Primordial Black Holes in Cosmology. Lectures 1 & 2 : What are PBHs? Do they exist? Massimo Ricotti (University of Maryland, USA)

Size: px
Start display at page:

Download "Primordial Black Holes in Cosmology. Lectures 1 & 2 : What are PBHs? Do they exist? Massimo Ricotti (University of Maryland, USA)"

Transcription

1 Primordial Black Holes in Cosmology Lectures 1 & 2 : What are PBHs? Do they exist? Massimo Ricotti (University of Maryland, USA) Institute of Cosmos Sciences, University of Barcelona 23/10/2017

2 What are Primordial Black Holes? May have masses from the Planck mass ~10-5 g to ~10 8 M sun. Masses and formation quite different from standard astrophysical BHs. Collapsed relativistic matter (radiation). Mass comparable to the Horizon mass at the epoch of their formation Form in quasi-linear regime (δ ~ 20%-40%) Tiny collapsed fraction during the radiation era may produce all the dark matter! Institute of Cosmos Sciences, University of Barcelona

3 Do PBHs exist? PBHs with mass < g evaporate in t<t H (Hawking 1975) Abundance of PBHs with mass 1 g<m<10 15 gis β < (e.g., Carr 2003) More massive PBHs are poorly constrained: They may constitute the bulk of the dark matter MACHO collaboration: 20% of Milky-Way halo is in compact objects with M M (but 2000 result, non confirmed by later data) Institute of Cosmos Sciences, Physics Coll. University Virginia Tech, of Barcelona p.9/37

4 Why do we care? 1. Physics on scale otherwise unaccessible by observations Institute of Cosmos Sciences, Physics Coll. University Virginia Tech, of Barcelona p.11/37

5 Why do we care? 1. Physics on scale otherwise unaccessible by observations 2. The dark matter can be made of PBHs 3. Produce MACHOS, IMBH and ULXs? 4. Seeds for supermassive Black Holes? Institute of Cosmos Sciences, Physics Coll. University Virginia Tech, of Barcelona p.11/37

6 Basic Analytical Calculations Institute of Cosmos Sciences, University of Barcelona

7 Redshift: z=dλ/λ Scale parameter: a(t)=1/(1+z) Trad=2.7 K /a(t) Early times: a(t)=(t/2.389x10 19 s) 1/2 Matter domination: a(t) ~t 2/3 Institute of Cosmos Sciences, University of Barcelona

8 Institute of Cosmos Sciences, University of Barcelona

9 1.1 PBHs formation mechanism: PBH Masses=Horizon mass at formation M c3 t G 1015 What is the Jeans Mass? What is the Particle Horizon Mass? Relationship between BH radius and its mean density. (show derivations on the blackboard) t s g: s could span an enormous mass r Institute of Cosmos Sciences, University of Barcelona

10 1.2 Results of GR simulations and critical collapse M ¼ km H ðδ δ c Þ γ where: constant k, the threshold γ 0.36 [50,52 54,159] δc 0.45 [52 54] k = 3.3 Ref. [42] see Carr, Kühnel, Sandstad 2016 for references Institute of Cosmos Sciences, University of Barcelona

11 2.1 PBHs Thermodynamics and Evaporation PBHs with masses < g evaporate in a time < age of universe It is unknown whether evaporating PBHs disintegrate completely or leave behind stable Planck-mass relics (show derivations on the blackboard) Institute of Cosmos Sciences, University of Barcelona

12 3.1 Collapsed fraction and relics Ω pbh = β(1 + z f )/(1 + z eq ) ~ βt -1/2 M c3 t t G s g: f pbh = Ω pbh Ω dm ( Mpbh 1 M ) 1/2 ( β s could span an enormous mass r 10 9 ) A very small value of β (collapsed fraction) may produce all the dark matter in PBHs (show derivations on the blackboard) Institute of Cosmos Sciences, University of Barcelona

13

14 Anisotropies measured by Planck (contrast increased by 106)

15

16 Ref: Tegmark et al 2002

17

18 Gravitational lensing and microlensing

19

20 4.1 Mass function: Press- Schechter formalism Halo mass function: analytical formalism and simulations Ref: Klypin et al 2011 (show derivations of PS on the blackboard) Institute of Cosmos Sciences, University of Barcelona

21 4.1 Mass function: Press- Schechter formalism PBH with mass M pbh = f Hor M h where f Hor < 1 β(m,z) exp[ (δ cr /2σ(M,z)) 2 ] δ cr w where P = wρ is the cosmic EOS (show derivations on the blackboard) Institute of Cosmos Sciences, University of Barcelona

22 4.2 Effects of critical collapse on PBHs mass function M ¼ km H ðδ δ c Þ γ constant k, the threshold PðδÞ pffiffiffiffiffiffiffiffiffiffi 1 exp 2πσ 2 δ2 2σ 2 ; β ¼ Z δ c dδ kðδ δ c Þ γ PðδÞ kσ 2γ erfc δc pffiffiffi ; 2 σ Institute of Cosmos Sciences, University of Barcelona

23 4.2 Effects of critical collapse Ref: Carr, Kühnel, Sandstad 2016 f f MM 11 Institute of Cosmos Sciences, University of Barcelona

24 Ref: Carr, Kühnel, Sandstad f MM 11 Institute of Cosmos Sciences, University of Barcelona

25 4.3 Caveats Non-sphericity: for galaxy formation (triaxiality) this leads to small modifications of the Press- Schechter formalism (Sheth-Tormen) Non-Gaussianity: peak formalism instead of Press- Schechter is probably more precise Institute of Cosmos Sciences, University of Barcelona

26 5.1 Evolution of PBHs in an expanding universe 1. Primordial binaries (Nakamura et al., 1997) 2. Poisson halos (Afshordi, McDonald, Spergel 2003) 3. Clothing halos (Mack, Ostriker, Ricotti 2007), from theory of secondary infall (Bertshinger 1985) Institute of Cosmos Sciences, University of Barcelona

27 Clothing Halos (secondary infall) Mack, Ostriker, Ricotti 2007 / r o radius z þ 1 1 M h (z) ¼ i M PBH ; 1000 φ i =3 α = M 1=3 h 1 þ z 1 r h ¼ 0:019 pc ; 1 M 1000

28 6.1 Sub-critical perturbations and ultra-compact minihalos (UCMHs) Lensing from PBHs differs from point mass due to the clothing halo Ricotti & Gould 2009 UCMHs can exist without central PBHs and should be much more common than PBHs. Figure 1. Left: time sequence of the growth of the mass profile of a spherical halo due overdensity δ(z eq ) = 10 and excess mass Institute δm of = Cosmos 100 MSciences,. The solid University lines show of Barcelona the time delineates the lens equation. The two dotted lines show power-law mass profiles with l

29 Microlensing signal from clothed PBHs and UCMHs Ricotti & Gould 2009 Clothed PBH UCMH, without PBH

30 Ultra-compact minihalos (UCMHs) UCMHs are a new probe of the high-z universe (Ricotti & Gould 2009): they differ from normal small mass halos produced by DM candidates and inflationary perturbations (low angular momentum of halos). Observable trough: 1. Microlensing 2. DM annihilation For gamma-ray limits see: Scott & Silvertsson 2009 Laki & Beacom 2010 (conclude: either all DM is in PBHs or a small fraction otherwise overproduce UCMHs) Institute of Cosmos Sciences, University of Barcelona

31 Some models for PBH formation 1. Softening of the EOS during phase transitions: QCD (1 M )ore + e annihilation (10 5 M )(Kholopov & Polnarev 80; Jedamzik 97) 2. Collapse of rare density peaks: depend on the shape of inflaton potential (e.g., potential as in Kawasaki et al 06 produces 100 M PBHs) 3. Collapse of cosmic string loops (e.g., Polnarev & Zemboricz 88; Hawking 89; Brandenberger & Wichoski 98) 4. Bubble collisions (e.g., Crawford & Schramm 82; La & Steinhardt 89) 5. Collapse of domain walls (Berezin et al 83; Ipser & Sikivie 84; Rubin et al. 00) Institute of Cosmos Sciences, Physics Coll. University Virginia Tech, of Barcelona p.8/37

32 Summary (I): Newtonian limit easy to understand: During radiation era c s c/ 3 hence R J R Sch R h Any linear perturbation δ > δ cr collapses into PBH with mass M pbh = f Hor M h where f Hor < 1 Collapsed fraction depends on the power spectrum of initial density fluctuations and the cosmic equation of state: δ cr w where P = wρ is the cosmic EOS β(m,z) exp[ (δ cr /2σ(M,z)) 2 ] (assuming Gaussian fluctuations) Institute of Cosmos Sciences, Physics Coll. University Virginia Tech, of Barcelona p.6/37

33 Radiation is redshifted away, PBHs are not: Example: Ω pbh = β(1 + z f )/(1 + z eq ) f pbh = Ω pbh Ω dm ( Mpbh 1 M ) 1/2 ( β 10 9 During QCD phase transition at t = 10 5 sec M pbh M h =1M if β = 10 9 f pbh 1: all the dark matter is made of PBHs Summary (II): ) Institute of Cosmos Sciences, Physics Coll. University Virginia Tech, of Barcelona p.7/37

34 Next: astrophysical constraints on PBHs (part I). Institute of Cosmos Sciences, University of Barcelona

Primordial Black Holes in Cosmology. Lecture 3 : Constraints on their existence. Massimo Ricotti (University of Maryland, USA)

Primordial Black Holes in Cosmology. Lecture 3 : Constraints on their existence. Massimo Ricotti (University of Maryland, USA) Primordial Black Holes in Cosmology Lecture 3 : Constraints on their existence Massimo Ricotti (University of Maryland, USA) 23/10/2017 Astrophysical Constraints Microlensing Macho, EROS, etc UCMHs: lensing,

More information

Probing the early Universe and inflation with indirect detection

Probing the early Universe and inflation with indirect detection Probing the early Universe and inflation with indirect detection Pat Scott Department of Physics, McGill University With: Yashar Akrami, Torsten Bringmann, Jenni Adams, Richard Easther Based on PS, Adams,

More information

Primordial Black Holes. Primordial black holes are hypothetical black holes that formed under conditions

Primordial Black Holes. Primordial black holes are hypothetical black holes that formed under conditions Josh Goldstein ASTR688 May 18, 2008 Primordial Black Holes Primordial black holes are hypothetical black holes that formed under conditions of extreme density in the very early universe. Studying primordial

More information

The Interplay Between Galaxies and Black Holes A Theoretical Overview. Massimo Ricotti (U of Maryland)

The Interplay Between Galaxies and Black Holes A Theoretical Overview. Massimo Ricotti (U of Maryland) The Interplay Between Galaxies and Black Holes A Theoretical Overview Massimo Ricotti (U of Maryland) ..a tale of many sleepless nights Maya and Noemi Ricotti Cosmological Context Outline Formation of

More information

P!mor"al Black Holes as. Dark Ma$er. Florian Kühnel. work in particular with Bernard Carr Katherine Freese Pavel Naselsky Tommy Ohlsson Glenn Starkman

P!moral Black Holes as. Dark Ma$er. Florian Kühnel. work in particular with Bernard Carr Katherine Freese Pavel Naselsky Tommy Ohlsson Glenn Starkman P!mor"al Black Holes as Dark Ma$er Florian Kühnel Talk at Particle and Astroparticle Theory Seminar Max Planck Institute for Nuclear Physics Heidelberg, November 20th, 2017 work in particular with Bernard

More information

Primordial Black Holes

Primordial Black Holes Primordial Black Holes In the reheating phase Juan Carlos Hidalgo. Instituto de Ciencias Físicas, UNAM INFLATION I: Primordial Fluctuations The Success of Inflation Explain the origin of our flatuniverse

More information

Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki

Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Christian Byrnes University of Sussex, Brighton, UK Constraints on the small scales and

More information

Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki

Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Christian Byrnes University of Sussex, Brighton, UK Constraints on

More information

Primordial Black Holes as (part of the) dark matter

Primordial Black Holes as (part of the) dark matter Primordial Black Holes as (part of the) dark matter Anne Green University of Nottingham Lecture 1: Motivation Formation: collapse of large (inflationary) density perturbations other mechanisms Mass function

More information

AST4320: LECTURE 10 M. DIJKSTRA

AST4320: LECTURE 10 M. DIJKSTRA AST4320: LECTURE 10 M. DIJKSTRA 1. The Mass Power Spectrum P (k) 1.1. Introduction: the Power Spectrum & Transfer Function. The power spectrum P (k) emerged in several of our previous lectures: It fully

More information

Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation. Prof. Eric Gawiser

Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation. Prof. Eric Gawiser Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation Prof. Eric Gawiser Cosmic Microwave Background anisotropy and Large-scale structure Cosmic Microwave

More information

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation?

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation? Einführung in die beobachtungsorientierte Kosmologie I / Introduction to observational Cosmology I LMU WS 2009/10 Rene Fassbender, MPE Tel: 30000-3319, rfassben@mpe.mpg.de 1. Cosmological Principles, Newtonian

More information

AST Cosmology and extragalactic astronomy Lecture 7

AST Cosmology and extragalactic astronomy Lecture 7 AST4320 - Cosmology and extragalactic astronomy Lecture 7 Press-Schechter Formalism: applications, origin of the `fudge factor 2, modifications Press-Schechter (PS) Formalism: Preface... PS assumes 1.

More information

Phys/Astro 689: Lecture 3. The Growth of Structure

Phys/Astro 689: Lecture 3. The Growth of Structure Phys/Astro 689: Lecture 3 The Growth of Structure Last time Examined the milestones (zeq, zrecomb, zdec) in early Universe Learned about the WIMP miracle and searches for WIMPs Goal of Lecture Understand

More information

Theory of galaxy formation

Theory of galaxy formation Theory of galaxy formation Bibliography: Galaxy Formation and Evolution (Mo, van den Bosch, White 2011) Lectures given by Frank van den Bosch in Yale http://www.astro.yale.edu/vdbosch/teaching.html Theory

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

Neutrinos as Probes. of Dark Matter. Hasan Yüksel The Ohio State University

Neutrinos as Probes. of Dark Matter. Hasan Yüksel The Ohio State University Neutrinos as Probes of Dark Matter Institute for Gravitation and Cosmos, Inaugural Conference, Penn State University, August 9 - August 11, 2007 Hasan Yüksel The Ohio State University arxiv:0707.0196 [astro-ph]

More information

Formation of Primordial Black Holes in Double Inflation

Formation of Primordial Black Holes in Double Inflation Formation of Primordial Black Holes in Double Inflation Masahiro Kawasaki (ICRR and Kavli-IPMU, University of Tokyo) Based on MK Mukaida Yanagida, arxiv:1605.04974 MK Kusenko Tada Yanagida arxiv:1606.07631

More information

GROWTH OF STRUCTURE SEEDED BY PRIMORDIAL BLACK HOLES

GROWTH OF STRUCTURE SEEDED BY PRIMORDIAL BLACK HOLES The Astrophysical Journal, 665:1277Y1287, 2007 August 20 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. A GROWTH OF STRUCTURE SEEDED BY PRIMORDIAL BLACK HOLES Katherine

More information

Gravitational waves from Massive Primordial Black Holes as Dark Matter

Gravitational waves from Massive Primordial Black Holes as Dark Matter Gravitational waves from Massive Primordial Black Holes as Dark Matter based on S. Clesse & JGB, arxiv:1603.05234 S. Clesse & JGB, Phys Rev D92 (2015) 023524 JGB, Linde & Wands, Phys Rev D54 (1996) 6040

More information

Dark Matter, Inflation, GW and Primordial Black Holes

Dark Matter, Inflation, GW and Primordial Black Holes Dark Matter, Inflation, GW and Primordial Black Holes Martti Raidal NICPB, Tallinn arxiv: 1705.05567 arxiv: 1705.06225 arxiv: 1707.01480 08.09.2017 Corfu 2017 Hardi Veermäe Ville Vaskonen 1 The success

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

arxiv: v1 [astro-ph] 4 Sep 2007

arxiv: v1 [astro-ph] 4 Sep 2007 Draft version August 28, 2018 Preprint typeset using L A TEX style emulateapj v. 08/22/09 EFFECT OF PRIMORDIAL BLACK HOLES ON THE COSMIC MICROWAVE BACKGROUND AND COSMOLOGICAL PARAMETER ESTIMATES Massimo

More information

Primodial Black Hole Dark Matter. Raphael Flauger

Primodial Black Hole Dark Matter. Raphael Flauger Primodial Black Hole Dark Matter Raphael Flauger Dark Matter in Southern California 2017, Caltech, August 30, 2017 19 Introduction We have compelling evidence that dark matter exists... Introduction...

More information

Black Holes Thursday, 14 March 2013

Black Holes Thursday, 14 March 2013 Black Holes General Relativity Intro We try to explain the black hole phenomenon by using the concept of escape velocity, the speed to clear the gravitational field of an object. According to Newtonian

More information

Simulating non-linear structure formation in dark energy cosmologies

Simulating non-linear structure formation in dark energy cosmologies Simulating non-linear structure formation in dark energy cosmologies Volker Springel Distribution of WIMPS in the Galaxy Early Dark Energy Models (Margherita Grossi) Coupled Dark Energy (Marco Baldi) Fifth

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

Primordial Black holes and Gravitational Waves

Primordial Black holes and Gravitational Waves Primordial Black holes and Gravitational Waves Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University COSMO-17, 1 September, 2017 Primordial Black Holes 2 What are Primorial BHs? PBH =

More information

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ = Cosmology AS7009, 2008 Lecture 10 Outline Structure formation Jeans length, Jeans mass Structure formation with and without dark matter Cold versus hot dark matter Dissipation The matter power spectrum

More information

Advanced Topics on Astrophysics: Lectures on dark matter

Advanced Topics on Astrophysics: Lectures on dark matter Advanced Topics on Astrophysics: Lectures on dark matter Jesús Zavala Franco e-mail: jzavalaf@uwaterloo.ca UW, Department of Physics and Astronomy, office: PHY 208C, ext. 38400 Perimeter Institute for

More information

Observational Cosmology

Observational Cosmology (C. Porciani / K. Basu) Lecture 7 Cosmology with galaxy clusters (Mass function, clusters surveys) Course website: http://www.astro.uni-bonn.de/~kbasu/astro845.html Outline of the two lecture Galaxy clusters

More information

ASTRON 331 Astrophysics TEST 1 May 5, This is a closed-book test. No notes, books, or calculators allowed.

ASTRON 331 Astrophysics TEST 1 May 5, This is a closed-book test. No notes, books, or calculators allowed. ASTRON 331 Astrophysics TEST 1 May 5, 2003 Name: This is a closed-book test. No notes, books, or calculators allowed. Orders of Magnitude (20 points): simply circle the correct answer. 1. The brightest

More information

THE PRIMORDIAL BLACK HOLE MASS RANGE. Paul H. Frampton

THE PRIMORDIAL BLACK HOLE MASS RANGE. Paul H. Frampton THE PRIMORDIAL BLACK HOLE MASS RANGE Paul H. Frampton 1 REFERENCES P.H. Frampton, The Primordial Black Hole Mass Range arxiv:1511.xxxxx [hep-ph] P.H. Frampton, Searching for Dark Matter Constituents with

More information

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics Series in Astronomy and Astrophysics An Introduction to the Science of Cosmology Derek Raine Department of Physics and Astronomy University of Leicester, UK Ted Thomas Department of Physics and Astronomy

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II AST4320 - Cosmology and extragalactic astronomy Lecture 20 Black Holes Part II 1 AST4320 - Cosmology and extragalactic astronomy Outline: Black Holes Part II Gas accretion disks around black holes, and

More information

Theoretical Cosmology and Galaxy Formation at UMD

Theoretical Cosmology and Galaxy Formation at UMD Theoretical Cosmology and Galaxy Formation at UMD Massimo Ricotti (Associate Professor, Dept. of Astronomy) Current group members: Owen Parry (Postdoc) Sam Leithner (CTC postdoc) Emil Polisensky (PhD student)

More information

Primordial Black Holes Dark Matter from Axion Inflation

Primordial Black Holes Dark Matter from Axion Inflation Primordial Black Holes Dark Matter from Axion Inflation Francesco Muia University of Oxford Based on: PBH Dark Matter from Axion Inflation V. Domcke, FM, M. Pieroni & L. T. Witkowski arxiv: 1704.03464

More information

Observational Cosmology

Observational Cosmology Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 15: Observational Cosmology 1 Outline Observational Cosmology: observations that allow us to test

More information

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER 16 December 2011 ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER Paolo Ciarcelluti Motivation of this research We are now in the ERA OF PRECISION COSMOLOGY and... Motivation of this research We are now

More information

DARK MATTER IN UNIVERSE. edited by. John Bahcall Institute for Advanced Study, Princeton, USA. Tsvi Piran The Hebrew University, Israel

DARK MATTER IN UNIVERSE. edited by. John Bahcall Institute for Advanced Study, Princeton, USA. Tsvi Piran The Hebrew University, Israel DARK MATTER IN UNIVERSE n d edited by John Bahcall Institute for Advanced Study, Princeton, USA Tsvi Piran The Hebrew University, Israel Steven Weinberg University of Texas, Austin, USA TECHNiSCHE INFORMATIONSBIBLIOTHEK

More information

Cosmology with Gravitational Wave Detectors. Maya Fishbach

Cosmology with Gravitational Wave Detectors. Maya Fishbach Cosmology with Gravitational Wave Detectors Maya Fishbach Part I: Cosmography Compact Binary Coalescenses are Standard Sirens The amplitude* of a GW from a CBC is The timescale is Measuring amplitude,

More information

Cosmic Inflation Lecture 16 - Monday Mar 10

Cosmic Inflation Lecture 16 - Monday Mar 10 Physics 224 Spring 2008 Origin and Evolution of the Universe Cosmic Inflation Lecture 16 - Monday Mar 10 Joel Primack University of California, Santa Cruz Outline L15 L16 WMAP 5-year Data and Papers Released

More information

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe?

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? John Moffat Perimeter Institute, Waterloo, Ontario, Canada Talk given at the Miami 2014 topical conference on

More information

Formation and cosmic evolution of supermassive black holes. Debora Sijacki

Formation and cosmic evolution of supermassive black holes. Debora Sijacki Formation and cosmic evolution of supermassive black holes Debora Sijacki Summer school: Black Holes at all scales Ioannina, Greece, Sept 16-19, 2013 Lecture 1: - formation of black hole seeds - low mass

More information

Isotropy and Homogeneity

Isotropy and Homogeneity Cosmic inventory Isotropy and Homogeneity On large scales the Universe is isotropic (looks the same in all directions) and homogeneity (the same average density at all locations. This is determined from

More information

International Symposium: Advances in Dark Matter and Particle Physics 2016 Messina, Italy October 24-27, 2016

International Symposium: Advances in Dark Matter and Particle Physics 2016 Messina, Italy October 24-27, 2016 Problems with the sources of the observed gravitational waves and their resolution A.D. Dolgov NSU, Novosibirsk, 630090, Russia ITEP, Moscow, 117218, Russia International Symposium: Advances in Dark Matter

More information

Strongly Interacting Dark Matter & Stars. Chris Kouvaris

Strongly Interacting Dark Matter & Stars. Chris Kouvaris Strongly Interacting Dark Matter & Stars Chris Kouvaris ECT*, 3 October 2018 Dark Matter Production Mechanisms Thermal Freeze-out (possible signal from Galactic centre and/or Sun) Asymmetric Dark Matter

More information

Quasi-stars and the Cosmic Evolution of Massive Black Holes

Quasi-stars and the Cosmic Evolution of Massive Black Holes Quasi-stars and the Cosmic Evolution of Massive Black Holes Marta Volonteri and Mitchell C. Begelman 2010 MNRAS 409:1022 David Riethmiller January 26, 2011 Outline Two different methods for MBH formation:

More information

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama Research Center for the Early Universe (RESCEU) Department of Physics Jun ichi Yokoyama time size Today 13.8Gyr Why is Our Universe Big, dark energy Old, and full of structures? galaxy formation All of

More information

arxiv: v2 [astro-ph.co] 18 Dec 2016

arxiv: v2 [astro-ph.co] 18 Dec 2016 Constraint on the abundance of primordial black holes in dark matter from Planck data arxiv:1608.02174v2 [astro-ph.co] 18 Dec 2016 Lu Chen, Qing-Guo Huang and Ke Wang 1 CAS Key Laboratory of Theoretical

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy 12-14 April 2006, Rome, Italy Francesco Melchiorri Memorial Conference Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

formation of the cosmic large-scale structure

formation of the cosmic large-scale structure formation of the cosmic large-scale structure Heraeus summer school on cosmology, Heidelberg 2013 Centre for Astronomy Fakultät für Physik und Astronomie, Universität Heidelberg August 23, 2013 outline

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Black Holes. Robert M. Wald

Black Holes. Robert M. Wald Black Holes Robert M. Wald Black Holes Black Holes: A black hole is a region of spacetime where gravity is so strong that nothing not even light that enters that region can ever escape from it. Michell

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Solving small scale structure puzzles with. dissipative dark matter

Solving small scale structure puzzles with. dissipative dark matter Solving small scale structure puzzles with. dissipative dark matter Robert Foot, COEPP, University of Melbourne Okinawa, March 2016 Dark matter: why we think it exists Dark matter issues on small scales

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

Dark Matter & Dark Energy. Astronomy 1101

Dark Matter & Dark Energy. Astronomy 1101 Dark Matter & Dark Energy Astronomy 1101 Key Ideas: Dark Matter Matter we cannot see directly with light Detected only by its gravity (possible future direct detection in the lab) Most of the matter in

More information

Disk Galaxy Rotation Curves and Dark Matter Halos

Disk Galaxy Rotation Curves and Dark Matter Halos Disk Galaxy Rotation Curves and Dark Matter Halos Thorben H. Mense 1 Galactic Astronomy SS 2018 1 Universität Bielefeld Outline Early Observations of Galaxy Rotation Curves Rotation of the Andromeda Nebula

More information

The Early Universe s Imprint on Dark Matter

The Early Universe s Imprint on Dark Matter The Early Universe s Imprint on Dark Matter UNC Chapel Hill Towards Dark Matter Discovery KICP, University of Chicago April 13, 2018 What Happened Before BBN? The (mostly) successful prediction of the

More information

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b. Dark Matter Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses Ω M ~ 0.3 2 1 Ω b 0.04 3 Mass Density by Direct Counting Add up the mass of all the galaxies per

More information

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics LARGE QUASAR GROUPS Kevin Rahill Astrophysics QUASARS Quasi-stellar Radio Sources Subset of Active Galactic Nuclei AGNs are compact and extremely luminous regions at the center of galaxies Identified as

More information

ANTIMATTER FROM PRIMORDIAL BLACK HOLES

ANTIMATTER FROM PRIMORDIAL BLACK HOLES ANTIMATTER FROM PRIMORDIAL BLACK HOLES Aurélien Barrau Institut des Sciences Nucléaires & UJF 53, av des Martyrs, 38026 Grenoble cedex, France XIVth RENCONTRES DE BLOIS, MATTER-ANTIMATTER ASYMMETRY Antiprotons

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

Astrophysics with LISA

Astrophysics with LISA Astrophysics with LISA Alberto Vecchio University of Birmingham UK 5 th LISA Symposium ESTEC, 12 th 15 th July 2004 LISA: GW telescope LISA is an all-sky monitor: All sky surveys are for free Pointing

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 4 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information

The Pop III IMF: A Progress Report. Michael L. Norman University of California, San Diego & San Diego Supercomputer Center

The Pop III IMF: A Progress Report. Michael L. Norman University of California, San Diego & San Diego Supercomputer Center The Pop III IMF: A Progress Report Michael L. Norman University of California, San Diego & San Diego Supercomputer Center Disclaimer Notion of Pop III IMF is not well-defined We don t observe Pop III stars

More information

Constraints on diffuse neutrino background from primordial black holes. I. Introduction

Constraints on diffuse neutrino background from primordial black holes. I. Introduction Constraints on diffuse neutrino background from primordial black holes E. V. Bugaev and K. V. Konishchev. Institute for Nuclear Research, Russian Academy of Sciences, Moscow 11731, Russia. We calculated

More information

Probing the Nature of Dark Matter with the First Galaxies (Reionization, 21-cm signal)

Probing the Nature of Dark Matter with the First Galaxies (Reionization, 21-cm signal) Probing the Nature of Dark Matter with the First Galaxies (Reionization, 21-cm signal) Anastasia Fialkov Ecole Normale Superieure Debates on the Nature of Dark Matter 20 May 2014 Outline The early Universe

More information

SPECIAL RELATIVITY! (Einstein 1905)!

SPECIAL RELATIVITY! (Einstein 1905)! SPECIAL RELATIVITY! (Einstein 1905)! Motivations:! Explaining the results of the Michelson-Morley! experiment without invoking a force exerted! on bodies moving through the aether.! Make the equations

More information

Feedback, AGN and galaxy formation. Debora Sijacki

Feedback, AGN and galaxy formation. Debora Sijacki Feedback, AGN and galaxy formation Debora Sijacki Formation of black hole seeds: the big picture Planck data, 2013 (new results 2015) Formation of black hole seeds: the big picture CMB black body spectrum

More information

Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves

Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves Journal of Physics: Conference Series PAPER OPEN ACCESS Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves To cite this article: Juan García-Bellido 2017 J. Phys.:

More information

Physics 5I LECTURE 7 December 2, 2011

Physics 5I LECTURE 7 December 2, 2011 Physics 5I LECTURE 7 December 2, 2011 Midterm Exam More on Special Relativity Special Relativity with 4-vectors (again) Special Relativity + Quantum Mechanics Antiparticles, Spin General Relativity Black

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

Caldwell, MK, Wadley (open) (flat) CMB determination of the geometry (MK, Spergel, and Sugiyama, 1994) Where did large scale structure (e.g., galaxies, clusters, larger-scale explosions clustering)

More information

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory Cross-correlations of CMB lensing as tools for cosmology and astrophysics Alberto Vallinotto Los Alamos National Laboratory Dark matter, large scales Structure forms through gravitational collapse......

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer Charles Keeton Principles of Astrophysics Using Gravity and Stellar Physics to Explore the Cosmos ^ Springer Contents 1 Introduction: Tools of the Trade 1 1.1 What Is Gravity? 1 1.2 Dimensions and Units

More information

Chapter 22 Back to the Beginning of Time

Chapter 22 Back to the Beginning of Time Chapter 22 Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Back to the Big Bang The early Universe was both dense and hot. Equivalent mass density of radiation (E=mc

More information

COSMOLOGY The Origin and Evolution of Cosmic Structure

COSMOLOGY The Origin and Evolution of Cosmic Structure COSMOLOGY The Origin and Evolution of Cosmic Structure Peter COLES Astronomy Unit, Queen Mary & Westfield College, University of London, United Kingdom Francesco LUCCHIN Dipartimento di Astronomia, Universita

More information

Clustering of Primordial Black Holes: Basic Results. Abstract

Clustering of Primordial Black Holes: Basic Results. Abstract Clustering of Primordial Black Holes: Basic Results James R. Chisholm Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, and Enrico Fermi Institute, University

More information

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC)

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC) COSMOLOGY AND GRAVITATIONAL WAVES Chiara Caprini (APC) the direct detection of GW by the LIGO interferometers has opened a new era in Astronomy - we now have a new messenger bringing complementary informations

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 3 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

Dark Matter Halos in Warm Dark Matter Models

Dark Matter Halos in Warm Dark Matter Models Dark Matter Halos in Warm Dark Matter Models 5. June @ Workshop CIAS Meudon 2013 Ayuki Kamada (Kavli IPMU, Univ. of Tokyo) in collaboration with Naoki Yoshida (Kavli IPMU, Univ. of Tokyo) Kazunori Kohri

More information

Physical Cosmology 18/5/2017

Physical Cosmology 18/5/2017 Physical Cosmology 18/5/2017 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2017 Summary If we consider perturbations in a pressureless

More information

GENERALIZED UNCERTAINTY PRINCIPLE AND DARK MATTER

GENERALIZED UNCERTAINTY PRINCIPLE AND DARK MATTER GENERALIZED UNCERTAINTY PRINCIPLE AND DARK MATTER Pisin Chen Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309, USA SLAC-PUB-10307 astro-ph/0305025 There have been proposals that

More information

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY N-body Simulations N-body Simulations N-body Simulations Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY Final distribution of dark matter.

More information

This is far scarier! Not recommended!

This is far scarier! Not recommended! Cosmology AS7009, 2010 Lecture 1 Formal Information Organizer: Erik Zackrisson Room C6:1007 Telephone: 08-5537 8556 E-mail: ez@astro.su.se Course homepage: www.astro.su.se/~ez/kurs/cosmology10.html Outline

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

Gravitational Efects and the Motion of Stars

Gravitational Efects and the Motion of Stars Gravitational Efects and the Motion of Stars On the largest scales (galaxy clusters and larger), strong evidence that the dark matter has to be non-baryonic: Abundances of light elements (hydrogen, helium

More information

Contents. Part I The Big Bang and the Observable Universe

Contents. Part I The Big Bang and the Observable Universe Contents Part I The Big Bang and the Observable Universe 1 A Historical Overview 3 1.1 The Big Cosmic Questions 3 1.2 Origins of Scientific Cosmology 4 1.3 Cosmology Today 7 2 Newton s Universe 13 2.1

More information

Lecture 6: Dark Matter Halos

Lecture 6: Dark Matter Halos Lecture 6: Dark Matter Halos Houjun Mo February 23, 2004 Hierarchical clustering, the matter in the universe condenses to form quasiequilibrium objects (dark halos) of increasing masses in the passage

More information