Galaxies on FIRE: Burning up the small-scale crises of ΛCDM

Size: px
Start display at page:

Download "Galaxies on FIRE: Burning up the small-scale crises of ΛCDM"

Transcription

1 Galaxies on FIRE: Burning up the small-scale crises of ΛCDM Observed Starlight Molecular X-Rays Star Formation Cosmic evolution Shea Garrison-Kimmel (Einstein Fellow, Caltech) on behalf of Phil Hopkins (Caltech) and the FIRE Collaboration F RE Feedback In Realistic Environments

2 What is FIRE? galaxy formation? Standard paradigm: Dark matter dominates the total mass Some type of mass that only (strongly) interacts via gravity (i.e., collisionless: no EM forces, no pressure) Density field is initially very smooth, with only tiny fluctuations seeded during inflation Gravity causes these fluctuations to grow, starting with the smallest ones This is (physically) easy to simulate!

3 Evolution of a Milky Way-like object Diemand, Kuhlen, & Madau 2006 But this is only gravity, and we know there s other physics important for galaxy formation

4 Galaxy formation Gas Gas outflows cooling feedback (e.g. supernovae) angular momentum Gas Gas

5 Galaxy formation Galaxy formation involves an enormous dynamic range: >> 10 6 in length

6 ~10 10 pc Hubble volume ~ pc ~ pc Clusters, Large-scale structure Galaxy ~10-5 pc Stars, protostellar disks ~ pc Cores, clusters, Supernovae blastwaves ~ pc Molecular clouds, Star-Forming Regions

7 ~10 10 pc Hubble volume ~ pc ~ pc Clusters, Large-scale structure Galaxy ~10-5 pc Stars, protostellar disks ~ pc Cores, clusters, Supernovae blastwaves ~ pc Molecular clouds, Star-Forming Regions

8 FIRE (tries to) model the physics driving galaxy formation cosmological collapse hydrodynamics and gas cooling star formation in self-gravitating gas not to scale! energy return from stars (feedback), based on the results of stellar evolution studies: stellar winds radiative feedback supernovae types Ia and II M. Grudic+2016

9 What are we studying with FIRE? galactic winds and the circumgalactic medium what are the smallest galaxies? what can we learn from Gaia? r-process enrichment the nature of how do stars form? dark matter distributions of compact objects the role of cosmic rays in galaxy formation gravitational wave sources (LISA) importance of magnetic fields supermassive black holes feedback drivers of galaxy morphology radiation/matter interactions predictions for next-gen telescopes origins of ultra-diffuse galaxies high-redshift galaxy formation (JWST) formation of globular clusters impact of baryons on dark matter growth of supermassive black holes cosmic history of the Milky Way the impact of reionization on dwarf galaxy predictions

10 What are we studying with FIRE?

11 Who is FIRE? PIs at ten institutions: Phil Hopkins, Caltech Norm Murray, CITA Eliot Quataert UC Berkeley Dusan Keres UC San Diego C.A. Faucher-Giguère Northwestern Andrew Wetzel UC Davis Robert Feldmann ETH Zurich James Bullock UC Irvine Mike Boylan-Kolchin UT Austin Chris Hayward CCA

12 Who is FIRE? plus students and postdocs

13 Small-scale problems Milky Way lives here What lives in all these?

14 Dwarf galaxies! LMC M =3x109 M Pegasus M =6x106 M Draco M =4x105 M Fornax M =4x107 M Sculptor M =4x106 M Eridanus II M =6x104 M WLM M =2x107 M Phoenix M =2x106 M Pictoris I M =3x103 M 200 pc Bullock & Boylan-Kolchin, 2017

15 Dwarf galaxies but not enough Theory: thousands of subhalos Observations: tens of satellite galaxies

16 The missing satellites problem Postulate: Maybe only the biggest dark matter clumps host (detectable) galaxies?

17 The missing satellites problem Corollary: The known galaxies should be compatible with the biggest clumps

18 The central mass problem rotation velocity (km/s) enclosed mass Dark Each matter-only point Aquarius is simulations (Springel+2008) a separate (real) Theory satellite galaxy Data: Milky Way sats radius (kpc) rotation velocity = sqrt[g M(<r)/r] Compare dynamical (total) masses to check

19 The central mass problem rotation velocity (km/s) enclosed mass Theory: structure around Milky Way-like hosts (gravity-only Aquarius sims, Springel+2008) Data: Milky Way sats radius (kpc) rotation velocity = sqrt[g M(<r)/r] Big clumps (which are too big to fail to form stars) have too much central mass to host the bright galaxies

20 The central mass problem rotation velocity (km/s) enclosed mass Theory: structure around Milky Way-like hosts (gravity-only Aquarius sims, Springel+2008) Data: Milky Way sats radius (kpc) rotation velocity = sqrt[g M(<r)/r] CAVEAT: these curves are from a gravity-only sim that ignores known physics (i.e. galaxy formation)

21 Can known, standard model physics that aren t included in gravity-only simulations resolve the missing satellites and central mass problems? or do we need to invoke new physics?

22 What are we studying with FIRE? galactic winds and the circumgalactic medium what are the smallest galaxies? what can we learn from Gaia? r-process enrichment the nature of how do stars form? dark matter distributions of compact objects the role of cosmic rays in galaxy formation gravitational wave sources (LISA) importance of magnetic fields supermassive black holes feedback drivers of galaxy morphology radiation/matter interactions predictions for next-gen telescopes origins of ultra-diffuse galaxies high-redshift galaxy formation (JWST) formation of globular clusters impact of baryons on dark matter growth of supermassive black holes cosmic history of the Milky Way the impact of reionization on dwarf galaxy predictions

23 What are we studying with FIRE? galactic winds and the circumgalactic medium what are the smallest galaxies? what can we learn from Gaia? r-process enrichment the nature of how do stars form? dark matter distributions of compact objects the role of cosmic rays in galaxy formation gravitational wave sources (LISA) importance of magnetic fields supermassive black holes feedback drivers of galaxy morphology radiation/matter interactions predictions for next-gen telescopes origins of ultra-diffuse galaxies high-redshift galaxy formation (JWST) formation of globular clusters impact of baryons on dark matter growth of supermassive black holes cosmic history of the Milky Way the impact of reionization on dwarf galaxy predictions

24 Tackling small-scale problems with the FIRE simulations ELVIS on FIRE and the Latte suites Isolated dwarf galaxies at ludicrous resolution Triple Latte 2000 kpc 0.75 kpc 300 kpc

25 ELVIS on FIRE and the Latte suite Ten Milky Way-mass galaxies, each with a population of nearby dwarf galaxies (within ~1 Mpc of each host) Each simulation spans ~10 6 parsecs while resolving ~1 pc scales Juliet Romeo

26 The missing satellites problem Number of galaxies brighter than Mstar N(> M ) 30 Satellites: r < 300 kpc stellar M mass [M[Msun] ] SGK+, in prep

27 The missing satellites problem Number of galaxies brighter than Mstar N(> M ) 30 Satellites: r < 300 kpc Milky Way stellar M mass [M[Msun] ] SGK+, in prep

28 The missing satellites problem Number of galaxies brighter than Mstar N(> M ) Satellites: r < 300 kpc stellar M mass [M[Msun] ] Andromeda Milky Way SGK+, in prep

29 The missing satellites problem Number of galaxies brighter than Mstar N(> M ) Satellites: r < 300 kpc stellar M mass [M[Msun] ] Andromeda Milky Way SGK+, in prep

30 The missing satellites problem Number of galaxies brighter than Mstar N(> M ) Satellites: r < 300 kpc stellar M mass [M[Msun] ] Andromeda Milky Way SGK+, in prep

31 No missing satellites problem! Number of galaxies brighter than Mstar N(> M ) Satellites: r < 300 kpc stellar M mass [M [Msun] ] Andromeda Milky Way SGK+, in prep

32 What about the central masses? Is the internal structure of the simulated dwarfs consistent with those observed? ELVIS on FIRE and the Latte suites Isolated dwarf galaxies at ludicrous resolution Triple Latte 2000 kpc 0.75 kpc 300 kpc

33 mgas 30 Msun equivalent to a single high mass star! First cosmological simulations (run to z = 0) to resolve the cooling radii of individual supernovae Ultra-high resolution isolated dwarf galaxies Density profiles resolved beyond ~30 parsecs Target isolated dwarfs systems in a void, far from any MW-mass galaxies Wheeler+, in prep

34 Internal structure of FIRE dwarfs circular velocity [km/s] And XVI Leo T Tucana And XXVIII Leo A And XVIII m10q M = M M total = M radius [kpc] NGC 6822 Pegasus Cetus IC 1613 WLM

35 Internal structure of FIRE dwarfs circular velocity [km/s] And XVI Leo T Tucana Gravity only And XXVIII Leo A And XVIII m10q M = M M total = M radius [kpc] NGC 6822 Pegasus Cetus IC 1613 WLM

36 Internal structure of FIRE dwarfs Gravity only FIRE

37 Internal structure of FIRE dwarfs Gravity only FIRE The MW-mass hosts of ELVIS on FIRE and Latte are also free of the central mass problem

38 Feedback induced cores FIRE Gravity only Wheeler+, in prep

39 Feedback induced cores, if there s enough energy FIRE Gravity only Gravity only FIRE Wheeler+, in prep

40 What about smaller galaxies? How do we push make predictions for the ultra-faint population around the Milky Way? ELVIS on FIRE and the Latte suites Isolated dwarf galaxies at ludicrous resolution Triple Latte 2000 kpc 0.75 kpc 300 kpc

41 Triple Latte: a billion particles in the Milky Way Upcoming: Triple Latte Current: ELVIS on FIRE + Latte mgas 3,500-7,070 Msun ~100 million particles in the halo (and 300 million in the Local Group) 1-5 million core-hours for Latte, million for ELVIS on FIRE mgas,star = 880 Msun 1.1 billion particles ~25 million core-hours now running (at z=2.5) F RE Feedback In Realistic Environments

42 Andrew Wetzel Caltech - Carnegie - UC Davis cosmological hydrodynamic simulations of (better >) Milky Way-mass galaxies to z = 0 Triple Latte ELVIS on FIRE (double) Latte FIRE (single Latte) Agertz&Kravtsov GARROTXA Sawala Eris CLUES Auriga HR MAGICC Mollitor Massive GASOLINE Aquarius (AREPO) Black-IIEagle NIHAO Illustris 1 billion particles Mgas = 900 Msun (better >)

43 MW-mass progenitor at z = kpc (physical) min = 10 6 M /kpc 2

44 MW-mass progenitor at z = 2.5 HST image 300 kpc (physical) 6 2 min = 10 M /kpc

45 MW-mass progenitor at z = 2.5 HST image 300 kpc (physical) 3 2 min = 10 M /kpc

46 Triple Latte (currently running) will provide self-consistent predictions for ultra-faint dwarfs around the MW for the first time Conclusions FIRE simulations realistically capture the evolution of dwarf galaxies near the MW and in the Local Group Together with ultra-high res (~30 Msun) sims of isolated dwarfs, our results indicate that baryonic physics can explain the small-scale problems

47 [this slide intentionally left blank] [the above statement is a lie]

48 Conclusions FIRE simulations realistically capture the evolution of dwarf galaxies near the MW and in the Local Group Together with ultra-high res (~30 Msun) sims of isolated dwarfs, our results indicate that baryonic physics can explain the small-scale problems Triple Latte (currently running) will provide self-consistent predictions for ultra-faint dwarfs around the MW for the first time

49 Who is FIRE? PIs at ten institutions: Phil Hopkins (Caltech) Eliot Quataert (UC Berkeley) Dusan Keres (UC San Diego) C.A. Faucher-Giguère (Northwestern) Norm Murray (CITA) James Bullock (UC Irvine) Mike Boylan-Kolchin (UT Austin) Andrew Wetzel (UC Davis) Chris Hayward (CCA) Robert Feldmann (ETH Zurich) ~30-40 graduate students and postdocs Sarah Wellon mond Fielding Paul Torrey Cameron Hummels Shea Garrison-Kimmel

50 What are we studying with FIRE? galactic winds and high-redshift g the circumgalactic medium formation (JWS the smallest galaxies impact of b what can we on dark ma learn from Gaia? drivers of galaxy morphology growth of supermas importance of black hole magnetic fields the nature of distributions of dark matter compact objects predictions for gravitation next-gen telescopes sources (L

51 What are we studying with FIRE?

52 What are we studying with FIRE? Titles Abstracts

53 Galaxy formation Gas Gas cooling angular momentum Gas Gas

54 Galaxy formation Gas Gas outflows cooling feedback (e.g. supernovae) angular momentum Gas Gas

CDM Controversies. James Bullock (UC Irvine)

CDM Controversies. James Bullock (UC Irvine) CDM Controversies James Bullock (UC Irvine) Low stellar mass: feedback can t change DM Core Cusp Tollet et al. 2015 Also: Governato+12; Penarrubia+12; Garrison-Kimmel+13, Di Cintio+14 Low stellar mass:

More information

James Bullock UC Irvine

James Bullock UC Irvine Can Feedback Solve Too Big to Fail Problem? James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Collaborators Shea Garrison-Kimmel Mike Boylan-Kolchin Jose Oñorbe Jaspreet Lally Manoj Kaplinghat dsphs

More information

Reionization and the radial distribution of satellites

Reionization and the radial distribution of satellites Reionization and the radial distribution of satellites Andrew Graus (UC Irvine) Collaborators: James Bullock (UC Irvine) Tyler Kelley Oliver Elbert Claire Qi Michael Boylan-Kolchin (UT Austin) Alex Fitts

More information

Dwarf Galaxies as Cosmological Probes

Dwarf Galaxies as Cosmological Probes Dwarf Galaxies as Cosmological Probes Julio F. Navarro The Ursa Minor dwarf spheroidal First Light First Light The Planck Satellite The Cosmological Paradigm The Clustering of Dark Matter The Millennium

More information

Where to Look for Dark Matter Weirdness

Where to Look for Dark Matter Weirdness Where to Look for Dark Matter Weirdness Dark Matter in Southern California (DaMaSC) - II James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Collaborators Mike Boylan-Kolchin U. Maryland Miguel Rocha

More information

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY Shea Garrison-Kimmel (UCI) Santa Cruz 2011 Collaborators: Jose Oñorbe (UCI), James Bullock (UCI), Mike Boylan-Kolchin (UCI), Ari Maller (CUNY) Majority of halos

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

What Doesn t Quench Galaxy Formation?

What Doesn t Quench Galaxy Formation? What Doesn t Quench Galaxy Formation? Phil Hopkins Dusan Keres, Claude Faucher-Giguere, Jose Onorbe, Freeke van de Voort, Sasha Muratov, Xiangcheng Ma, Lena Murchikova, Norm Murray, Eliot Quataert, James

More information

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago The Milky Way in the cosmological context Andrey Kravtsov The University of Chicago Milky Way and Its Stars, KITP, 2 February 2015 Cosmological context: hierarchical structure formation from a Gaussian

More information

Cosmological Puzzles: Dwarf Galaxies and the Local Group

Cosmological Puzzles: Dwarf Galaxies and the Local Group Cosmological Puzzles: Dwarf Galaxies and the Local Group Julio F. Navarro Dark-matter-only simulations have highlighted a number of cosmological puzzles Local Group puzzles Missing satellites problem Satellite

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Mergers and Mass Assembly of Dark Matter Halos & Galaxies Mergers and Mass Assembly of Dark Matter Halos & Galaxies Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin (MPA --> Southern UC) Claude-Andre Faucher-Giguere Dusan Keres (Harvard

More information

Shea C. Garrison-Kimmel

Shea C. Garrison-Kimmel Curriculum Vitae Shea C. Garrison-Kimmel Einstein Postdoctoral Fellow Phone: (610) 731-6378 California Institute of Technology Email: sheagk@caltech.edu 1200 E. California Blvd., Pasadena, CA 91125 Homepage:

More information

Galaxy Formation Now and Then

Galaxy Formation Now and Then Galaxy Formation Now and Then Matthias Steinmetz Astrophysikalisches Institut Potsdam 1 Overview The state of galaxy formation now The state of galaxy formation 10 years ago Extragalactic astronomy in

More information

Veilleux! see MBW ! 23! 24!

Veilleux! see MBW ! 23! 24! Veilleux! see MBW 10.4.3! 23! 24! MBW pg 488-491! 25! But simple closed-box model works well for bulge of Milky Way! Outflow and/or accretion is needed to explain!!!metallicity distribution of stars in

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

24.1 Hubble s Galaxy Classification

24.1 Hubble s Galaxy Classification Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble s Law 24.4 XXActive Galactic Nuclei XXRelativistic Redshifts and Look-Back

More information

Understanding isolated and satellite galaxies through simulations

Understanding isolated and satellite galaxies through simulations Understanding isolated and satellite galaxies through simulations Kenza Arraki! Blue Waters Graduate Fellow! New Mexico State University! Anatoly Klypin! Daniel Ceverino! Sebastian Trujillo-Gomez! Joel

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ 0.017 M gas / dyn Log SFR Kennicutt 1998 Log gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Moster 2009 No Feedback 10% of baryons Log(

More information

Superbubble Feedback in Galaxy Formation

Superbubble Feedback in Galaxy Formation Superbubble Feedback in Galaxy Formation Ben Keller (McMaster University) James Wadsley, Samantha Benincasa, Hugh Couchman Paper: astro-ph/1405.2625 (Accepted MNRAS) Keller, Wadsley, Benincasa & Couchman

More information

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes.

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes. Distances to galaxies Cepheids used by Hubble, 1924 to show that spiral nebulae like M31 were further from the Sun than any part of the Milky Way, therefore galaxies in their own right. Review of Cepheids

More information

COSMOLOGY PHYS 30392 OBSERVING THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - January 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies Phys/Astro 689: Lecture 12 The Problems with Satellite Galaxies The Problems with Satellites (1) The Missing Satellites Problem (2) The Too Big to Fail Problem We ll examine potential solutions to each

More information

The Illustris simulation: a new look at galaxy black hole co-evolution. Debora Sijacki IoA & KICC Cambridge

The Illustris simulation: a new look at galaxy black hole co-evolution. Debora Sijacki IoA & KICC Cambridge The Illustris simulation: a new look at galaxy black hole co-evolution Debora Sijacki IoA & KICC Cambridge LSS conference July 23 2015 Cosmological simulations of galaxy and structure formation Hierarchical

More information

Feedback, AGN and galaxy formation. Debora Sijacki

Feedback, AGN and galaxy formation. Debora Sijacki Feedback, AGN and galaxy formation Debora Sijacki Formation of black hole seeds: the big picture Planck data, 2013 (new results 2015) Formation of black hole seeds: the big picture CMB black body spectrum

More information

Effects of baryons on the circular velocities of dwarf satellites

Effects of baryons on the circular velocities of dwarf satellites Effects of baryons on the circular velocities of dwarf satellites Anatoly Klypin, Kenza Arraki, Surhud More NMSU, U. Chicago August 15, 2012; Santa Cruz Galaxy Workshop LCDM and dwarfs: love to hate Missing

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information

Chapter 25 (and end of 24): Lecture Notes

Chapter 25 (and end of 24): Lecture Notes Chapter 25 (and end of 24): Lecture Notes In order to understand the Hubble Law and its implications both for estimating distances and for interpreting the evolution of the universe, you have to be comfortable

More information

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath Review: Creating Stellar Remnants Binaries may be destroyed in white dwarf supernova Binaries be converted into black holes Review: Stellar

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath A2020 Disk Component: stars of all ages, many gas clouds Review of Lecture 15 Spheroidal Component: bulge & halo, old

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya Galaxies, AGN and Quasars Physics 113 Goderya Chapter(s): 16 and 17 Learning Outcomes: Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes

More information

ISM Structure: Order from Chaos

ISM Structure: Order from Chaos ISM Structure: Order from Chaos Philip Hopkins with Eliot Quataert, Norm Murray, Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more The

More information

Cosmological Merger Rates

Cosmological Merger Rates Cosmological Merger Rates C. Brook, F. Governato, P. Jonsson Not Phil Hopkins Kelly Holley-Bockelmann Vanderbilt University and Fisk University k.holley@vanderbilt.edu Why do we care so much about the

More information

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007 Dark Baryons and their Hidden Places Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007 Contents History Inconsistent Matter Inventory Dark Baryon vs. Dark Matter Possible Hidden Places Search

More information

A brief history of cosmological ideas

A brief history of cosmological ideas A brief history of cosmological ideas Cosmology: Science concerned with the origin and evolution of the universe, using the laws of physics. Cosmological principle: Our place in the universe is not special

More information

Formation and cosmic evolution of supermassive black holes. Debora Sijacki

Formation and cosmic evolution of supermassive black holes. Debora Sijacki Formation and cosmic evolution of supermassive black holes Debora Sijacki Summer school: Black Holes at all scales Ioannina, Greece, Sept 16-19, 2013 Lecture 1: - formation of black hole seeds - low mass

More information

Some useful spherically symmetric profiles used to model galaxies

Some useful spherically symmetric profiles used to model galaxies Some useful spherically symmetric profiles used to model galaxies de Vaucouleurs R 1/4 law for ellipticals and bulges A good fit to the light profile of many ellipticals and bulges: (constant such that

More information

Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies. Current Studies and Future Prospects

Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies. Current Studies and Future Prospects Observed MW satellites Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies Current Studies and Future Prospects http://marcelpawlowski.com/research/movies-astronomy/ Marcel

More information

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies ASTR 1120 General Astronomy: Stars & Galaxies!NNOUNCEMENTS HOMEWORK #6 DUE TODAY, by 5pm HOMEWORK #7 DUE Nov. 10, by 5pm Dark matter halo for galaxies Dark matter extends beyond visible part of the galaxy

More information

The impact of Sagittarius on the disk of the Milky Way

The impact of Sagittarius on the disk of the Milky Way The impact of Sagittarius on the disk of the Milky Way David Law James Bullock (UC Irvine) The impact of Sagittarius on the disk of the Milky Way Chris Purcell (Irvine U Pittsburgh) Erik Tollerud (Irvine)

More information

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010)

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010) GAS MIXES high density Springel (2010) low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) HOT HALO highest resolved density nth= 50x10

More information

What do we need to know about galaxy formation?

What do we need to know about galaxy formation? What do we need to know about galaxy formation? rachel somerville University of Michigan Hubble Science Legacy Workshop April 2002 what s next? test the CDM paradigm constrain the nature of the dark matter

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

HST & Resolved Stellar Popula3ons

HST & Resolved Stellar Popula3ons HST & Resolved Stellar Popula3ons Resolved stellar popula3ons provides a powerful tool to follow galaxy evolu3on consistently and directly in terms of physical parameters such as age (star forma3on history),

More information

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies Big Galaxies Are Rare! Potato Chip Rule: More small things than large things Big, bright spirals are easy to see, but least common Dwarf ellipticals & irregulars are most common Faint, hard to see Mostly

More information

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies ASTR 1120 General Astronomy: Stars & Galaxies!NNOUNCEMENTS HOMEWORK #6 DUE TODAY, by 5pm HOMEWORK #7 DUE Nov. 10, by 5pm Dark matter halo for galaxies REVIEW Dark matter extends beyond visible part of

More information

The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors

The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors John Wise Brian O Shea (PI, MSU) David Collins (FSU), Cameron Hummels (Caltech), Devin Silvia (MSU), Britton Smith (SDSC)

More information

Theoretical Cosmology and Galaxy Formation at UMD

Theoretical Cosmology and Galaxy Formation at UMD Theoretical Cosmology and Galaxy Formation at UMD Massimo Ricotti (Associate Professor, Dept. of Astronomy) Current group members: Owen Parry (Postdoc) Sam Leithner (CTC postdoc) Emil Polisensky (PhD student)

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse Reionization and the High-Redshift Galaxy UV Luminosity Function with Axion Dark Matter Rosemary Wyse Johns Hopkins University and University of Edinburgh Brandon Bozek, Doddy Marsh & Joe Silk Galaxy-scale

More information

Galaxy-Sized Monopoles as Dark Matter?

Galaxy-Sized Monopoles as Dark Matter? Galaxy-Sized Monopoles as Dark Matter? TPCSF Cosmology MiniWorkshop IHEP, May 23, 2012 WIMPs and Their Successes CDM WIMPs are the most successful dark matter model to date. The dark matter consists of

More information

Galaxies. CESAR s Booklet

Galaxies. CESAR s Booklet What is a galaxy? Figure 1: A typical galaxy: our Milky Way (artist s impression). (Credit: NASA) A galaxy is a huge collection of stars and interstellar matter isolated in space and bound together by

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

This Week in Astronomy

This Week in Astronomy Homework #8 Due Wednesday, April 18, 11:59PM Covers Chapters 15 and 16 Estimated time to complete: 40 minutes Read chapters, review notes before starting This Week in Astronomy Credit: NASA/JPL-Caltech

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

UC Davis UC Davis Previously Published Works

UC Davis UC Davis Previously Published Works UC Davis UC Davis Previously Published Works Title RECONCILING DWARF GALAXIES with ΛcDM COSMOLOGY: SIMULATING A REALISTIC POPULATION of SATELLITES AROUND A MILKY WAY-MASS GALAXY Permalink https://escholarship.org/uc/item/1283x3xc

More information

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya Foundations Chapter of Astronomy 15 13e Our Milky Way Seeds Phys1403 Stars and Galaxies Instructor: Dr. Goderya Selected Topics in Chapter 15 A view our Milky Way? The Size of our Milky Way The Mass of

More information

Co-Evolution of Central Black Holes and Nuclear Star Clusters

Co-Evolution of Central Black Holes and Nuclear Star Clusters Co-Evolution of Central Black Holes and Nuclear Star Clusters Oleg Gnedin (University of Michigan) Globular clusters in the Galaxy median distance from the center is 5 kpc Resolved star cluster highest

More information

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter.

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter. Chapter 1 Introduction 1.1 What is a Galaxy? It s surprisingly difficult to answer the question what is a galaxy? Many astronomers seem content to say I know one when I see one. But one possible definition

More information

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b. Dark Matter Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses Ω M ~ 0.3 2 1 Ω b 0.04 3 Mass Density by Direct Counting Add up the mass of all the galaxies per

More information

Dark Matter & Dark Energy. Astronomy 1101

Dark Matter & Dark Energy. Astronomy 1101 Dark Matter & Dark Energy Astronomy 1101 Key Ideas: Dark Matter Matter we cannot see directly with light Detected only by its gravity (possible future direct detection in the lab) Most of the matter in

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Solving. Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics

Solving. Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics Solving Constraining galaxy formation with gaseous halos Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics X-ray Vision workshop:

More information

Distance Measuring Techniques and The Milky Way Galaxy

Distance Measuring Techniques and The Milky Way Galaxy Distance Measuring Techniques and The Milky Way Galaxy Measuring distances to stars is one of the biggest challenges in Astronomy. If we had some standard candle, some star with a known luminosity, then

More information

Outline. Go over AGN problem, again, should be rotating BH Go over problem 6.6 Olber's paradox Distances Parallax Distance ladder Direct checks

Outline. Go over AGN problem, again, should be rotating BH Go over problem 6.6 Olber's paradox Distances Parallax Distance ladder Direct checks Outline Go over AGN problem, again, should be rotating BH Go over problem 6.6 Olber's paradox Distances Parallax Distance ladder Direct checks Why is the night sky dark? (Olber s Paradox 1826) Or what

More information

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 Number of hours: 50 min Time of Examination:

More information

The Classification of Galaxies

The Classification of Galaxies Admin. 11/9/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period 5 and period 6), start

More information

Chapter 25: Galaxy Clusters and the Structure of the Universe

Chapter 25: Galaxy Clusters and the Structure of the Universe Chapter 25: Galaxy Clusters and the Structure of the Universe Distribution of galaxies Evolution of galaxies Study of distant galaxies Distance derived from redshift Hubble s constant age of the Universe:

More information

Ch. 25 In-Class Notes: Beyond Our Solar System

Ch. 25 In-Class Notes: Beyond Our Solar System Ch. 25 In-Class Notes: Beyond Our Solar System ES2a. The solar system is located in an outer edge of the disc-shaped Milky Way galaxy, which spans 100,000 light years. ES2b. Galaxies are made of billions

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

Chapter 23 The Milky Way Galaxy Pearson Education, Inc. Chapter 23 The Milky Way Galaxy The Milky Way is our own galaxy viewed from the inside. It is a vast collection of more than 200 billion stars, planets, nebulae, clusters, dust and gas. Our own sun and

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

An off-center density peak in the Milky Way's Dark Matter halo?

An off-center density peak in the Milky Way's Dark Matter halo? An off-center density peak in the Milky Way's Dark Matter halo? AKA: Impact of baryonic physics on DM detection experiments Michael Kuhlen, Berkeley with Javiera Guedes, Annalisa Pillepich, Piero Madau,

More information

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 25 Astronomy Today 7th Edition Chaisson/McMillan Chapter 25 Galaxies and Dark Matter Units of Chapter 25 25.1 Dark Matter in the Universe 25.2 Galaxy Collisions 25.3 Galaxy Formation

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies. Spherically symmetric objects Vasily Belokurov vasily@ast.cam.ac.uk Institute of Astronomy Lent Term 2016 1 / 21 Outline I 1 2 Globular of galaxies 2 / 21 Why

More information

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters Moritz Hütten (MPP Munich) for the CTA consortium "The extreme Universe viewed in very-highenergy

More information

Dark Matter Dominated Objects. Louie Strigari Stanford

Dark Matter Dominated Objects. Louie Strigari Stanford Dark Matter Dominated Objects Louie Strigari Stanford Milky Way Circa 2009 Satellite Year Discovered LMC 1519 SMC 1519 Sculptor 1937 Fornax 1938 Leo II 1950 Leo I 1950 Ursa Minor 1954 Draco 1954 Carina

More information

Active Galaxies. Lecture Topics. Lecture 24. Active Galaxies. Potential exam topics. What powers these things? Lec. 24: Active Galaxies

Active Galaxies. Lecture Topics. Lecture 24. Active Galaxies. Potential exam topics. What powers these things? Lec. 24: Active Galaxies Active Galaxies Lecture 24 APOD: M82 (The Cigar Galaxy) 1 Lecture Topics Active Galaxies What powers these things? Potential exam topics 2 24-1 Active Galaxies Galaxies Luminosity (L MW *) Normal < 10

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Three Major Components

Three Major Components The Milky Way Three Major Components Bulge young and old stars Disk young stars located in spiral arms Halo oldest stars and globular clusters Components are chemically, kinematically, and spatially distinct

More information

arxiv: v2 [astro-ph.co] 7 Jul 2014

arxiv: v2 [astro-ph.co] 7 Jul 2014 Mon. Not. R. Astron. Soc. 000, 1 6 (2014) Printed 31 October 2018 (MN LATEX style file v2.2) Near-field limits on the role of faint galaxies in cosmic reionization Michael Boylan-Kolchin, 1 James S. Bullock,

More information

Simulations of Cosmic Structure Formation

Simulations of Cosmic Structure Formation Simulations of Cosmic Structure Formation Volker Springel The role of simulations in cosmology High-resolution N-body simulations Millennium XXL Hydrodynamic simulations and recent results for galaxy formation

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 14 The Milky Way Galaxy Lecture Presentation 14.0 the Milky Way galaxy How do we know the Milky Way exists? We can see it even though

More information

Part 2. Hot gas halos and SMBHs in optically faint ellipticals. Part 3. After Chandra?

Part 2. Hot gas halos and SMBHs in optically faint ellipticals. Part 3. After Chandra? Hot gas and AGN Feedback in Nearby Groups and Galaxies Part 1. Cool cores and outbursts from supermassive black holes in clusters, groups and normal galaxies Part 2. Hot gas halos and SMBHs in optically

More information

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 24 Astronomy Today 8th Edition Chaisson/McMillan Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble

More information

Exploring galactic environments with AMR simulations on Blue Waters

Exploring galactic environments with AMR simulations on Blue Waters Exploring galactic environments with AMR simulations on Blue Waters Brian O Shea (MSU; PI), on behalf of: David Collins (FSU; co-pi) Lauren Corlies (STScI) Cameron Hummels (CalTech) Claire Kopenhofer (MSU)

More information

Today. When does a star leave the main sequence?

Today. When does a star leave the main sequence? ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 13 Tues 27 Feb 07 zeus.colorado.edu/astr1040-toomre toomre Crab Nebula -- Supernova Remnant Today Recall that C-N-O

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

M31 - Andromeda Galaxy M110 M32

M31 - Andromeda Galaxy M110 M32 UNIT 4 - Galaxies XIV. The Milky Way galaxy - a huge collection of millions or billions of stars, gas, and dust, isolated in space and held together by its own gravity M110 M31 - Andromeda Galaxy A. Structure

More information

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS. Skills Worksheet Directed Reading A Section: The Life Cycle of Stars TYPES OF STARS (pp. 444 449) 1. Besides by mass, size, brightness, color, temperature, and composition, how are stars classified? a.

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

Metal Enrichment of the Circum- Galactic Medium around Massive Galaxies at Redshift 3

Metal Enrichment of the Circum- Galactic Medium around Massive Galaxies at Redshift 3 Metal Enrichment of the Circum- Galactic Medium around Massive Galaxies at Redshift 3 Sijing Shen (UCSC) Santa Cruz Galaxy Workshop August 2011 In collaboration with: Javiera Guedes (ETH), Piero Madau

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Mia S. Bovill with Massimo Ricotti University of Maryland The Smallest Galaxies Minihalos DO NOT initiate gas condensation

More information

Angular Momentum Acquisition in Galaxy Halos

Angular Momentum Acquisition in Galaxy Halos Angular Momentum Acquisition in Galaxy Halos Kyle Stewart NASA Postdoctoral Fellow Jet Propulsion Laboratory, California Institute of Technology Mentor: Leonidas Moustakas The Baryon Cycle, UC Irvine,

More information