THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith)

Size: px
Start display at page:

Download "THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith)"

Transcription

1 THE FORMATION OF MASSIVE STARS η Carina (NASA, ESA, N. Smith)

2 THE FORMATION OF MASSIVE STARS Christopher F. McKee Institute for Astronomy November 2, 2011 with Andrew Cunningham Edith Falgarone Richard Klein Mark Krumholz Andrew Myers Stella Offner Jonathan Tan

3 MASSIVE STARS: Create most of the heavy elements

4 Cas A Supernova Remnant NASA/CXC/MIT/Umass Amherst/D. Stage ea

5 MASSIVE STARS: Create most of the heavy elements

6 MASSIVE STARS: Create most of the heavy elements Energize the interstellar medium (ISM) UV emission heats via photoelectric effect (~10 2 K) Ionizing luminosity creates ionized gas (~10 4 K) Stellar winds and supernovae create hot gas (~10 6 K)

7 T. Megeath

8 MASSIVE STARS: Create most of the heavy elements Energize the interstellar medium (ISM) UV emission heats via photoelectric effect (~10 2 K) Ionizing luminosity creates ionized gas (~10 4 K) Stellar winds and supernovae create hot gas (~10 6 K) Govern the evolution of galaxies -Radiation pressure drives outflows

9 M82 Red: IR (Spitzer) Orange: HII (Hubble) Blue: X-rays (Chandra)

10 MASSIVE STARS: Create most of the heavy elements Energize the interstellar medium (ISM) UV emission heats via photoelectric effect (~10 2 K) Ionizing luminosity creates ionized gas (~10 4 K) Stellar winds and supernovae create hot gas (~10 6 K) Regulate star formation Govern the evolution of galaxies -Radiation pressure drives outflows May have re-ionized the universe

11

12 WHY DO WE KNOW SO LITTLE ABOUT MASSIVE STAR FORMATION?

13 WHY DO WE KNOW SO LITTLE ABOUT MASSIVE STAR FORMATION? OBSERVATION: Highly obscured (A V ~ ) > ~ Far away (D 2 kpc) Crowded (10 4 stars pc -3 at the center of Orion)

14 WHY DO WE KNOW SO LITTLE ABOUT MASSIVE STAR FORMATION? OBSERVATION: Highly obscured (A V ~ ) > ~ Far away (D 2 kpc) Crowded (10 4 stars pc -3 at the center of Orion) THEORY: Wide range of length and time scales (like low-mass star formation) Radiation dynamically important (unlike low-mass star formation)

15 OUTLINE

16 *Basics OUTLINE -Part I: Star Formation in Isothermal Gas: Everything you ever wanted to know about star formation in three slides -Part II: Star Formation in Turbulent Gas

17 *Basics OUTLINE -Part I: Star Formation in Isothermal Gas: Everything you ever wanted to know about star formation in three slides -Part II: Star Formation in Turbulent Gas * Theoretical models of massive star formation

18 *Basics OUTLINE -Part I: Star Formation in Isothermal Gas: Everything you ever wanted to know about star formation in three slides -Part II: Star Formation in Turbulent Gas * Theoretical models of massive star formation * Challenges in massive star formation: -Radiation pressure -Ionizing radiation -Constancy of the IMF

19 *Basics OUTLINE -Part I: Star Formation in Isothermal Gas: Everything you ever wanted to know about star formation in three slides -Part II: Star Formation in Turbulent Gas * Theoretical models of massive star formation * Challenges in massive star formation: -Radiation pressure -Ionizing radiation -Constancy of the IMF * Observational predictions

20 Hierarchical Structure of Molecular Clouds Terminology: Clump -> star cluster (~ 10 3 M sun ) GMC (~ M sun ) Core -> star/binary (~ 1-10 M sun ) Structure self-similar from stellar mass to GMC mass

21 CHARACTERISTICS OF REGIONS OF HIGH-MASS STAR FORMATION High-mass star-forming clumps (Plume et al. 1997; Shirley et al. 2003) Sound speed c s ~ 0.3 km s -1 (Temperature ~ 30 K) Supersonically turbulent: σ ~ 2.5 km s -1 Radius ~ 0.5 pc Mass ~ 4000 M sun

22 CHARACTERISTICS OF REGIONS OF HIGH-MASS STAR FORMATION High-mass star-forming clumps (Plume et al. 1997; Shirley et al. 2003) Sound speed c s ~ 0.3 km s -1 (Temperature ~ 30 K) Supersonically turbulent: σ ~ 2.5 km s -1 Radius ~ 0.5 pc Mass ~ 4000 M sun Density ρ ~ g cm -3, n H ~ cm -3 Surface density Σ ~ 1 g cm -2 (A V ~200)

23 CHARACTERISTICS OF REGIONS OF HIGH-MASS STAR FORMATION High-mass star-forming clumps (Plume et al. 1997; Shirley et al. 2003) Sound speed c s ~ 0.3 km s -1 (Temperature ~ 30 K) Supersonically turbulent: σ ~ 2.5 km s -1 Radius ~ 0.5 pc Mass ~ 4000 M sun Density ρ ~ g cm -3, n H ~ cm -3 Surface density Σ ~ 1 g cm -2 (A V ~200) Compare typical Giant Molecular Cloud: Σ ~ 0.03 g cm -2 n H ~ 100 cm -3

24 Massive Cores inside Star-forming Clumps Largest cores in clumps: M ~ 100 M, R ~ 0.1 pc Some are starless now, but they are expected to form massive stars Core in IRDC , Spitzer/IRAC (color) and PdBI 93 GHz continuum (contours), Beuther et al. (2005, 2007)

25 Massive Cores inside Star-forming Clumps Largest cores in clumps: M ~ 100 M, R ~ 0.1 pc Some are starless now, but they are expected to form massive stars Cores have power-law density profiles, index k ρ 1.5 Core density profile in 3 wavelengths, Beuther et al. (2007) Core in IRDC , Spitzer/IRAC (color) and PdBI 93 GHz continuum (contours), Beuther et al. (2005, 2007)

26 BASICS: PART I Star Formation in Isothermal Gas Pioneers: Jeans, Bonnor, Ebert, Larson, Shu

27 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 1 Characteristic timescale set by self-gravity: d 2 R dt 2 ~ R t 2 ~ GM R 2 t 2 R3 GM ~ 1 Gρ

28 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 1 Characteristic timescale set by self-gravity: d 2 R dt 2 ~ R t 2 ~ GM R 2 t 2 R3 GM ~ 1 Gρ Free-fall time: t ff = (3π/32Gρ) 1/2 = 1.4 x 10 5 (10 5 cm -3 /n) 1/2 yr

29 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 2 Characteristic mass: Kinetic energy/mass ~ gravitational energy/mass c s 2 P/ρ GM/R M ~ Rc s 2/G

30 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 2 Characteristic mass: Kinetic energy/mass ~ gravitational energy/mass c s 2 P/ρ GM/R M ~ Rc s 2/G Radius: R ~ c s t ff ~ c s /(Gρ) 1/2

31 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 2 Characteristic mass: Kinetic energy/mass ~ gravitational energy/mass c s 2 P/ρ GM/R M ~ Rc s 2/G Radius: R ~ c s t ff ~ c s /(Gρ) 1/2 Mass ~ Rc s 2/G ~ c s 3t ff /G ~ c s 3/(G 3 ρ) 1/2

32 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 2 Characteristic mass: Kinetic energy/mass ~ gravitational energy/mass c s 2 P/ρ GM/R M ~ Rc s 2/G Radius: R ~ c s t ff ~ c s /(Gρ) 1/2 Mass ~ Rc s 2/G ~ c s 3t ff /G ~ c s 3/(G 3 ρ) 1/2 Bonnor-Ebert mass = maximum mass of stable isothermal sphere: M BE = 1.18 c thermal 3 /(G 3 ρ) 1/2 Gravity not important for masses M << M BE

33 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 3 Characteristic accretion rate: m * ~ mbe / t ff ~ c s 3/(G 3 ρ) 1/2 (Gρ) 1/2 ~ c s 3/G

34 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 3 Characteristic accretion rate: m * ~ mbe / t ff ~ c s 3/(G 3 ρ) 1/2 (Gρ) 1/2 ~ c s 3/G For a singular isothermal sphere (Shu 1977): m * = c 3 s / G = 1.5 x 10-6 (T/ 10 K) 3/2 M sun yr -1

35 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 3 Characteristic accretion rate: m * ~ mbe / t ff ~ c s 3/(G 3 ρ) 1/2 (Gρ) 1/2 ~ c s 3/G For a singular isothermal sphere (Shu 1977): m * = c 3 s / G = 1.5 x 10-6 (T/ 10 K) 3/2 M sun yr -1 An isothermal gas at 10 K takes 6.5 x 10 5 yr to form a 1 M sun star 6.5 x 10 7 yr to form a 100 M sun star >> age of star (~ 3 Myr)

36 EVERYTHING YOU WANTED TO KNOW ABOUT STAR FORMATION: 3 Characteristic accretion rate: m * ~ mbe / t ff ~ c s 3/(G 3 ρ) 1/2 (Gρ) 1/2 ~ c s 3/G For a singular isothermal sphere (Shu 1977): m * = c 3 s / G = 1.5 x 10-6 (T/ 10 K) 3/2 M sun yr -1 An isothermal gas at 10 K takes 6.5 x 10 5 yr to form a 1 M sun star 6.5 x 10 7 yr to form a 100 M sun star NEED TO GENERALIZE THEORY >> age of star (~ 3 Myr)

37 BASICS: PART II Star Formation in Turbulent Gas Pioneers in observation: Larson, Falgarone, Solomon, Myers, Goodman Pioneers in theory: Gammie Ostriker & Stone, MacLow, Padoan & Nordlund, Vazquez-Semadeni

38 LINEWIDTH-SIZE RELATION IN TURBULENT GAS Incompressible turbulence (Kolmogorov 1941) Energy cascade from driving scale to dissipation scale:

39 LINEWIDTH-SIZE RELATION IN TURBULENT GAS Incompressible turbulence (Kolmogorov 1941) Energy cascade from driving scale to dissipation scale: Supersonic turbulence:

40 LINEWIDTH-SIZE RELATION IN TURBULENT GAS Incompressible turbulence (Kolmogorov 1941) Energy cascade from driving scale to dissipation scale: Supersonic turbulence: Linewidth-size relations

41 LINEWIDTH-SIZE RELATION IN TURBULENT GAS Incompressible turbulence (Kolmogorov 1941) Energy cascade from driving scale to dissipation scale: Supersonic turbulence: Linewidth-size relations Larson (1981) discovered the linewidth-size relation in the ISM

42 LINEWIDTH-SIZE RELATION IN TURBULENT GAS Incompressible turbulence (Kolmogorov 1941) Energy cascade from driving scale to dissipation scale: Supersonic turbulence: Linewidth-size relations Larson (1981) discovered the linewidth-size relation in the ISM What drives the turbulence in molecular gas?

43 LINEWIDTH-SIZE RELATION IN TURBULENT GAS Incompressible turbulence (Kolmogorov 1941) Energy cascade from driving scale to dissipation scale: Supersonic turbulence: Linewidth-size relations Larson (1981) discovered the linewidth-size relation in the ISM What drives the turbulence in molecular gas? Supernovae (Mac Low & Klessen 2004)

44 LINEWIDTH-SIZE RELATION IN TURBULENT GAS Incompressible turbulence (Kolmogorov 1941) Energy cascade from driving scale to dissipation scale: Supersonic turbulence: Linewidth-size relations Larson (1981) discovered the linewidth-size relation in the ISM What drives the turbulence in molecular gas? Supernovae (Mac Low & Klessen 2004) Star formation (Norman & Silk 1980; McKee 1989; Matzner 2002; Nakamura & Li 2005)

45 LINEWIDTH-SIZE RELATION IN TURBULENT GAS Incompressible turbulence (Kolmogorov 1941) Energy cascade from driving scale to dissipation scale: Supersonic turbulence: Linewidth-size relations Larson (1981) discovered the linewidth-size relation in the ISM What drives the turbulence in molecular gas? Supernovae (Mac Low & Klessen 2004) Star formation (Norman & Silk 1980; McKee 1989; Matzner 2002; Nakamura & Li 2005) Self-gravity (Field et al. 2008), gravitational accretion (Klessen & Hennebelle 2010; Goldbaum, Krumholz, Matzner, & McKee 2011)

46 Turbulent Linewidth-Size Relation for Galactic Molecular Gas GMCs (Solomon et al; Dame & Thaddeus; May et al) High-latitude clouds (Falgarone, Perault et al) (Falgarone & McKee 2011?)

47 Turbulent Linewidth-Size Relation for Galactic Molecular Gas Δv NT = (1.4 ± 0.5 dex) L pc 1/2 km/s (Falgarone & McKee 2011?)

48 Linewidth-Size Relation including High-Mass Star-Forming Regions Infra-Red Dark Clouds (IRDCs) Rathborne et al (2007) Battersby et al (2010) High-mass star-forming regions lie above the turbulent linewidth-size relation

49 Turbulent linewidth-size relation for gravitationally unbound gas:

50 Turbulent linewidth-size relation for gravitationally unbound gas: Virialized linewidth-size relation for gravitationally bound gas:

51 Turbulent linewidth-size relation for gravitationally unbound gas: Virialized linewidth-size relation for gravitationally bound gas: for bound clouds with α vir ~ 1 (Heyer ea 2009)

52 Turbulent linewidth-size relation for gravitationally unbound gas: Virialized linewidth-size relation for gravitationally bound gas: Converting to FWHM, Δv=2.355 σ : for bound clouds with α vir ~ 1 (Heyer ea 2009)

53 Generalized Linewidth-Size Relation for Bound and Unbound Gas Turbulent linewidth-size relation (unbound) GMCs Virialized linewidth-size relation (bound) 2 (Falgarone & McKee 2011?)

54 Generalized Linewidth-Size Relation for Bound and Unbound Gas High latitude molecular clouds GMCs High-mass starforming regions 2 (Falgarone & McKee 2011)

55 Generalization of Theory of Low-Mass Star Formation in Isothermal Cores to High-Mass Star Formation in Turbulent Cores (McKee & Tan 2002, 2003)

56 Generalization of Theory of Low-Mass Star Formation in Isothermal Cores to High-Mass Star Formation in Turbulent Cores (McKee & Tan 2002, 2003) Accretion rate m ~ σ 3 * /G (formation time ~ free-fall time) However, for massive stars, σ is highly supersonic; it depends on scale and must be determined self-consistently.

57 Generalization of Theory of Low-Mass Star Formation in Isothermal Cores to High-Mass Star Formation in Turbulent Cores Accretion rate m ~ σ 3 * /G (formation time ~ free-fall time) However, for massive stars, σ is highly supersonic; it depends on scale and must be determined self-consistently. Virial equilibrium σ 2 ~ GM/R (McKee & Tan 2002, 2003)

58 Generalization of Theory of Low-Mass Star Formation in Isothermal Cores to High-Mass Star Formation in Turbulent Cores Accretion rate m ~ σ 3 * /G (formation time ~ free-fall time) However, for massive stars, σ is highly supersonic; it depends on scale and must be determined self-consistently. Virial equilibrium σ 2 ~ GM/R (McKee & Tan 2002, 2003) Surface density Σ = M/πR 2 m * G 1/2 (M Σ) 3/4 Accretion rate determined by core mass M and surface density Σ: High Σ high accretion rate

59 Generalization of Theory of Low-Mass Star Formation in Isothermal Cores to High-Mass Star Formation in Turbulent Cores Accretion rate m ~ σ 3 * /G (formation time ~ free-fall time) However, for massive stars, σ is highly supersonic; it depends on scale and must be determined self-consistently. Virial equilibrium σ 2 ~ GM/R (McKee & Tan 2002, 2003) Surface density Σ = M/πR 2 m * G 1/2 (M Σ) 3/4 Accretion rate determined by core mass M and surface density Σ: High Σ high accretion rate Turbulent cores are scale-free model as singular polytropic spheres (McLaughlin & Pudritz 1996, 1997)

60 Generalization of Theory of Low-Mass Star Formation in Isothermal Cores to High-Mass Star Formation in Turbulent Cores Accretion rate m ~ σ 3 * /G (formation time ~ free-fall time) However, for massive stars, σ is highly supersonic; it depends on scale and must be determined self-consistently. Virial equilibrium σ 2 ~ GM/R Surface density Σ = M/πR 2 m * G 1/2 (M Σ) 3/4 Accretion rate determined by core mass M and surface density Σ: High Σ high accretion rate Numerical evaluation massive stars form in about 10 5 yr: t *f = 1.3 x 10 5 (m *f /30 M sun ) 1/4 Σ 3/4 yr (McKee & Tan 2002, 2003) Turbulent cores are scale-free model as singular polytropic spheres (McLaughlin & Pudritz 1996, 1997)

61 THEORIES OF MASSIVE STAR FORMATION * Gravitational collapse of bound protostellar cores -Turbulent core model (McKee & Tan 2002, 2003) Extension of inside-out collapse model (Shu 1977) to massive stars -Direct numerical simulation (Krumholz et al. 2009; Cunningham et al. 2011)

62 THEORIES OF MASSIVE STAR FORMATION * Gravitational collapse of bound protostellar cores -Turbulent core model (McKee & Tan 2002, 2003) Extension of inside-out collapse model (Shu 1977) to massive stars -Direct numerical simulation (Krumholz et al. 2009; Cunningham et al. 2011) * Bondi-Hoyle accretion by many protostars from a common reservoir -Competitive accretion (Zinnecker 1982; Bonnell et al 1997) -Problems: Fails in a turbulent medium (Krumholz, McKee & Klein 2005) or if radiation pressure becomes important (Edgar & Clarke 2004) -Variant: Fragmentation-induced starvation (Peters et al. 2010)

63 THEORIES OF MASSIVE STAR FORMATION * Gravitational collapse of bound protostellar cores -Turbulent core model (McKee & Tan 2002, 2003) Extension of inside-out collapse model (Shu 1977) to massive stars -Direct numerical simulation (Krumholz et al. 2009; Cunningham et al. 2011) * Bondi-Hoyle accretion by many protostars from a common reservoir -Competitive accretion (Zinnecker 1982; Bonnell et al 1997) -Problems: Fails in a turbulent medium (Krumholz, McKee & Klein 2005) or if radiation pressure becomes important (Edgar & Clarke 2004) -Variant: Fragmentation-induced starvation (Peters et al. 2010) * Stellar coalescence (Bonnell, Bate & Zinnecker 1998) -Massive stars form as a result of physical collisions of low-mass stars, naturally overcoming radiation pressure problem -Requires stellar densities much higher than observed

64 CHALLENGES IN MASSIVE STAR FORMATION Larson & Starrfield (1971)

65 CHALLENGES IN MASSIVE STAR FORMATION Larson & Starrfield (1971) * Formation time exceeds stellar lifetime for m * > 60 M sun Possible solution: increase T higher ρ, shorter free-fall time

66 CHALLENGES IN MASSIVE STAR FORMATION Larson & Starrfield (1971) * Formation time exceeds stellar lifetime for m * > 60 M sun Possible solution: increase T higher ρ, shorter free-fall time * Radiation pressure on dust (a fundamental problem)

67 CHALLENGES IN MASSIVE STAR FORMATION Larson & Starrfield (1971) * Formation time exceeds stellar lifetime for m * > 60 M sun Possible solution: increase T higher ρ, shorter free-fall time * Radiation pressure on dust (a fundamental problem) (1) UV radiation on inner dust shell > gravity for m * > 20 M sun Possible solution: mass build-up in shell, instability

68 CHALLENGES IN MASSIVE STAR FORMATION Larson & Starrfield (1971) * Formation time exceeds stellar lifetime for m * > 60 M sun Possible solution: increase T higher ρ, shorter free-fall time * Radiation pressure on dust (a fundamental problem) (1) UV radiation on inner dust shell > gravity for m * > 20 M sun Possible solution: mass build-up in shell, instability (2) IR radiation from dust shell > gravity for m * > 25 M sun (Current values for opacity, stellar luminosity m *crit = 17 M sun )

69 CHALLENGES IN MASSIVE STAR FORMATION Larson & Starrfield (1971) * Formation time exceeds stellar lifetime for m * > 60 M sun Possible solution: increase T higher ρ, shorter free-fall time * Radiation pressure on dust (a fundamental problem) (1) UV radiation on inner dust shell > gravity for m * > 20 M sun Possible solution: mass build-up in shell, instability (2) IR radiation from dust shell > gravity for m * > 25 M sun (Current values for opacity, stellar luminosity m *crit = 17 M sun ) * Formation time > time to reach main sequence HII region Ionizes natal cloud for m * > 25 M sun Possible solution: increase cloud density by lower star formation efficiency, higher T, turbulence

70 THE RADIATION PRESSURE PROBLEM 1. UV radiation at the dust destruction front near the protostar Wolfire & Cassinelli (1987) Require momentum in accretion flow at dust destruction radius to exceed momentum in radiation field:

71 THE RADIATION PRESSURE PROBLEM 1. UV radiation at the dust destruction front near the protostar Wolfire & Cassinelli (1987) Satisfied by Turbulent Core model: for 30 M sun star

72 THE RADIATION PRESSURE PROBLEM 2. IR RADIATION ON DUST Eddington luminosity L edd : radiative force balances gravity at L Edd = 4πGMc/(σ/µ) Maximum IR cross section per unit mass for dust in massive protostellar envelopes: σ/µ 8 cm 2 g -1 L Edd = 1600 (M/M sun ) L sun

73 THE RADIATION PRESSURE PROBLEM 2. IR RADIATION ON DUST Eddington luminosity L edd : radiative force balances gravity at L Edd = 4πGMc/(σ/µ) Maximum IR cross section per unit mass for dust in massive protostellar envelopes: σ/µ 8 cm 2 g -1 L Edd = 1600 (M/M sun ) L sun Predict growth of protostar stops for L > L Edd stars cannot grow past ~17 M sun

74 THE RADIATION PRESSURE PROBLEM 2. IR RADIATION ON DUST Eddington luminosity L edd : radiative force balances gravity at L Edd = 4πGMc/(σ/µ) Maximum IR cross section per unit mass for dust in massive protostellar envelopes: σ/µ 8 cm 2 g -1 L Edd = 1600 (M/M sun ) L sun Predict growth of protostar stops for L > L Edd stars cannot grow past ~17 M sun But stars are observed to exist with M > 100 M sun HOW IS THIS POSSIBLE?

75 ADDRESSING THE PROBLEM OF RADIATION PRESSURE Effect of accretion disks Accreting gas has angular momentum and settles into a disk before accreting onto star Previous work has shown that disk shadow reduces the radiative force on the accreting gas (Nakano 1989; Jijina & Adams 1996; Yorke & Sonnhalter 2002)

76 ADDRESSING THE PROBLEM OF RADIATION PRESSURE Effect of accretion disks Accreting gas has angular momentum and settles into a disk before accreting onto star Previous work has shown that disk shadow reduces the radiative force on the accreting gas (Nakano 1989; Jijina & Adams 1996; Yorke & Sonnhalter 2002) 3D simulation of massive star formation with adaptive mesh refinement (AMR): Effect of Rayleigh-Taylor instabilities (Krumholz et al. 2009)

77 ADDRESSING THE PROBLEM OF RADIATION PRESSURE Effect of accretion disks Accreting gas has angular momentum and settles into a disk before accreting onto star Previous work has shown that disk shadow reduces the radiative force on the accreting gas (Nakano 1989; Jijina & Adams 1996; Yorke & Sonnhalter 2002) 3D simulation of massive star formation with adaptive mesh refinement (AMR): Effect of Rayleigh-Taylor instabilities (Krumholz et al. 2009) Effect of bipolar outflows on radiation pressure (Krumholz et al. 2005; Cunningham et al 2011)

78 3D RADIATION HYDRODYNAMIC CALCULATIONS Radiative transfer: gray, mixed frame, flux-limited diffusion t ρ + ρv = 0 t ρv + ρvv = - P - ρ φ + (κ R /c)f (Mass) (Momentum) t ρe + [(ρe+p)v] = - ρv φ - κ P (4πB-cE) - (κ R /c) v F (Energy) 2 φ = 4πGρ (Gravity) t E + F = κ P (4πB-cE) + (κ R /c) v F F 0 = - [cλ(e 0 ) / κ R ] E 0 (Radiative energy) (Flux limit) where e = 0.5 v 2 + u = gas energy density, E = radiation energy density; F 0 and E 0 in comoving frame. Accurate to lowest relevant order in v/c. (Krumholz et al. 2007)

79 3D Simulation of Massive Star Formation M = 100 M sun R initial = 0.1 pc ( n ~ 10 6 ) T initial = 20 K n initial r -3/2 Slow initial rotation No initial turbulence No outflows

80 3D Simulation of Massive Star Formation Density M = 100 M sun R initial = 0.1 pc ( n ~ 10 6 ) T initial = 20 K n initial r -3/2 Slow initial rotation No initial turbulence No outflows L(pc) = =1000 AU (Krumholz, Klein, McKee, Offner & Cunningham 2009)

81 3D Simulation of Massive Star Formation M = 100 M sun R initial = 0.1 pc ( n ~ 10 6 ) T initial = 20 K n initial r -3/2 Slow initial rotation No initial turbulence No outflows Density t (kyr) L(pc) = =1000 AU (Krumholz, Klein, McKee, Offner & Cunningham 2009)

82 3D Simulation of Massive Star Formation M = 100 M sun R initial = 0.1 pc ( n ~ 10 6 ) T initial = 20 K n initial r -3/2 Slow initial rotation No initial turbulence No outflows Plane of plots includes rotation axis Density range: g cm -3 Density t (kyr) L(pc) = =1000 AU (Krumholz, Klein, McKee, Offner & Cunningham 2009)

83 3D Simulation of Massive Star Formation Density t (kyr) M = 100 M sun R initial = 0.1 pc ( n ~ 10 6 ) T initial = 20 K n initial r -3/2 Slow initial rotation No initial turbulence No outflows Plane of plots includes rotation axis Density range: g cm -3 Radiative Rayleigh-Taylor instabilities allow gas to accrete and radiation to escape L(pc) = =1000 AU (Krumholz, Klein, McKee, Offner & Cunningham 2009)

84 Column Density Looking Down the Rotation Axis t (kyr) L(pc) = =1000 AU

85 Column Density Looking Down the Rotation Axis Protostars marked by + in 2 rightmost frames Column density range: g cm -2 t (kyr) L(pc) = =1000 AU

86 Column Density Looking Down the Rotation Axis Protostars marked by + in 2 rightmost frames Column density range: g cm -2 At t = 55 kyr, two massive stars with m * = 39 and 27 M sun ; a third star has m * = 0.15 M sun t (kyr) L(pc) = =1000 AU

87 Column Density Looking Down the Rotation Axis Protostars marked by + in 2 rightmost frames Column density range: g cm -2 At t = 55 kyr, two massive stars with m * = 39 and 27 M sun ; a third star has m * = 0.15 M sun t (kyr) Radiation pressure affects morphology of gas, but not growth of protostars. 55 L(pc) = =1000 AU

88 Collapse of 100 M sun Core L = 0.25 pc L = 2000 AU Column density along axis Density in plane with axis

89 Collapse of 100 M sun Core L = 0.25 pc L = 2000 AU Column density along axis Density in plane with axis

90 Conclusion of simulation with radiation pressure but no outflows: Rayleigh Taylor instability and disk formation allow accretion to overcome radiation pressure

91 PROTOSTELLAR OUTFLOWS REDUCE RADIATION PRESSURE Protostars have powerful, collimated outflows Mass ejection rate ~ ( ) accretion rate Wind velocity ~ Keplerian velocity at stellar surface Outflow is driven by magnetic forces associated with the rotating, magnetized disk

92 Observation of magnetized jet from a high-mass protostar IRAS L=17,000 L sun 6 cm (contours) Synchrotron emission M 10 M sun if dominated by one star 850 µm (gray scale) Thermal emission (Carrasco-Gonzalez et al. 2010)

93 PROTOSTELLAR OUTFLOWS REDUCE RADIATION PRESSURE Protostars have powerful, collimated outflows Mass ejection rate ~ ( ) accretion rate onto protostar Wind velocity ~ Keplerian velocity at stellar surface Outflow is driven by magnetic forces associated with the rotating, magnetized disk Wind cavity channels radiation away from infalling gas, reducing radiation pressure by ~ factor 5 for the calculated case of a 50 M sun star in a 50 M sun envelope (Krumholz, McKee & Klein 2005)

94 3D Monte Carlo radiative transfer in cavities with different shapes

95 Simulations with collimated outflows at t=0.2 t ff M=300 M sun Resolution ~ 30 AU (Cunningham et al. 2011)

96 Simulations with collimated outflows at t=0.2 t ff Clouds with different surface densities: Σ = 1 g cm -2 M=300 M sun Σ = 2 g cm -2 Σ = 2 g cm -2 (no wind) Resolution ~ 30 AU Σ = 10 g cm -2 (Cunningham et al. 2011)

97 Simulations with collimated outflows at t=0.2 t ff Clouds with different surface densities: Σ = 1 g cm -2 M=300 M sun Σ = 2 g cm x x x 0.01 Σ = 2 g cm -2 (no wind) Resolution ~ 30 AU Σ = 10 g cm -2 (Cunningham et al. 2011)

98 Simulations with collimated outflows at t=0.2 t ff Σ = 1 g cm -2 M=300 M sun Σ = 2 g cm -2 Resolution ~ 30 AU Σ = 2 g cm -2 (no wind) Σ = 10 g cm -2 (Cunningham et al. 2011)

99 Simulations with collimated outflows at t = 0.6 t ff Results on outflows: Reduce radiation pressure by allowing escape Σ = 1 g cm -2 Σ = 2 g cm -2 m pri ~20 M sun Σ = 2 g cm (no wind) -2 m pri ~20 M sun Σ = 10 g cm -2 m pri ~35 M sun m pri ~35 M sun

100 Simulations with collimated outflows at t = 0.6 t ff Results on outflows: Reduce radiation pressure by allowing escape Disk gas cooler more fragmentation (lower primary mass with wind) Σ = 1 g cm -2 Σ = 2 g cm -2 Σ = 2 g cm (no wind) -2 m pri ~20 M sun m pri ~20 M sun Σ = 10 g cm -2 m pri ~35 M sun m pri ~35 M sun

101 Simulations with collimated outflows at t = 0.6 t ff Results on outflows: Reduce radiation pressure by allowing escape Disk gas cooler more fragmentation (lower primary mass with wind) Σ = 1 g cm -2 Σ = 2 g cm -2 Σ = 2 g cm (no wind) -2 m pri ~20 M sun m pri ~20 M sun Results for Σ=2 without winds ~ same as Σ=10 with winds (Trapping of radiation increases with Σ) Σ = 10 g cm -2 m pri ~35 M sun m pri ~35 M sun

102 CONCLUSIONS ON RADIATION PRESSURE Outward force due to radiation pressure can exceed the inward force of gravity during the formation of massive stars

103 CONCLUSIONS ON RADIATION PRESSURE Outward force due to radiation pressure can exceed the inward force of gravity during the formation of massive stars Radiative Rayleigh-Taylor instabilities allow continued accretion in absence of outflows; no evidence yet that radiation pressure affects stellar mass

104 CONCLUSIONS ON RADIATION PRESSURE Outward force due to radiation pressure can exceed the inward force of gravity during the formation of massive stars Radiative Rayleigh-Taylor instabilities allow continued accretion in absence of outflows; no evidence yet that radiation pressure affects stellar mass Geometrical effects due to disks and outflow cavities reduce the radiation pressure on the accreting gas; also cool the gas, increasing fragmentation

105 CONCLUSIONS ON RADIATION PRESSURE Outward force due to radiation pressure can exceed the inward force of gravity during the formation of massive stars Radiative Rayleigh-Taylor instabilities allow continued accretion in absence of outflows; no evidence yet that radiation pressure affects stellar mass Geometrical effects due to disks and outflow cavities reduce the radiation pressure on the accreting gas; also cool the gas, increasing fragmentation Currently not known whether the maximum mass of a star is set by processes associated with its formation or with instabilities in the star itself

106 THE IONIZATION PROBLEM Larson & Starrfield (1971) estimated that a 25 M sun star could ionize its natal core, halting accretion

107 THE IONIZATION PROBLEM Larson & Starrfield (1971) estimated that a 25 M sun star could ionize its natal core, halting accretion At high densities, spherical accretion is effective at trapping HII region, allowing accretion to continue (Omukai & Inutsuka 2002; Keto 2002, 2003)

108 THE IONIZATION PROBLEM Larson & Starrfield (1971) estimated that a 25 M sun star could ionize its natal core, halting accretion At high densities, spherical accretion is effective at trapping HII region, allowing accretion to continue (Omukai & Inutsuka 2002; Keto 2002, 2003) But, angular momentum of accreting gas allows HII region to expand along poles, halting accretion outside the accretion disk (Keto 2007; McKee & Tan 2008)

109 Expansion of HII Region in Rotating Accretion Flow First stars: Large accretion rates (> 10-3 M sun yr -1 ) imply breakout of HII region at poles for m * ~ 100 M sun (McKee & Tan 2008) Contemporary stars: Lower accretion rates allow breakout at lower masses (Keto 2007)

110 For the first stars, disk photoevaporation terminates accretion Estimated mass of first stars: M sun (McKee & Tan 2008) (Hollenbach et al 1994) For contemporary stars, dust may absorb ionizing photons, allowing accretion to continue

111 METALLICITY AND THE UNIVERSALITY OF THE IMF Reducing the metallicity reduces the opacity expect reduction in thermal feedback (Myers, Krumholz, Klein & McKee 2011)

112 Vary metallicity by factor 20 at Σ = 2 g cm -2 High Sigma : Σ = 10 g cm -2 at 0.2 solar Most massive star Fraction of mass in most massive star All stars

113 Vary metallicity by factor 20 at Σ = 2 g cm -2 High Sigma : Σ = 10 g cm -2 at 0.2 solar Fragmentation insensitive to metallicity variations Most massive star Fraction of mass in most massive star All stars (Calculations stopped when m * ~10 M sun )

114 METALLICITY AND THE UNIVERSALITY OF THE IMF (Myers, Krumholz, Klein & McKee 2011) Reducing the metallicity reduces the opacity expect reduction in thermal feedback -- NO!

115 METALLICITY AND THE UNIVERSALITY OF THE IMF Reducing the metallicity reduces the opacity (Myers, Krumholz, Klein & McKee 2011) expect reduction in thermal feedback -- NO! Thermal feedback unaffected by reduction in metallicity since temperature in a dusty envelope almost independent of opacity κ: (Chakrabarti & McKee 2005, 2008)

116 METALLICITY AND THE UNIVERSALITY OF THE IMF Reducing the metallicity reduces the opacity (Myers, Krumholz, Klein & McKee 2011) expect reduction in thermal feedback -- NO! Thermal feedback unaffected by reduction in metallicity since temperature in a dusty envelope almost independent of opacity κ: (Chakrabarti & McKee 2005, 2008) k T 0.5 in extended dusty envelopes => T independent of κ

117 METALLICITY AND THE UNIVERSALITY OF THE IMF Reducing the metallicity reduces the opacity (Myers, Krumholz, Klein & McKee 2011) expect reduction in thermal feedback -- NO! Thermal feedback unaffected by reduction in metallicity since temperature in a dusty envelope almost independent of opacity κ: (Chakrabarti & McKee 2005, 2008) k T 0.5 in extended dusty envelopes => T independent of κ Makes high-mass IMF insensitive to variations in metallicity

118 OBSERVATIONAL PREDICTIONS 1. Massive stars form in cores with surface density Σ ~ 1 g cm -2

119 Observed Clusters with Massive Stars Have Σ ~ 1 g cm -2 McKee & Tan (2003)

120 OBSERVATIONAL PREDICTIONS 1. Massive stars form in cores with surface density Σ ~ 1 g cm The IMF should follow the Core Mass Function, scaled down by a factor of a few (Matzner & McKee 2000; McKee & Tan 2002, 2003)

121 The Core Mass Function (Motte, Andre, & Neri 1998, Testi & Sargent 1998, Johnstone et al. 2001, Reid & Wilson 2005, 2006, Lombardi et al. 2006, Alves et al. 2007) The core MF is similar to the stellar IMF, but shifted to higher mass a factor of a few Correspondence suggests a 1 to 1 mapping from core mass to star mass Dense core mass function (DCMF) in Pipe Nebula vs. stellar IMF (gray) (Alves, Lombardi, & Lada 2007)

122 The Core Mass Function (Motte, Andre, & Neri 1998, Testi & Sargent 1998, Johnstone et al. 2001, Reid & Wilson 2005, 2006, Lombardi et al. 2006, Alves et al. 2007) The core MF is similar to the stellar IMF, but shifted to higher mass a factor of a few Correspondence suggests a 1 to 1 mapping from core mass to star mass Dense core mass function (DCMF) in Pipe Nebula vs. stellar IMF (gray) (Alves, Lombardi, & Lada 2007) Predict similar result for massive cores (see Beuther & Schilke 2004; Bontemps et al 2010) --- ALMA observations will test this

123 OBSERVATIONAL PREDICTIONS 1. Massive stars form in cores with surface density Σ ~ 1 g cm The IMF should follow the Core Mass Function, scaled down by a factor of a few (Matzner & McKee 2000) 3. Massive disks should accompany massive protostars, in contrast with predictions of competitive accretion or stellar coalescence models (caveat: magnetic fields have not been included)

124 Massive Disk Properties M disk / M * , r disk ~ 1000 AU Global gravitational instability creates strong m = 1 spiral pattern Spiral waves drive rapid accretion; α eff ~ 1 Disks reach Q ~ 1, form a few stellar fragments Surface density (upper) and Toomre Q (lower) (Krumholz, Klein, & McKee, 2007)

125 Observing Massive Disks (Krumholz, Klein, & McKee, 2007) Density > cm 3 all species in LTE T > K can use high temp. lines to avoid envelope contamination Inner disk column density ~ 10 3 g cm 2 dust optical depth ~ 1 at 100 GHz Bad: kinematics in central few hundred AU impossible with ALMA (need EVLA for lower frequencies) Good: spiral arms have optical depth ~ 1 in dust / strong lines, very easy to do with ALMA Large IR telescopes can observe disks along directions of relatively low obscuration

126 Prediction for ALMA: Imaging spectroscopy of rotating m = 1 spiral Simulated 1000 s / pointing ALMA observation of edge-on disk at 0.5 kpc in CH 3 CN (12-11) GHz, T up = 69 K (Krumholz, Klein & McKee 2007)

127 Prediction for ALMA: Imaging spectroscopy of rotating m = 1 spiral Simulated 1000 s / pointing ALMA observation of edge-on disk at 0.5 kpc in CH 3 CN (12-11) GHz, T up = 69 K (Krumholz, Klein & McKee 2007)

128 CONCLUSIONS * Massive stars form in regions of high surface density (Σ ~ 1 g cm -2 ) that are self-gravitating and obey the virialized linewidth-size relation [σ (ΣR) 1/2 ]

129 CONCLUSIONS * Massive stars form in regions of high surface density (Σ ~ 1 g cm -2 ) that are self-gravitating and obey the virialized linewidth-size relation [σ (ΣR) 1/2 ] *Observations are consistent with formation of massive stars via a process similar to that of low-mass stars ( disks, hydromagnetic outflows), but including turbulence Turbulent Core model: Massive stars form in ~ 10 5 yr

130 CONCLUSIONS * Massive stars form in regions of high surface density (Σ ~ 1 g cm -2 ) that are self-gravitating and obey the virialized linewidth-size relation [σ (ΣR) 1/2 ] *Observations are consistent with formation of massive stars via a process similar to that of low-mass stars ( disks, hydromagnetic outflows), but including turbulence Turbulent Core model: Massive stars form in ~ 10 5 yr *Radiation pressure would stop spherically symmetric accretion for m * > 20 M sun. Continued accretion enabled by disks, Rayleigh-Taylor instabilities and outflows

131 CONCLUSIONS * Massive stars form in regions of high surface density (Σ ~ 1 g cm -2 ) that are self-gravitating and obey the virialized linewidth-size relation [σ (ΣR) 1/2 ] *Observations are consistent with formation of massive stars via a process similar to that of low-mass stars ( disks, hydromagnetic outflows), but including turbulence Turbulent Core model: Massive stars form in ~ 10 5 yr

132 CONCLUSIONS * Massive stars form in regions of high surface density (Σ ~ 1 g cm -2 ) that are self-gravitating and obey the virialized linewidth-size relation [σ (ΣR) 1/2 ] *Observations are consistent with formation of massive stars via a process similar to that of low-mass stars ( disks, hydromagnetic outflows), but including turbulence Turbulent Core model: Massive stars form in ~ 10 5 yr *Photoionization sets the mass of the first stars; role in contemporary massive star formation not yet known

133 THE FUTURE WILL BE REVOLUTIONARY OBSERVATIONS with ALMA will provide high-resolution imaging spectroscopy of high-mass star-forming regions

134 THE FUTURE WILL BE REVOLUTIONARY OBSERVATIONS with ALMA will provide high-resolution imaging spectroscopy of high-mass star-forming regions SIMULATIONS will include all relevant physics The state of the art today: Cunningham et al (2011) include turbulence, radiation pressure and protostellar outflows, but no ionization or magnetic fields Peters et al. (2010) include ionization but no radiation pressure, protostellar outflows, initial turbulence or magnetic fields Wang et al. (2010) include turbulence, outflows and magnetic fields, but no radiation pressure or ionization

135 THE FUTURE WILL BE REVOLUTIONARY OBSERVATIONS with ALMA will provide high-resolution imaging spectroscopy of high-mass star-forming regions SIMULATIONS will include all relevant physics The state of the art today: Cunningham et al (2011) include turbulence, radiation pressure and protostellar outflows, but no ionization Peters et al. (2010) include ionization but no radiation pressure, protostellar outflows or initial turbulence Wang et al. (2010) include turbulence, outflows and magnetic fields, but no radiation pressure or ionization Our understanding of massive star formation should be transformed in the next 2-3 years

136

137

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith)

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith) THE FORMATION OF MASSIVE STARS η Carina (NASA, ESA, N. Smith) THE FORMATION OF MASSIVE STARS Christopher F. McKee HIPACC, UCSC August 8, 2013 with Andrew Cunningham Richard Klein Mark Krumholz Andrew Myers

More information

MASSIVE STAR FORMATION

MASSIVE STAR FORMATION MASSIVE STAR FORMATION PP VI Heidelberg July 16, 2013 Hubble Heritage image of S 106 Jonathan Tan Maria Beltran Paola Caselli Francesco Fontani Asuncion Fuente Mark Krumholz Christopher McKee Andrea Stolte

More information

From Massive Cores to Massive Stars

From Massive Cores to Massive Stars From Massive Cores to Massive Stars Mark Krumholz Princeton University / UC Santa Cruz Collaborators: Richard Klein, Christopher McKee (UC Berkeley) Kaitlin Kratter, Christopher Matzner (U. Toronto) Jonathan

More information

The Formation of Star Clusters

The Formation of Star Clusters The Formation of Star Clusters Orion Nebula Cluster (JHK) - McCaughrean Jonathan Tan University of Florida & KITP In collaboration with: Brent Buckalew (ERAU), Michael Butler (UF u-grad), Jayce Dowell

More information

The Formation of Massive Stars

The Formation of Massive Stars The Formation of Massive Stars Mark Krumholz UC Santa Cruz Collaborators: Richard Klein, Chris McKee, Stella Offner (UC Berkeley) Andrew Cunningham (LLNL) Kaitlin Kratter, Chris Matzner (U. Toronto) Jim

More information

Formation of massive stars: a review

Formation of massive stars: a review Formation of massive stars: a review Patrick Hennebelle Thanks to: Benoît Commerçon, Marc Joos, Andrea Ciardi Gilles Chabrier, Romain Teyssier How massive stars form? -Can we form massive stars in spite

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Formation of massive stars : a review

Formation of massive stars : a review Formation of massive stars : a review Patrick Hennebelle (a former «star formation ignorant» Ant s postdoc) Benoit Commerçon, Marc Joos, Andrea Ciardi, Gilles Chabrier One of the Constellation network

More information

Accretion Mechanisms

Accretion Mechanisms Massive Protostars Accretion Mechanism Debate Protostellar Evolution: - Radiative stability - Deuterium shell burning - Contraction and Hydrogen Ignition Stahler & Palla (2004): Section 11.4 Accretion

More information

Ionization Feedback in Massive Star Formation

Ionization Feedback in Massive Star Formation Ionization Feedback in Massive Star Formation Thomas Peters Institut für Theoretische Astrophysik Zentrum für Astronomie der Universität Heidelberg Ralf Klessen, Robi Banerjee (ITA, Heidelberg) Mordecai-Mark

More information

Theory of star formation

Theory of star formation Theory of star formation Monday 8th 17.15 18.00 Molecular clouds and star formation: Introduction Tuesday 9th 13.15 14.00 Molecular clouds: structure, physics, and chemistry 16.00 16.45 Cloud cores: statistics

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

Theory of star formation

Theory of star formation Theory of star formation Monday 8th 17.15 18.00 Molecular clouds and star formation: Introduction Tuesday 9th 13.15 14.00 Molecular clouds: structure, physics, and chemistry 16.00 16.45 Cloud cores: statistics

More information

The Effects of Radiative Transfer on Low-Mass Star Formation

The Effects of Radiative Transfer on Low-Mass Star Formation The Effects of Radiative Transfer on Low-Mass Star Formation Stella Offner NSF Fellow, ITC Dense Cores in Dark Clouds Oct 23 2009 Collaborators: Chris McKee (UC Berkeley), Richard Klein (UC Berkeley; LLNL),

More information

Galaxy Simulators Star Formation for Dummies ^

Galaxy Simulators Star Formation for Dummies ^ Galaxy Simulators Star Formation for Dummies ^ Mark Krumholz UC Santa Cruz HIPACC Summer School August 6, 2010 The Challenge of Star Formation ~10 pc ~10 pc ~10 pc Like stars, star formation involves impossibly

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Where do Stars Form?

Where do Stars Form? Where do Stars Form? Coldest spots in the galaxy: T ~ 10 K Composition: Mainly molecular hydrogen 1% dust EGGs = Evaporating Gaseous Globules ftp://ftp.hq.nasa.gov/pub/pao/pressrel/1995/95-190.txt Slide

More information

The Initial Mass Function Elisa Chisari

The Initial Mass Function Elisa Chisari The Initial Mass Function AST 541 Dec 4 2012 Outline The form of the IMF Summary of observations Ingredients of a complete model A Press Schechter model Numerical simulations Conclusions The form of the

More information

The Competitive Accretion Debate

The Competitive Accretion Debate The Competitive Accretion Debate 1,2 Paul C. Clark 2 Ralf S. Klessen 3 Ian A. Bonnell 3 Rowan J. Smith 1 KITP 2 University of Heidelberg 3 University of St Andrews What is CA and how does it work? Theory

More information

Early Phases of Star Formation

Early Phases of Star Formation Early Phases of Star Formation Philippe André, CEA/SAp Saclay Outline Introduction: The earliest stages of the star formation process Probing the formation and evolution of prestellar cores with Herschel

More information

From Massive Cores to Massive Stars

From Massive Cores to Massive Stars Pathways through an Eclectic Universe ASP Conference Series, Vol. 390, c 2008 J. H. Knapen, T. J. Mahoney, and A. Vazdekis, eds. From Massive Cores to Massive Stars Mark R. Krumholz Department of Astrophysical

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae) Astrophysics: Stellar Evolution 1 Stellar Birth Stellar Formation A. Interstellar Clouds (Nebulae) B. Protostellar Clouds 2 C. Protostars Dr. Bill Pezzaglia Updated: 10/02/2006 A. Interstellar Clouds 1.

More information

t KH = GM2 RL Pressure Supported Core for a Massive Star Consider a dense core supported by pressure. This core must satisfy the equation:

t KH = GM2 RL Pressure Supported Core for a Massive Star Consider a dense core supported by pressure. This core must satisfy the equation: 1 The Kelvin-Helmholtz Time The Kelvin-Helmhotz time, or t KH, is simply the cooling time for a pressure supported (i.e. in hydrostatic equilibrium), optically thick object. In other words, a pre-main

More information

arxiv: v1 [astro-ph] 5 Jun 2008

arxiv: v1 [astro-ph] 5 Jun 2008 Draft version December 15, 2017 Preprint typeset using L A TEX style emulateapj v. 08/13/06 DRIVEN AND DECAYING TURBULENCE SIMULATIONS OF LOW-MASS STAR FORMATION: FROM CLUMPS TO CORES TO PROTOSTARS Stella

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

Accretion-Disk-outflow System in High Mass Star Formation. Yuefang Wu Astronomy Department Peking University, China

Accretion-Disk-outflow System in High Mass Star Formation. Yuefang Wu Astronomy Department Peking University, China Accretion-Disk-outflow System in High Mass Star Formation Yuefang Wu Astronomy Department Peking University, China Outline 1. A debate two models of high mass star formation 2. Our related work- observational

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Javier Ballesteros-Paredes Centro de Radioastronomía y Astrofísica, UNAM, México 2 Collaborators: Javier Ballesteros-Paredes

More information

Chapter 11 The Formation and Structure of Stars

Chapter 11 The Formation and Structure of Stars Chapter 11 The Formation and Structure of Stars Guidepost The last chapter introduced you to the gas and dust between the stars that are raw material for new stars. Here you will begin putting together

More information

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG Stellar structure and evolution Pierre Hily-Blant 2017-18 April 25, 2018 IPAG pierre.hily-blant@univ-grenoble-alpes.fr, OSUG-D/306 10 Protostars and Pre-Main-Sequence Stars 10.1. Introduction 10 Protostars

More information

How do protostars get their mass?

How do protostars get their mass? How do protostars get their mass? Phil Myers Harvard-Smithsonian Center for Astrophysics Origin of Stellar Masses Tenerife, Spain October 18, 2010 Introduction How does nature make a star? a star of particular

More information

! what determines the initial mass function of stars (IMF)? dn /dm

! what determines the initial mass function of stars (IMF)? dn /dm ! what determines the initial mass function of stars (IMF)? dn /dm M ! what determines the initial mass function of stars (IMF)?! What determines the total mass of stars that can form in the cloud? dn

More information

Fundamental Issues in Star Formation

Fundamental Issues in Star Formation Fundamental Issues in Star Formation - Formation and statistical properties of dense molecular cloud cores (mass function of cores, scaling relations, gravitational boundedness, rotational properties)

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

An overview of star formation

An overview of star formation An overview of star formation Paul Clark ITA: Ralf Klessen Robi Banerjee Simon Glover Ian Bonnell Clare Dobbs Jim Dale Why study star formation? Stars chemically the enrich the Universe, so star formation

More information

(Numerical) study of the collapse and of the fragmentation of prestellar dense core

(Numerical) study of the collapse and of the fragmentation of prestellar dense core (Numerical) study of the collapse and of the fragmentation of prestellar dense core Benoît Commerçon Supervisors: E. Audit, G. Chabrier and P. Hennebelle Collaborator: R. Teyssier (3D - AMR) CEA/DSM/IRFU/SAp

More information

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds Lecture 26 Clouds, Clumps and Cores 1. Review of Dense Gas Observations 2. Atomic Hydrogen and GMCs 3. Formation of Molecular Clouds 4. Internal Structure 5. Observing Cores 6. Preliminary Comments on

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

Topics for Today s Class

Topics for Today s Class Foundations of Astronomy 13e Seeds Chapter 11 Formation of Stars and Structure of Stars Topics for Today s Class 1. Making Stars from the Interstellar Medium 2. Evidence of Star Formation: The Orion Nebula

More information

Protostars 1. Early growth and collapse. First core and main accretion phase

Protostars 1. Early growth and collapse. First core and main accretion phase Protostars 1. First core and main accretion phase Stahler & Palla: Chapter 11.1 & 8.4.1 & Appendices F & G Early growth and collapse In a magnetized cloud undergoing contraction, the density gradually

More information

From Filaments to Stars: a Theoretical Perspective

From Filaments to Stars: a Theoretical Perspective From Filaments to Stars: a Theoretical Perspective NRAO Filaments. Oct. 10-11, 2014 Ralph E. Pudritz Origins Institute, McMaster U. Collaborators McMaster: Mikhail Klassen, Corey Howard, (Ph.D.s) Helen

More information

Collapse of Massive Cloud Cores

Collapse of Massive Cloud Cores Collapse of Massive Cloud Cores Robi Banerjee ITA, University of Heidelberg Based on 3D MHD, AMR* Simulations * Adaptive Mesh Refinement Collapse of Hydrostatic Cores Cloud formation by TI Slowly rotating

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

Molecular Cloud Turbulence and Star Formation

Molecular Cloud Turbulence and Star Formation Molecular Cloud Turbulence and Star Formation Javier Ballesteros-Paredes1, Ralf Klessen2, MordecaiMark Mac Low3, Enrique Vazquez-Semadeni1 1UNAM Morelia, Mexico, 2AIP, Potsdam, Germany, 3AMNH New York,

More information

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998:

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998: igure 4 of McMullin et al. 1994. Figure 1 of Testi & Sargent 1998: McMullin et al. 1994 BIMA with (only!) three elements Eight configurationsàcoverage of 2 kλ to 30 kλ Naturally wtd. Beam of 11" x 6" (for

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Early Stages of (Low-Mass) Star Formation: The ALMA Promise

Early Stages of (Low-Mass) Star Formation: The ALMA Promise Early Stages of (Low-Mass) Star Formation: The ALMA Promise Philippe André, CEA/SAp Saclay Outline Introduction: Prestellar cores and the origin of the IMF Identifying proto-brown dwarfs Bate et al. 1995

More information

The Importance of Winds and Radiative Feedback in Massive Star Formation

The Importance of Winds and Radiative Feedback in Massive Star Formation The Importance of Winds and Radiative Feedback in Massive Star Formation Anna Rosen (UCSC) Mark Krumholz (UCSC), Enrico Ramirez-Ruiz (UCSC), Laura Lopez (CfA), Jeff Oishi (AMNH), Aaron Lee (UCB), Chris

More information

Lecture 22 Stability of Molecular Clouds

Lecture 22 Stability of Molecular Clouds Lecture 22 Stability of Molecular Clouds 1. Stability of Cloud Cores 2. Collapse and Fragmentation of Clouds 3. Applying the Virial Theorem References Myers, Physical Conditions in Molecular Clouds in

More information

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ 0.017 M gas / dyn Log SFR Kennicutt 1998 Log gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Moster 2009 No Feedback 10% of baryons Log(

More information

AST4930: Star and Planet Formation. Syllabus. AST4930: Star and Planet Formation, Spring 2014

AST4930: Star and Planet Formation. Syllabus. AST4930: Star and Planet Formation, Spring 2014 AST4930: Star and Planet Formation Lecture 1: Overview Assoc. Prof. Jonathan C. Tan jt@astro.ufl.edu Bryant 302 Syllabus AST4930: Star and Planet Formation, Spring 2014 Assoc. Prof. Jonathan C. Tan (jt

More information

Impact of Protostellar Outflow on Star Formation: Effects of Initial Cloud Mass

Impact of Protostellar Outflow on Star Formation: Effects of Initial Cloud Mass Impact of Protostellar Outflow on Star Formation: Effects of Initial Cloud Mass Masahiro N. Machida 1 and Tomoaki Matsumoto 2 ABSTRACT Star formation efficiency controlled by the protostellar outflow in

More information

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel Philippe André, CEA/SAp Saclay Herschel GB survey Ophiuchus 70/250/500 µm composite With: A. Menshchikov,

More information

Lec 22 Physical Properties of Molecular Clouds

Lec 22 Physical Properties of Molecular Clouds Lec 22 Physical Properties of Molecular Clouds 1. Giant Molecular Clouds 2. Orion s Clouds 3. Correlations of Observed Properties 4. The X-Factor References Origins of Stars & Planetary Systems eds. Lada

More information

Star formation Part III

Star formation Part III Lecture 4 Star formation Part III Lecture Universität Heidelberg WS 11/12 Dr. C. Mordasini Based partially on script of Prof. W. Benz Matthew R. Bate Mentor Prof. T. Henning Lecture 4 overview 1. Heating

More information

Collapse of Low-Mass Protostellar Cores: Part I

Collapse of Low-Mass Protostellar Cores: Part I Collapse of Low-Mass Protostellar Cores: Part I Isothermal Unmagnetized Solutions and Observational Diagnostics Andrea Kulier AST 541 October 9, 2012 Outline Models of Isothermal Unmagnetized Collapse

More information

Frédérique Motte (AIM Paris-Saclay)

Frédérique Motte (AIM Paris-Saclay) Clusters of high-mass protostars: From extreme clouds to minibursts of star formation Frédérique Motte (AIM Paris-Saclay) Special thanks to S. Bontemps, T. Csengeri, P. Didelon, M. Hennemann, T. Hill,

More information

Multi-Physics of Feedback in Massive Star Formation

Multi-Physics of Feedback in Massive Star Formation Multi-Physics of Feedback in Massive Star Formation Rolf Kuiper1,2 H. W. Yorke3, N. J. Turner3, T. Hosokawa4 1 - Institute of Astronomy and Astrophysics, University of Tübingen, Germany 2 - Emmy Noether

More information

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter The dependence of star cluster formation on initial conditions Matthew Bate University of Exeter Stellar properties do not greatly depend on initial conditions constellation Little evidence for variation

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

Notes: Most of the material presented in this chapter is taken from Stahler and Palla (2004), Chap. 3. v r c, (3.1) ! obs

Notes: Most of the material presented in this chapter is taken from Stahler and Palla (2004), Chap. 3. v r c, (3.1) ! obs Chapter 3. Molecular Clouds Notes: Most of the material presented in this chapter is taken from Stahler and Palla 2004), Chap. 3. 3.1 Definitions and Preliminaries We mainly covered in Chapter 2 the Galactic

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Abroad: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Recent PhDs: Alejandro González

More information

An Evolutionary Model of Massive Star Formation and Radiation Transfer

An Evolutionary Model of Massive Star Formation and Radiation Transfer An Evolutionary Model of Massive Star Formation and Radiation Transfer Yichen Zhang Universidad de Chile Collaborators: Jonathan Tan (UF), Christopher McKee (UC Berkeley), Takashi Hosokawa (U. Tokyo),

More information

Magnetic Fields & Turbulence: Observations. Mark Heyer University of Massachusetts

Magnetic Fields & Turbulence: Observations. Mark Heyer University of Massachusetts Magnetic Fields & Turbulence: Observations Mark Heyer University of Massachusetts Protostellar/Cluster Cores Alves etal 2 Tafalla etal 2006 Decoupled Cores Lombardi etal 2006 Goodman etal 1998 SIZE SIZE

More information

Other stellar types. Open and globular clusters: chemical compositions

Other stellar types. Open and globular clusters: chemical compositions Other stellar types Some clusters have hotter stars than we find in the solar neighbourhood -- O, B, A stars -- as well as F stars, and cooler stars (G, K, M) Hence we can establish intrinsic values (M

More information

The role of magnetic fields during massive star formation

The role of magnetic fields during massive star formation The role of magnetic fields during massive star formation Wouter Vlemmings Chalmers University of Technology / Onsala Space Observatory / Nordic ALMA Regional Center with: Gabriele Surcis, Kalle Torstensson,

More information

within entire molecular cloud complexes

within entire molecular cloud complexes The earliest phases of high-mass stars within entire molecular cloud complexes Frédérique Motte (CEA-Saclay, AIM) Collaborators: S. Bontemps (Obs Bordeaux), N. Schneider, J. Grac (CEA-Saclay), P. Schilke,

More information

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012 The First Stars Simone Ferraro Princeton University Sept 25, 2012 Outline Star forming minihalos at high z Cooling physics and chemistry Gravitational Collapse and formation of protostar Magnetic fields

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Brown Dwarf Formation and Jet Propagation in Core Collapse Simulations

Brown Dwarf Formation and Jet Propagation in Core Collapse Simulations Brown Dwarf Formation and Jet Propagation in Core Collapse Simulations Knot Knot Cavity (proto-b.d) Observation Riaz et al. (2017) Masahiro N Machida (Kyushu Univ.) Clumps B.D mass object Simulation Collaborators:

More information

ASTR 610 Theory of Galaxy Formation Lecture 16: Star Formation

ASTR 610 Theory of Galaxy Formation Lecture 16: Star Formation ASTR 610 Theory of Galaxy Formation Lecture 16: Star Formation Frank van den Bosch Yale University, spring 2017 Star Formation In this lecture we discuss the formation of stars. After describing the structure

More information

STAR FORMATION RATES observational overview. Ulrike Kuchner

STAR FORMATION RATES observational overview. Ulrike Kuchner STAR FORMATION RATES observational overview Ulrike Kuchner Remember, remember.. Outline! measurements of SFRs: - techniques to see what the SF rate is - importance of massive stars and HII regions - the

More information

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i.

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i. SFEs in clusters SFE(t) Final value of the SFE M cluster (t) M gas,i + M gas,acc (t) SFE exp = SFE(t exp ) M cluster (t exp ) M gas,i + M gas,acc ( t ) exp For an isolated clump SFE exp M ( cluster t )

More information

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

More information

Chapter 9. The Formation and Structure of Stars

Chapter 9. The Formation and Structure of Stars Chapter 9 The Formation and Structure of Stars The Interstellar Medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space Chapter 15 Star Birth Star-Forming Clouds Stars form in dark clouds of dusty gas in interstellar space The gas between the stars is called the interstellar medium Visible light (Hubble Space Telescope)

More information

Summary and Future work

Summary and Future work 299 Chapter 7 Summary and Future work 7.1 Summary In this thesis I have utilized large-scale millimeter and mid- to far-infrared surveys to address a number of outstanding questions regarding the formation

More information

First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation

First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation Astronomy & Astrophysics manuscript no. pub c ESO 2018 April 30, 2018 First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation R. Kuiper 1 and T. Hosokawa

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

Star Cluster Formation

Star Cluster Formation Star Cluster Formation HST Colin Hill Princeton Astrophysics 4 December 2012 Trapezium VLT Outline Star Clusters: Background + Observations The Life of a Cluster - Fragmentation - Feedback Effects - Mass

More information

Massive Star Formation with RT-MHD Simulations

Massive Star Formation with RT-MHD Simulations Massive Star Formation with RT-MHD Simulations Robi Banerjee Hamburg University Collaborators: Thomas Peters (Zurich), Daniel Seifried (Hamburg), Philipp Girichidis (MPA), Roberto Galvan-Madrid (UNAM,

More information

Simulations of massive magnetized dense core collapse

Simulations of massive magnetized dense core collapse Simulations of massive magnetized dense core collapse Matthias González Benoît Commerçon, Neil Vaytet Raphaël Mignon-Risse Laboratoire AIM, Université Paris Diderot-CEA-CNRS, CEA Saclay Outline 1 Context

More information

Effects of Massive Stars

Effects of Massive Stars Effects of Massive Stars Classical HII Regions Ultracompact HII Regions Stahler Palla: Sections 15.1, 15. HII Regions The salient characteristic of any massive star is its extreme energy output, much of

More information

Cosmic Evolution, Part II. Heavy Elements to Molecules

Cosmic Evolution, Part II. Heavy Elements to Molecules Cosmic Evolution, Part II Heavy Elements to Molecules First a review of terminology: Element Atom Electro- magnetic Electrons Nucleus Electromagnetic Strong Nuclear Compound Molecule Protons Neutrons Neutral

More information

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech A Tale of Star and Planet Formation Lynne Hillenbrand Caltech Vermeer s The Astronomer (1688) Mauna Kea (last week) photos by: Sarah Anderson and Bill Bates Context: Our Sun The Sun is a completely average

More information

Modelling star formation in galaxy formation simulations

Modelling star formation in galaxy formation simulations Modelling star formation in galaxy formation simulations Vadim Semenov (U.Chicago) Andrey Kravtsov University of Chicago Carving through the codes Davos, Switzerland 16 February, 2017 Nick Gnedin (Fermilab)

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. Lecture 4 Stars The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. X-ray ultraviolet infrared radio To understand

More information

Direct Evidence for Two Fluid Effects in Molecular Clouds. Dinshaw Balsara & David Tilley University of Notre Dame

Direct Evidence for Two Fluid Effects in Molecular Clouds. Dinshaw Balsara & David Tilley University of Notre Dame Direct Evidence for Two Fluid Effects in Molecular Clouds Dinshaw Balsara & David Tilley University of Notre Dame 1 Outline Introduction earliest stages of star formation Theoretical background Magnetically

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies The H-R Diagram review So far: Stars on Main Sequence (MS) Next: - Pre MS (Star Birth) - Post MS: Giants, Super Giants, White dwarfs Star Birth We start

More information

Unraveling the Envelope and Disk: The ALMA Perspective

Unraveling the Envelope and Disk: The ALMA Perspective Unraveling the Envelope and Disk: The ALMA Perspective Leslie Looney (UIUC) Lee Mundy (UMd), Hsin-Fang Chiang (UIUC), Kostas Tassis (UChicago), Woojin Kwon (UIUC) The Early Disk Disks are probable generic

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

Enrique Vázquez-Semadeni. Instituto de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Instituto de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Instituto de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Manuel Zamora-Avilés Abroad: Robi Banerjee

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics Turbulence, kinematics & galaxy structure in star formation in dwarfs Mordecai-Mark Mac Low Department of Astrophysics Outline Turbulence inhibits star formation, but slowly Interplay between turbulence

More information

Birth & Death of Stars

Birth & Death of Stars Birth & Death of Stars Objectives How are stars formed How do they die How do we measure this The Interstellar Medium (ISM) Vast clouds of gas & dust lie between stars Diffuse hydrogen clouds: dozens of

More information