus 90 ~ 13 deg 2 field Miville-Deschênes et al Ward-Thompson et al Men shchikov et al André et al A&A special issue

6 Revealing the structure of one of the nearest infrared dark clouds (Aquila Main: d ~ 260 pc) Herschel (SPIRE+PACS) Dust temperature map (K) Herschel (SPIRE+PACS) Column density map (H 2 /cm 2 ) W40 1 deg ~ 4.5 pc

7 Dense cores form primarily in filaments Cores Morphological Component Analysis: Wavelet component (H 2 /cm 2 ) Herschel Column density map = + (P. Didelon based on Starck et al. 2003) Filaments Curvelet component (H 2 /cm 2 )

8 Aquila: `Compact Source Extraction (using getsources A. Menshchikov et al. 2010) Herschel (SPIRE+PACS) Aquila entire field: N H2 (cm -2 ) Spatial distribution of extracted cores 541 starless 201 YSOs Starless = no PACS 70 µ emission (F 70µ < > L proto cf. Dunham, Crapsi, Evans e.a c2d) Könyves et al deg ~ 14 pc 5σ level: ~ cm -2 70/160/500 µm composite image

9 Core: Examples of starless cores in Aquila-East local column density peak simple (convex) shape no substructure at Herschel resol. potential single star-forming entity Herschel N H2 map (cm -2 ) Radial intensity profiles Including background Background subtracted Ellipses: FWHM sizes of 24 starless cores at 250 µm Könyves et al. 2010, A&A special issue

10 Most of the Herschel starless cores in Aquila are bound Motte et al. (1998,2001) Mass, M (M ) T = 20 K T = 7 K Cirrus noise limit in Aquila > 60% are likely prestellar in nature Könyves et al Deconvolved FWHM size, R (pc) (at 250 µm) Positions in mass vs. size diagram, consistent with ~ critical Bonnor-Ebert spheroids: M BE = 2.4 R BE c s 2 /G for T ~ 7-20 K

11 Most of the ~300 Polaris starless cores are unbound Motte et al. (1998,2001) Mass, M (M ) T = 20 K T = 7 K Cirrus noise limit in Polaris not (yet?) prestellar André et al Ward-Thompson et al Deconvolved FWHM size, R (pc) (at 250 µm) Locations in mass vs. size diagram: 2 orders of magnitude below the density of self-gravitating Bonnor-Ebert isothermal spheres

12 Confirming the link between the prestellar CMF & the IMF Könyves et al André et al A&A special issue prestellar cores in Aquila Factor ~ 2-9 better statistics than earlier CMF studies: e.g. Motte, André, Neri 1998; Johnstone et al. 2000; Stanke et al. 2006; Enoch et al. 2006; Alves et al. 2007; Nutter & Ward-Thompson 07 Number of objects per mass bin: ΔN/ΔlogM Core Mass Function (CMF) in Aquila Complex Good (~ one-to-one) correspondence between core mass and stellar system mass: M * = ε M core with ε ~ in Aquila The IMF is at least partly determined by pre-collapse cloud fragmentation (cf. models by Padoan & Nordlund 2002, Hennebelle & Chabrier 2008) IMF CMF 0.3 M Mass (M ) CO clumps (Kramer et al. 1998) ε Salpeter s IMF

13 Prestellar cores form out of a filamentary background : Class 0 protostars : Aquila N H2 map (cm -2 ) Prestellar cores Aquila curvelet N H2 map (cm -2 )

14 Herschel reveals a network of filaments in every cloud Polaris A characteristic width ~ 0.1 pc? (deconvolved FWHM) Distribution of widths for 90 filaments Number of filaments per bin 0.1 pc Distribution of Jeans lengths [λ J ~ c s2 /(GΣ)] Aquila Polaris IC5146 IC5146 Filament width (FWHM) [pc] Using the skeleton or DisPerSE algorithm (Sousbie, Pichon et al. 2008, 2010) to trace the ridge of each filament D. Arzoumanian et al. 2011

15 Prestellar cores form out of a filamentary background : Class 0 protostars : Prestellar cores - 90% found at A v (back) > 7 Aquila N H2 map (cm -2 ) Aquila curvelet N H2 map (cm -2 ) Unstable 0.1Mline/Mline,crit Stable

16 Number of cores per extinction bin: ΔN/ΔA V Confirmation of an extinction threshold for the formation of prestellar cores Distribution of background extinctions for the Aquila prestellar cores A v ~ 7 Background cloud extinction, A V In Aquila, ~ 90% of the prestellar cores identified with Herschel are found above A v ~ 7 Σ ~ 150 M pc -2 cf. Onishi et al (Taurus) Johnstone, Di Francesco, Kirk 04 (Ophiuchus) See also (for YSOs): Heiderman, Evans et al. 2010

17 Only the densest filaments are gravitationally unstable and contain prestellar cores ( ) Aquila curvelet N H2 map (cm -2 ) André et al. 2010, A&A Special issue 1 Unstable Mline/M line,crit 0.1 Stable The gravitational instability of filaments is controlled by the mass per unit length M line (cf. Ostriker 1964, Inutsuka & Miyama 1997): unstable if M line > M line, crit unbound if M line < M line, crit M line, crit = 2 c s 2 /G ~ 15 M /pc for T ~ 10K A V threshold Simple estimate: M line N H2 x Width (~ 0.1 pc) Unstable filaments highlighted in white in the N H2 map

18 Importance of the star formation threshold on (extra)galactic scales Star formation rate vs. Gas surface density Σ SFR Σ gas for Σ gas > Σ threshold Σ th ~ 150 M pc -2 A V ~ 7-8 Heiderman et al Lada et al See also Gao & Solomon 2004 for external galaxies Heiderman, Evans et al. 2010

19 Origin of the filaments: Large-scale turbulence? Numerical simulations including large-scale turbulence: Padoan, Juvela, Goodman, Nordlund (2001) Klessen & Burkert (2000) Li & Nakamura (2004) Also: Bate, Bonnell, Bromm (2003) Basu, Ciolek et al. (2009) Hennebelle, Banerjee, Vazquez-Semadeni et al. (2008) Duffin, Pudritz et al. 2010

20 Turbulence dissipation and filament formation In Polaris, one of the most tenuous filaments detected by SPIRE coincides with a CO(2-1) structure of intense velocity shear (~ 40 km/s/pc) found at IRAM 30m (Hily-Blant & Falgarone 2009) SPIRE 250 µm 0.8 Jy/b SPIRE 250 µm + CO(2-1) CVI 0.1 Jy/b 1 deg ~ 2.6 pc 10 ~ 0.45 pc

21 Filaments permeate the ISM on all scales Herschel SPIRE 500 µm + PACS 160/70 µm (from ~0.1 pc to > 50 pc) Planck HFI 540/350 µm + IRAS 100 µm Aquila ESA and the Gould Belt KP ESA and the HFI Consortium

22 Conclusions First results from Herschel on prestellar cores are very promising: Confirm the close link between the prestellar CMF and the IMF, although the whole survey will be required to fully characterize the nature of this link. Suggest that prestellar core formation occurs in 2 main steps: 1) Filaments form first in the cold ISM, probably as a result of the dissipation of MHD turbulence; 2) The densest filaments then fragment into prestellar cores via gravitational instability above a critical column density threshold Σ th ~ 150 M pc -2 Spectroscopic and polarimetric observations required to clarify the roles of turbulence, B fields, gravity in forming the filaments.

!From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey!

!From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey! !From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey! Philippe André CEA Lab. AIM Paris- Saclay PACS! Part of Orion B! 70/250/500 µm!

More information

The Herschel View of Star Formation

The Herschel View of Star Formation Near The Herschel View of Star Formation Philippe André CEA Laboratoire AIM Paris-Saclay Far PACS Alpbach 2011 Summer School Star Formation Across the Universe 19/07/2011 Outline: Submm observations as

More information

Star Formation in GMCs: Lessons from Herschel Observations of the Aquila Complex

Star Formation in GMCs: Lessons from Herschel Observations of the Aquila Complex Herschel PACS/SPIRE map of Aquila (Gould Belt survey) ORISTARS erc project Lab. AIM, Paris-Saclay, France Ph. André, A. Men'shchikov, N. Schneider, S. Bontemps, D. Arzoumanian, N. Peretto, P. Didelon,

More information

Observed Relationships between Filaments and Star Formation

Observed Relationships between Filaments and Star Formation Observed Relationships between Filaments and Star Formation James Di Francesco (Ph. André, J. Pineda, R. Pudritz, D. Ward-Thompson, S.Inutsuka & the Herschel GBS, JCMT GBS and HOBYS Teams Herschel Gould

More information

Properties of interstellar filaments as derived from Herschel Gould Belt observations

Properties of interstellar filaments as derived from Herschel Gould Belt observations Properties of interstellar filaments as derived from Herschel Gould Belt observations Doris Arzoumanian PhD student at CEA Saclay, France with Ph. André, V. Könyves, N. Schneider, N. Peretto, A. Men shchikov,

More information

Recent results from Herschel on the filamentary structure of the cold interstellar medium

Recent results from Herschel on the filamentary structure of the cold interstellar medium Recent results from Herschel on the filamentary structure of the cold interstellar medium Laboratoire d Astrophysique (AIM) de Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France E-mail: pandre@cea.fr

More information

Molecular Clouds and Star Formation. James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics

Molecular Clouds and Star Formation. James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics 2 Hubble image of M51 (NASA/ESA) Five Star Formation Regimes Local (Low-mass) Star Formation o

More information

Early Phases of Star Formation

Early Phases of Star Formation Early Phases of Star Formation Philippe André, CEA/SAp Saclay Outline Introduction: The earliest stages of the star formation process Probing the formation and evolution of prestellar cores with Herschel

More information

Early Stages of (Low-Mass) Star Formation: The ALMA Promise

Early Stages of (Low-Mass) Star Formation: The ALMA Promise Early Stages of (Low-Mass) Star Formation: The ALMA Promise Philippe André, CEA/SAp Saclay Outline Introduction: Prestellar cores and the origin of the IMF Identifying proto-brown dwarfs Bate et al. 1995

More information

From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation

From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation Philippe André Laboratoire d Astrophysique de Paris-Saclay James Di Francesco National Research Council

More information

the Solar Neighborhood

the Solar Neighborhood Click to edit Master title style Star Formation at High A V in the Solar Neighborhood Amanda Heiderman NSF Fellow UVa/NRAO (w/ Neal Evans, UT Austin) Filaments 2014, October, 11, 2014 10/13/2014 1 Click

More information

The Herschel view of molecular cloud structure and star- forma6on

The Herschel view of molecular cloud structure and star- forma6on The Herschel view of molecular cloud structure and star- forma6on Nicola S chneider LAB/Observatoire de Bordeaux (France) Image: Cygnus X (HOBYS) (ESA press release: 3- color image from Herschel PACS/SPIRE)

More information

Origin of the stellar Initial Mass Function (IMF) in the W43-MM1 ridge

Origin of the stellar Initial Mass Function (IMF) in the W43-MM1 ridge Origin of the stellar Initial Mass Function (IMF) in the W43-MM1 ridge Fabien Louvet (Universidad de Chile & IPAG Grenoble) Special credits to: F. Motte, T. Nony, S. Bontemps, A. Gusdorf, P. Didelon, P.

More information

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps Cloud structure and high-mass star formation in HOBYS, the Herschel imaging survey of OB Young Stellar objects Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) http://hobys-herschel.cea.fr

More information

Cold Cores on Planck1,

Cold Cores on Planck1, Cold Cores on Planck1, 2 and Herschel 1 on behalf of the Planck collaboration M. Juvela, I. Ristorcelli (coord.) Planck Desert, Dupac, Giard, Harju, Harrison, Joncas, Jones, Lagache, Lamarre, Laureijs,

More information

How do protostars get their mass?

How do protostars get their mass? How do protostars get their mass? Phil Myers Harvard-Smithsonian Center for Astrophysics Origin of Stellar Masses Tenerife, Spain October 18, 2010 Introduction How does nature make a star? a star of particular

More information

The Formation and Evolution of Prestellar Cores

The Formation and Evolution of Prestellar Cores The Formation and Evolution of Prestellar Cores Formation of Prestellar Cores: Observations and Theory Edited by PHILIPPE ANDRE 1, SHANTANU BASU 2, and SHU-ICHIRO INUTSUKA 3 (1) Service d Astrophysique,

More information

Origin of the dense core mass function in contracting filaments

Origin of the dense core mass function in contracting filaments Origin of the dense core mass function in contracting filaments Philip C. Myers Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 USA pmyers@cfa.harvard.edu Abstract. Mass

More information

Cold Cores of Molecular Clouds. Mika Juvela, Department of physics, University of Helsinki

Cold Cores of Molecular Clouds. Mika Juvela, Department of physics, University of Helsinki Cold Cores of Molecular Clouds Mika Juvela, Department of physics, University of Helsinki Juvela - IAU August 2012 on cold cores On behalfmika of the Planck andxxviii, Herschel projects Content Molecular

More information

Galactic Cold Cores. M.Juvela On behalf of the Galactic Cold Cores project

Galactic Cold Cores. M.Juvela On behalf of the Galactic Cold Cores project Galactic Cold Cores M.Juvela On behalf of the Galactic Cold Cores project M. Juvela, I. Ristorcelli (coord.) Desert, Dupac, Giard, Harju, Harrison, Joncas, Jones, Lagache, Lamarre, Laureijs, Lehtinen,

More information

within entire molecular cloud complexes

within entire molecular cloud complexes The earliest phases of high-mass stars within entire molecular cloud complexes Frédérique Motte (CEA-Saclay, AIM) Collaborators: S. Bontemps (Obs Bordeaux), N. Schneider, J. Grac (CEA-Saclay), P. Schilke,

More information

Frédérique Motte (AIM Paris-Saclay)

Frédérique Motte (AIM Paris-Saclay) Clusters of high-mass protostars: From extreme clouds to minibursts of star formation Frédérique Motte (AIM Paris-Saclay) Special thanks to S. Bontemps, T. Csengeri, P. Didelon, M. Hennemann, T. Hill,

More information

The formation of high-mass stars: new insights from Herschel, IRAM, and ALMA imaging

The formation of high-mass stars: new insights from Herschel, IRAM, and ALMA imaging The formation of high-mass stars: new insights from Herschel, IRAM, and ALMA imaging Frédérique Motte (IPAG Grenoble & AIM Paris-Saclay) Special credits to S. Bontemps, T. Csengeri, P. Didelon, A. Gusdorf,

More information

Theory of star formation

Theory of star formation Theory of star formation Monday 8th 17.15 18.00 Molecular clouds and star formation: Introduction Tuesday 9th 13.15 14.00 Molecular clouds: structure, physics, and chemistry 16.00 16.45 Cloud cores: statistics

More information

High mass star formation in the Herschel era: highlights of the HOBYS key program

High mass star formation in the Herschel era: highlights of the HOBYS key program Recent Advances in Star Formation ASI Conference Series, 2012, Vol. 4, pp 55 62 Edited by Annapurni Subramaniam & Sumedh Anathpindika High mass star formation in the Herschel era: highlights of the HOBYS

More information

The Role of Magnetic Field in Star Formation in the Disk of Milky Way Galaxy Shu-ichiro Inutsuka (Nagoya University)

The Role of Magnetic Field in Star Formation in the Disk of Milky Way Galaxy Shu-ichiro Inutsuka (Nagoya University) Role of Magnetic Field in Star Formation & Galactic Structure (Dec 20 22, 2017) The Role of Magnetic Field in Star Formation in the Disk of Milky Way Galaxy Shu-ichiro Inutsuka (Nagoya University) Main

More information

Low mass star formation. Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan...

Low mass star formation. Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan... Low mass star formation Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan...) The observational state of play Multiwavelength surveys are bringing

More information

From Filaments to Stars: a Theoretical Perspective

From Filaments to Stars: a Theoretical Perspective From Filaments to Stars: a Theoretical Perspective NRAO Filaments. Oct. 10-11, 2014 Ralph E. Pudritz Origins Institute, McMaster U. Collaborators McMaster: Mikhail Klassen, Corey Howard, (Ph.D.s) Helen

More information

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998:

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998: igure 4 of McMullin et al. 1994. Figure 1 of Testi & Sargent 1998: McMullin et al. 1994 BIMA with (only!) three elements Eight configurationsàcoverage of 2 kλ to 30 kλ Naturally wtd. Beam of 11" x 6" (for

More information

II- Molecular clouds

II- Molecular clouds 2. II- Molecular clouds 3. Introduction 4. Observations of MC Pierre Hily-Blant (Master2) The ISM 2012-2013 218 / 290 3. Introduction 3. Introduction Pierre Hily-Blant (Master2) The ISM 2012-2013 219 /

More information

Thermal physics, cloud geometry and the stellar initial mass function

Thermal physics, cloud geometry and the stellar initial mass function Mon. Not. R. Astron. Soc. 359, 211 222 (2005) doi:10.1111/j.1365-2966.2005.08881.x Thermal physics, cloud geometry and the stellar initial mass function Richard B. Larson Yale Astronomy Department, Box

More information

The Star Formation Rate of Molecular Clouds

The Star Formation Rate of Molecular Clouds The Star Formation Rate of Molecular Clouds Paolo Padoan University of Barcelona Christoph Federrath Monash University Gilles Chabrier Ecole Normale Suprieure de Lyon Neal J. Evans II The University of

More information

The role of the magnetic field in the formation of structure in molecular clouds

The role of the magnetic field in the formation of structure in molecular clouds The role of the magnetic field in the formation of structure in molecular clouds Juan Diego Soler Institute d Astrophysique Spatiale (France) on behalf of the Planck collaboration IAU General Assembly.

More information

Star-forming filament models

Star-forming filament models Star-forming filament models Philip C. Myers Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 USA pmyers@cfa.harvard.edu Abstract. New models of star-forming filamentary

More information

Filamentary Structures in the Galactic Plane Morphology, Physical conditions and relation with star formation

Filamentary Structures in the Galactic Plane Morphology, Physical conditions and relation with star formation Background: Column Density Map from Herschel Observation of Galactic Plane Hi-GAL project - field centered at (l,b) )=(224,0 ) Filamentary Structures in the Galactic Plane Morphology, Physical conditions

More information

Astronomy. Astrophysics. Fragmentation and mass segregation in the massive dense cores of Cygnus X

Astronomy. Astrophysics. Fragmentation and mass segregation in the massive dense cores of Cygnus X A&A 524, A18 (2010) DOI: 10.1051/0004-6361/200913286 c ESO 2010 Astronomy & Astrophysics Fragmentation and mass segregation in the massive dense cores of Cygnus X S. Bontemps 1,F.Motte 2,T.Csengeri 2,

More information

Filamentary structure of star-forming complexes

Filamentary structure of star-forming complexes Filamentary structure of star-forming complexes Philip C. Myers Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 USA pmyers@cfa.harvard.edu Abstract. The nearest young

More information

UNDERSTANDING THE IMF

UNDERSTANDING THE IMF UNDERSTANDING THE IMF Richard B. Larson Department of Astronomy, Yale University Box 208101, New Haven, CT 06520-8101, USA larson@astro.yale.edu Abstract It is suggested that the thermal physics of star-forming

More information

How do high line-mass filaments fragment? Towards an evolutionary sequence with ALMA

How do high line-mass filaments fragment? Towards an evolutionary sequence with ALMA How do high line-mass filaments fragment? Towards an evolutionary sequence with ALMA Jouni Kainulainen Max-Planck-Institute for Astronomy Kainulainen+2017 (A&A accepted; arxiv:1603.05688) With: Amelia

More information

Characteristic structure of star-forming clouds

Characteristic structure of star-forming clouds Characteristic structure of star-forming clouds Philip C. Myers Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 USA pmyers@cfa.harvard.edu Abstract. This paper gives a

More information

Collapse of magnetized dense cores. Is there a fragmentation crisis?

Collapse of magnetized dense cores. Is there a fragmentation crisis? Collapse of magnetized dense cores Is there a fragmentation crisis? Patrick Hennebelle (ENS-Observatoire de Paris) Collaborators: Benoît Commerçon, Andréa Ciardi, Sébastien Fromang, Romain Teyssier, Philippe

More information

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith)

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith) THE FORMATION OF MASSIVE STARS η Carina (NASA, ESA, N. Smith) THE FORMATION OF MASSIVE STARS Christopher F. McKee HIPACC, UCSC August 8, 2013 with Andrew Cunningham Richard Klein Mark Krumholz Andrew Myers

More information

arxiv: v1 [astro-ph.sr] 15 Oct 2018

arxiv: v1 [astro-ph.sr] 15 Oct 2018 Star-forming Filaments and Cores on a Galactic Scale arxiv:1810.06701v1 [astro-ph.sr] 15 Oct 2018 James Di Francesco 1, Jared Keown 2, Rachel Friesen 3, Tyler Bourke 4, and Paola Caselli 5 1 National Research

More information

Revealing and understanding the low-mass end of the IMF. Low-mass part of the Initial Mass Function Star, brown dwarf formation. G.

Revealing and understanding the low-mass end of the IMF. Low-mass part of the Initial Mass Function Star, brown dwarf formation. G. Revealing and understanding the low-mass end of the IMF Low-mass part of the Initial Mass Function Star, brown dwarf formation G. Chabrier Field: Resolved objects IMF down to the HB limit Salpeter Kroupa

More information

The Formation of Star Clusters

The Formation of Star Clusters The Formation of Star Clusters Orion Nebula Cluster (JHK) - McCaughrean Jonathan Tan University of Florida & KITP In collaboration with: Brent Buckalew (ERAU), Michael Butler (UF u-grad), Jayce Dowell

More information

Summary and Future work

Summary and Future work 299 Chapter 7 Summary and Future work 7.1 Summary In this thesis I have utilized large-scale millimeter and mid- to far-infrared surveys to address a number of outstanding questions regarding the formation

More information

Brown dwarf & star formation and the bottom of the IMF: a critical look

Brown dwarf & star formation and the bottom of the IMF: a critical look Brown dwarf & star formation and the bottom of the IMF: a critical look Gilles Chabrier ENS-Lyon U. Exeter Origin of stars and their planetary systems Mac Master University, June 2012 Field: Resolved objects

More information

Where, Exactly, do Stars Form? (and how can SOFIA help with the answer)

Where, Exactly, do Stars Form? (and how can SOFIA help with the answer) Where, Exactly, do Stars Form? (and how can SOFIA help with the answer) Alyssa A. Goodman Harvard University Astronomy Department photo credit: Alves, Lada & Lada On a galactic scale Star Formation=Column

More information

The JCMT and Herschel Gould Belt Surveys: a comparison of SCUBA-2 and Herschel data of dense cores in the Taurus dark cloud L1495

The JCMT and Herschel Gould Belt Surveys: a comparison of SCUBA-2 and Herschel data of dense cores in the Taurus dark cloud L1495 Advance Access publication 2016 August 16 doi:10.1093/mnras/stw1978 The JCMT and Herschel Gould Belt Surveys: a comparison of SCUBA-2 and Herschel data of dense cores in the Taurus dark cloud L1495 D.

More information

Philamentary Structure and Velocity Gradients in the Orion A Cloud

Philamentary Structure and Velocity Gradients in the Orion A Cloud Red: CO from Mini survey Orion B Philamentary Structure and Velocity Gradients in the Orion A Cloud Spitzer Orion Cloud Survey: 10 sq. degrees in Orion A and Orion B mapped between 2004-2009 Orion A Green

More information

Low-Mass Star Formation

Low-Mass Star Formation Low-Mass Star Formation Neal J. Evans II with credit to Mike Dunham, Lori Allen, Hyo Jeong Kim, Amy Stutz Star Formation Questions What determines the IMF? How long do various stages of the process take?

More information

The Competitive Accretion Debate

The Competitive Accretion Debate The Competitive Accretion Debate 1,2 Paul C. Clark 2 Ralf S. Klessen 3 Ian A. Bonnell 3 Rowan J. Smith 1 KITP 2 University of Heidelberg 3 University of St Andrews What is CA and how does it work? Theory

More information

Astronomy. Astrophysics. The Pipe Nebula as seen with Herschel: formation of filamentary structures by large-scale compression?,

Astronomy. Astrophysics. The Pipe Nebula as seen with Herschel: formation of filamentary structures by large-scale compression?, A&A 541, A63 (2012) DOI: 10.1051/0004-6361/201118663 c ESO 2012 Astronomy & Astrophysics The Pipe Nebula as seen with Herschel: formation of filamentary structures by large-scale compression?, N. Peretto

More information

Physics of Star and Planet Formation Towards a Unified Picture

Physics of Star and Planet Formation Towards a Unified Picture Thomas Henning Max Planck Institute for Astronomy Heidelberg Physics of Star and Planet Formation Towards a Unified Picture ISOSS 22164+6003 (Distance = 6 kpc L=20 000 L sun ) Deep NIR CAHA Image + Herschel/PACS

More information

arxiv: v2 [astro-ph.ga] 5 Oct 2013

arxiv: v2 [astro-ph.ga] 5 Oct 2013 Two Mass Distributions in the L 1641 Molecular Clouds: The Herschel connection of Dense Cores and Filaments in Orion A 1 arxiv:1309.2332v2 [astro-ph.ga] 5 Oct 2013 D. Polychroni 1,3, E. Schisano 2,3, D.

More information

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith)

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith) THE FORMATION OF MASSIVE STARS η Carina (NASA, ESA, N. Smith) THE FORMATION OF MASSIVE STARS Christopher F. McKee Institute for Astronomy November 2, 2011 with Andrew Cunningham Edith Falgarone Richard

More information

A SCUBA survey of the NGC 2068/2071 protoclusters

A SCUBA survey of the NGC 2068/2071 protoclusters Astronomy & Astrophysics manuscript no. (will be inserted by hand later) A SCUBA survey of the NGC 2068/2071 protoclusters F. Motte 1, P. André 2, D. Ward-Thompson 3, and S. Bontemps 4 1 Max-Planck-Institut

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. VOLUME: 1 ARTICLE NUMBER: 0158 The link between magnetic field orientations and star formation rates Supplementary Figure 1 - YSOs (blue dots in the

More information

arxiv: v1 [astro-ph.ga] 23 Jan 2018

arxiv: v1 [astro-ph.ga] 23 Jan 2018 Astronomy& Astrophysics manuscript no. HGBS_craNS_paper c ESO 2018 January 25, 2018 The dense cores and filamentary structure of the molecular cloud in Corona Australis: Herschel SPIRE and PACS observations

More information

Brown Dwarf Formation from Disk Fragmentation and Ejection

Brown Dwarf Formation from Disk Fragmentation and Ejection Brown Dwarf Formation from Disk Fragmentation and Ejection Shantanu Basu Western University, London, Ontario, Canada Collaborator: Eduard Vorobyov (University of Vienna) 50 years of Brown Dwarfs Ringberg

More information

Fragmentation and mass segregation in the massive dense cores of Cygnus X

Fragmentation and mass segregation in the massive dense cores of Cygnus X Astronomy & Astrophysics manuscript no. irquiet-frag c ESO 2018 April 14, 2018 Fragmentation and mass segregation in the massive dense cores of Cygnus X S. Bontemps, 1,2,3 F. Motte, 3 T. Csengeri, 3 N.

More information

Turbulence in the (Cold) ISM

Turbulence in the (Cold) ISM Turbulence in the (Cold) ISM P. Hily-Blant IPAG April 14th, 2011 Outline 1 Introduction 2 Introduction to turbulence 3 Turbulent Cascade 4 Structures 5 Dissipation 6 Flavors 7 Perspectives failed to catch

More information

Star Formation: How my knowledge has been shaped by observations taken by the James Clerk Maxwell Telescope

Star Formation: How my knowledge has been shaped by observations taken by the James Clerk Maxwell Telescope Star Formation: How my knowledge has been shaped by observations taken by the James Clerk Maxwell Telescope With: J. Di Francesco, H. Kirk (NRC); S. Mairs, M. Chen (UVic); A. Pon (Leeds); R. Friesen (DI);

More information

Searching for the dominant mode of galaxy growth! from deep extragalactic Herschel surveys! D.Elbaz (CEA Saclay)

Searching for the dominant mode of galaxy growth! from deep extragalactic Herschel surveys! D.Elbaz (CEA Saclay) Searching for the dominant mode of galaxy growth! from deep extragalactic Herschel surveys! D.Elbaz (CEA Saclay) Star formation = local process (~pc scale)! How sensitive is SF to larger scales inside

More information

arxiv: v1 [astro-ph] 7 May 2008

arxiv: v1 [astro-ph] 7 May 2008 Draft version January 23, 2018 Preprint typeset using L A TEX style emulateapj v. 08/22/09 THE MASS DISTRIBUTION AND LIFETIME OF PRESTELLAR CORES IN PERSEUS, SERPENS, AND OPHIUCHUS Melissa L. Enoch 1,3,

More information

N-body Dynamics in Stellar Clusters Embedded in Gas

N-body Dynamics in Stellar Clusters Embedded in Gas N-body Dynamics in Stellar Clusters Embedded in Gas Matthew Bate, University of Exeter Kurosawa, Harries, Bate & Symington (2004) Collaborators: Ian Bonnell, St Andrews Volker Bromm, Texas Star Formation

More information

arxiv: v1 [astro-ph.ga] 24 Jul 2018

arxiv: v1 [astro-ph.ga] 24 Jul 2018 Publ. Astron. Soc. Japan (2014) 00(0), 1 15 doi: 10.1093/pasj/xxx000 1 arxiv:1807.08968v1 [astro-ph.ga] 24 Jul 2018 Molecular filament formation and filament-cloud interaction: Hints from Nobeyama 45m

More information

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter The dependence of star cluster formation on initial conditions Matthew Bate University of Exeter Stellar properties do not greatly depend on initial conditions constellation Little evidence for variation

More information

arxiv: v1 [astro-ph.ga] 24 May 2016

arxiv: v1 [astro-ph.ga] 24 May 2016 Astronomy & Astrophysics manuscript no. ngc6334_artemis_aa c ESO 2018 November 6, 2018 arxiv:1605.07434v1 [astro-ph.ga] 24 May 2016 Characterizing filaments in regions of high-mass star formation: High-resolution

More information

The physics of star formation

The physics of star formation INSTITUTE OF PHYSICS PUBLISHING Rep. Prog. Phys. 66 (2003) 1651 1697 REPORTS ON PROGRESS IN PHYSICS PII: S0034-4885(03)07916-8 The physics of star formation Richard B Larson Department of Astronomy, Yale

More information

Molecular Cloud Turbulence and Star Formation

Molecular Cloud Turbulence and Star Formation Molecular Cloud Turbulence and Star Formation Javier Ballesteros-Paredes1, Ralf Klessen2, MordecaiMark Mac Low3, Enrique Vazquez-Semadeni1 1UNAM Morelia, Mexico, 2AIP, Potsdam, Germany, 3AMNH New York,

More information

The Schmidt Law at Sixty. Robert Kennicutt University of Arizona Texas A&M University

The Schmidt Law at Sixty. Robert Kennicutt University of Arizona Texas A&M University The Schmidt Law at Sixty Robert Kennicutt University of Arizona Texas A&M University Log (SFR surface density) Maarten Schmidt conjecture (1959, 1963): - volume/surface densities of star formation scale

More information

The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences for the core mass function

The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences for the core mass function Mon. Not. R. Astron. Soc. 379, 1390 1400 (2007) doi:10.1111/j.1365-2966.2007.11999.x The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences

More information

Hierarchical structure of the interstellar molecular clouds and star formation

Hierarchical structure of the interstellar molecular clouds and star formation Open Astron. 2017; 26: 285 292 Research Article Alexander E. Dudorov* and Sergey A. Khaibrakhmanov Hierarchical structure of the interstellar molecular clouds and star formation https://doi.org/10.1515/astro-2017-0428

More information

arxiv: v1 [astro-ph.ga] 12 Sep 2018

arxiv: v1 [astro-ph.ga] 12 Sep 2018 Astronomy & Astrophysics manuscript no. paper ESO 2018 September 13, 2018 A catalogue of dense cores and young stellar objects in the Lupus complex based on Herschel Gould Belt Survey observations M. Benedettini

More information

Brown Dwarf Formation and Jet Propagation in Core Collapse Simulations

Brown Dwarf Formation and Jet Propagation in Core Collapse Simulations Brown Dwarf Formation and Jet Propagation in Core Collapse Simulations Knot Knot Cavity (proto-b.d) Observation Riaz et al. (2017) Masahiro N Machida (Kyushu Univ.) Clumps B.D mass object Simulation Collaborators:

More information

The Initial Mass Function Elisa Chisari

The Initial Mass Function Elisa Chisari The Initial Mass Function AST 541 Dec 4 2012 Outline The form of the IMF Summary of observations Ingredients of a complete model A Press Schechter model Numerical simulations Conclusions The form of the

More information

Galactic dust in the Herschel and Planck era. François Boulanger Institut d Astrophysique Spatiale

Galactic dust in the Herschel and Planck era. François Boulanger Institut d Astrophysique Spatiale Galactic dust in the Herschel and Planck era François Boulanger Institut d Astrophysique Spatiale Motivation Dust emission Dust models Dust life cycle Planck early results Dust polarisation Outline Dust

More information

Herschel Mission Status Star and Planet Formation Over the Most Recent 12 GigaYears

Herschel Mission Status Star and Planet Formation Over the Most Recent 12 GigaYears Herschel Mission Status Star and Planet Formation Over the Most Recent 12 GigaYears From Atoms Pebbles: Herschel s View of Star and Planet Formation Grenoble, 20-23/03/2012 Göran Pilbratt, Herschel Project

More information

SAM GEEN (ITA/ZAH HEIDELBERG)

SAM GEEN (ITA/ZAH HEIDELBERG) SAM GEEN (ITA/ZAH HEIDELBERG) WITH PATRICK HENNEBELLE JUAN SOLER AND RALF KLESSEN Credit: Lost Valley Observatory Star formation is self regulating HII HII regions, regions, supernovae supernovae Molecular

More information

arxiv: v1 [astro-ph] 7 Sep 2007

arxiv: v1 [astro-ph] 7 Sep 2007 To appear in the Astrophysical Journal The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure arxiv:0709.1164v1 [astro-ph] 7 Sep 2007 Charles J. Lada 1, A.A. Muench 1,

More information

Fragmentation of the Integral Shaped Filament as viewed by ALMA

Fragmentation of the Integral Shaped Filament as viewed by ALMA Fragmentation of the Integral Shaped Filament as viewed by ALMA Jouni Kainulainen Max-Planck-Institute for Astronomy Kainulainen et al. (submitted; arxiv:1603.05688) With: Amelia Stutz, Thomas Stanke,

More information

An analytic column density profile to fit prestellar cores

An analytic column density profile to fit prestellar cores Mon. Not. R. Astron. Soc. 395, 109 1098 (009) doi:10.1111/j.1365-966.009.14616.x An analytic column density profile to fit prestellar cores Wolf B. Dapp and Shantanu Basu Department of Physics and Astronomy,

More information

An analytic column density profile to fit prestellar cores

An analytic column density profile to fit prestellar cores Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 23 March 2009 (MN LATEX style file v2.2) An analytic column density profile to fit prestellar cores Wolf B. Dapp 1 and Shantanu Basu 1, 1 Department

More information

arxiv: v1 [astro-ph] 25 May 2007

arxiv: v1 [astro-ph] 25 May 2007 Cold Dark Clouds 1 COLD DARK CLOUDS: The Initial Conditions for Star Formation arxiv:0705.3765v1 [astro-ph] 25 May 2007 Edwin A. Bergin Department of Astronomy, University of Michigan, 500 Church St. Ann

More information

The structure of molecular clouds II. Column density and mass distributions

The structure of molecular clouds II. Column density and mass distributions Mon. Not. R. Astron. Soc. 406, 1350 1357 (2010) doi:10.1111/j.1365-2966.2010.16769.x The structure of molecular clouds II. Column density and mass distributions Dirk Froebrich and Jonathan Rowles Centre

More information

21. The Green Bank Ammonia Survey: Dense Cores Under Pressure in Orion A Kirk+ ApJ in press GAS Herschel YSO

21. The Green Bank Ammonia Survey: Dense Cores Under Pressure in Orion A Kirk+ ApJ in press GAS Herschel YSO 21. The Green Bank Ammonia Survey: Dense Cores Under Pressure in Orion A Kirk+ ApJ in press GAS Herschel YSO Spitzer YSO JCMT prestellar core prestellar core JCMT protostellar core protostellar core surface

More information

arxiv: v1 [astro-ph.ga] 30 Nov 2009

arxiv: v1 [astro-ph.ga] 30 Nov 2009 Astronomy & Astrophysics manuscript no. Kainulainen c ESO 2013 December 25, 2013 Letter to the Editor Probing the evolution of molecular cloud structure: From quiescence to birth arxiv:0911.5648v1 [astro-ph.ga]

More information

Impact of magnetic fields on molecular cloud formation and evolution

Impact of magnetic fields on molecular cloud formation and evolution MNRAS 51, 33 3353 (15) doi:1.193/mnras/stv1 Impact of magnetic fields on molecular cloud formation and evolution Bastian Körtgen and Robi Banerjee Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg

More information

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009 Formation Mechanisms of Brown Dwarfs: Observations & Theories Dan Li April 2009 What is brown dwarf (BD)? BD Mass : upper-limit ~ 0.075 M lower-limit ~ 0.013 M (?) Differences between BD and giant planet:

More information

arxiv: v1 [astro-ph.ga] 25 Apr 2014

arxiv: v1 [astro-ph.ga] 25 Apr 2014 Astronomy & Astrophysics manuscript no. AlvesDeOliveira_Chamaeleon_accepted c ESO 2018 September 24, 2018 Herschel s view of the large-scale structure in the Chamaeleon dark clouds C. Alves de Oliveira

More information

arxiv:astro-ph/ v1 17 Mar 2006

arxiv:astro-ph/ v1 17 Mar 2006 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 21 January 2014 (MN LaT E X style file v2.2) The Jeans mass and the origin of the knee in the IMF arxiv:astro-ph/0603444v1 17 Mar 2006 I. A. Bonnell

More information

arxiv: v1 [astro-ph.ga] 12 Mar 2014

arxiv: v1 [astro-ph.ga] 12 Mar 2014 Astronomy & Astrophysics manuscript no. pdf bg 04022014 c ESO 2014 March 13, 2014 Understanding star formation in molecular clouds I. A universal probability distribution of column densities? N. Schneider

More information

The Origin of the Initial Mass Function

The Origin of the Initial Mass Function The Origin of the Initial Mass Function Ian A. Bonnell University of St Andrews Richard B. Larson Yale University Hans Zinnecker Astrophysikalisches Institut Potsdam Bonnell et al.: Origin of the Initial

More information

Molecular Tracers of Embedded Star Formation in Ophiuchus

Molecular Tracers of Embedded Star Formation in Ophiuchus PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 120:1193 1206, 2008 November 2008. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Molecular Tracers of Embedded

More information

Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function ABSTRACT

Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function ABSTRACT DOI: 10.1051/0004-6361/201526431 c ESO 2015 Astronomy & Astrophysics Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function A. Roy 1, Ph.

More information

arxiv:astro-ph/ v1 17 Mar 2006

arxiv:astro-ph/ v1 17 Mar 2006 The Origin of the Initial Mass Function Ian A. Bonnell University of St Andrews Richard B. Larson Yale University Hans Zinnecker Astrophysikalisches Institut Potsdam arxiv:astro-ph/0603447v1 17 Mar 2006

More information

The Jeans mass and the origin of the knee in the IMF

The Jeans mass and the origin of the knee in the IMF Mon. Not. R. Astron. Soc. 368, 1296 1300 (2006) doi:10.1111/j.1365-2966.2006.10214.x The Jeans mass and the origin of the knee in the IMF I. A. Bonnell, 1 C. J. Clarke 2 and M. R. Bate 3 1 School of Physics

More information

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain)

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain) STARLESS CORES Mario Tafalla (Observatorio Astronómico Nacional, Spain) Outline: 1. Internal Structure a. Introduction b. How to characterize the internal strcuture of starless cores c. L1498 & L1517B:

More information

Astronomy. Astrophysics. SDC13 infrared dark clouds: Longitudinally collapsing filaments?,,

Astronomy. Astrophysics. SDC13 infrared dark clouds: Longitudinally collapsing filaments?,, DOI: 10.1051/0004-6361/201322172 c ESO 2014 Astronomy & Astrophysics SDC13 infrared dark clouds: Longitudinally collapsing filaments?,, N. Peretto 1,2, G. A. Fuller 3, Ph. André 2, D. Arzoumanian 4, V.

More information