Optical Spectrometers

Size: px
Start display at page:

Download "Optical Spectrometers"

Transcription

1 Optical Spectrometers Prism Spectrometers Grating Spectrometers Interferential Spectrometers Hyperspectral Spectrometers Credit: Experimental Methods in Physics [ ] EPFL - SB - ICMP - IPEQ CH Lausanne IPEQ - ICMP - SB - EPFL Station 3 CH LAUSANNE

2 Optical spectroscopy light source sample light analyzer light detector 2

3 Content Optical spectroscopy Resolvance (resolving power) Luminosity Prism spectrometer Grating spectrometer Interferential spectrometer Fourier spectrometer Hyperspectral spectrometer 3

4 Optical spectroscopy Definition The emission spectrum of a source, primary or secondary, is characterized by its luminance L ( ). The absorption spectrum is characterized by the absorption factor A ( ). The role of dispersive devices (prism, grating, interferential) is to determine the functions A ( ) and L ( ) with the greatest precision. 4

5 Optical spectroscopy Keep in mind that the important physical parameter is... the frequency,,... even if we measure the wavelength! in the vacuum: λ v = c υ in a medium of index n: λ n = c n υ 5

6 Optical spectroscopy λ v λ n = (n 1) λ v Often in the air, it makes no difference between n and v In fact, in the visible range, the error is not negligible (1-2 Å) 6

7 Dispersive apparatus General properties F: entrance slit C: collimator (objective, mirror, ) D: dispersive element (prism, grating, ) O: objective (mirror) P: image plane (photodetector, CCD, ) 7

8 Dispersive apparatus Figures of merit Resolving power or resolvance R = λ Δλ Luminosity L = E M L s 8

9 Resolvance Ideal case: punctual source (eventually slit) The size of the image, in the plane P, is limited by the diffraction... this is the projection of the contour of the dispersive element in a plane which is perpendicular to a direction that follows the dispersion that is important for calculating the size of the image. 9

10 Resolvance Ideal case: incoherent punctual source D(x) = sin(π x /d ) o ( π x /d ) o 2 d o = f λ w g '' 10

11 Resolvance Rayleigh criterium: Ideal case: 2 punctual sources emitting at two different wavelengths ( and [ + ]) We consider that both wavelengths, and [ + ] are resolved if the centers of their diffraction pattern are separated by at least d 0 11

12 Resolvance 12

13 Resolvance R o = λ Δλ = w '' g dβ dλ The intrinsic resolvance of the system is limited by the size of the dispersive element (or rather by it s projection.), i.e. by the diffraction 13

14 Resolvance Influence of the width of the entrance slit 14

15 Resolvance Influence of the width of the entrance slit E(x) = F(ζ ) D(x ζ)dζ E = F D where F is the function "slit", and D(x) the diffracted intensity in the image plane, of an infinitely thin slit. 15

16 Resolvance Influence of the entrance slit width 16

17 Luminosity versus resolvance Luminosity versus resolvance - a compromise 17

18 Monochromator or spectrometer? Dispersive instruments. prism. grating. interferential Monochromator Monochromator + detector Bandpass filter - monochromator Spectroscope Spectrometer Spectrograph Monochromatic light source Spectral signature 18

19 The prism spectrometer a I( ) S C e O I( + ) S: ponctual source C: collimator O: objectif 19

20 The prism spectrometer a Snell s law d i i1 i t1 i i2 i t2 sin(i n = i1 ) sin(i = t2 ) sin(it1 ) sin(ii2) If the angle of deviation,, is a + d sin( n = 2 ) a sin(2 ) minimum 20

21 The prism spectrometer a I( ) S C e O I( + ) the resolving power is given by: m db dn 0 = = a = e Dm dm dm 21

22 The prism spectrometer Example: To estimate the resolving power, we consider the case of a prism spectrometer working around 0.5 µm (green light). dn n 0 = e. r - n b dm mr - m b e = o abbe (n y - 1) nm? e = 25 mm Crown 3400 Fl int 0.17 nmk Dm TK0.5 nm 22

23 The prism spectrometer Advantages - low sensitivity to polarization - no overlap between different orders - uniform efficiency over the whole spectrum - heavy duty, high damage threshold - scanning and imaging modes Disadvantages - n = n( ) non-linear dependance credit: - material has to be transparent over the whole spectrum - relatively low resolving power, compared to grating instruments (for similar luminosity...) - need for costly achromatic optics - need to control several angles... 23

24 The prism spectrometer source Pellin-Broca s prism At minimum deviation angle, the angle between incident and refracted beam is precisely 90 24

25 The prism spectrometer in the NIR D D ES ED ES ES C ES C R E R S S ED E S: white light source R: reference E: sample C: chopper ES: entrance slit of the spectrometer ED: dispersive element ES: exit slit of the spectrometer D: detector 25

26 The prism spectrometer in the NIR 26

27 The prism spectrometer in the NIR I(z) Beer s law I(z) = I 0 exp(- az) 0 z Transmittance I %T = I0 $ 100 Absorbance A =-log T = log b I 0 I l 27

28 The grating spectrometer 28

29 The grating spectrometer The dispersive element is a grating instead of a prism collimator and objective are replaced by mirror optics (achromatic over a wide spectral range) imaging mode possible using an image detector (CCD or CMOS array) placed in the exit plane 29

30 Grating... intuitive feeling Huygens principle = 0 0 th order = 2π 1 st order = 4π 2 nd order 30

31 Transmission or reflection gratings? transmission grating reflection grating refractive index modulations within a thin layer of material sandwiched between two glass substrates ruled gratings holographic gratings 31

32 Grating spectrometer - basic equations Notations = incident angle = diffraction angle k = diffraction order N = total number of grooves n = grooves density [grooves/mm] = wavelength [nm] b = grating step D V = + = total deviation angle 32

33 Grating spectrometer-basic equations D V = b - a D V is fixed by the geometry k = diffraction order n = grooves density sin(a) + sin(b) = 2 $ sin b a + b 2 l $ cos b b - a 2 l = 10-6 $ k $ n $ m 33

34 Grating spectrometer-basic equations example of configuration 34

35 Grating spectrometer imaging mode The image detector is placed in a plane which is not perpendicular to the axis defined by the central wavelength (to minimize the infuence of the aberrations). 35

36 Grating spectrometer Superposition of the different orders of diffraction k $ m =cste cannot be avoided the use of blocking filter can help 36

37 Grating spectrometer angular dispersion and intrinsic resolvance m 0 0 = = '' Dm wg db dm m 0 0 = = '' wg Dm k $ n $ 10-6 = w cos b g $ k $ n = k $ N m 0 0 = = wg $ Dm sin(a) + sin(b) 10-6 $ m 37

38 Grating spectrometer blazed gratings 1st order it is possible to concentrate most of the diffracted energy in the first order for a given wavelength if = The grating equation shows that the angles of the diffracted orders only depend on the grooves' period, and not on their shape. By controlling the crosssectional profile of the grooves, it is possible to concentrate most of the diffracted energy in a particular order for a given wavelength. A triangular profile is commonly used. This technique is called blazing 38

39 Grating spectrometer blazed gratings Usually the blazed angle is defined for a Littrow configuration to be independent of the angle of total deflection (D V is imposed by the geometry of the monochromator) 39

40 Grating spectrometer blazed gratings 40

41 Grating spectrometer Ebert- Fastie design one concave mirror one planar grating slits are placed in the focal plane of the mirror advantages simple inexpensive disadvantages off-axis configuration, performances strongly limited by aberrations 41

42 Grating spectrometer Czerny - Turner 42

43 Grating spectrometer Aberration in PGS systems 43

44 Aberration in PGS spectrometer Aberration in PGS systems 44

45 Grating spectrometer Concave gratings (ACGH) 45

46 Grating spectrometer Anamorphism 46

47 Grating spectrometer Bandpass and resolution 47

48 Grating spectrometer Quasi-littrow configuration 48

49 Grating spectrometer F - value N.A. = sin X 1 f/value = 2 NA 49

50 Grating spectrometer Radiometry and spectrometry... geometry extent 50

51 Grating spectrometer One example: Jobin-Yvon HR

52 Grating spectrometer Examples: Triax Series 52

53 PF spectrometer [Fabry-Perot] 53

54 Interferential spectrometer 54

55 Iterferential spectrometer 55

56 Interferential spectrometer S = 2nd cos i E trans = E 5 inc tt + trrte -jk 0 S + trrrrte -jk 02S +...? 56

57 Interferential spectrometer avec R = r 2 et T = t 2 4R F = (1 - R) 2 c c o 0 = = S 2nd cos i I trans = I inc b ro 1 + F sin 2 o 0 l 1 57

58 Interferential spectrometer 58

59 Interferential spectrometer FWHM = r 2 sin c m. F r F = p 1 finesse o 0 = Do o 1 = $ o0 FWHM o = $ p =m $ p o0 0 F=380, = 30.6, 0 = 15 GHz, m = =

60 Interferential spectrometer 60

61 Hyperspectral spectrometer LCPF 61

62 Interferential spectrometer LCPF 62

63 Interferential spectrometer LCPF 63

64 Spectral imaging filter 64

65 Spectral imaging filter 65

66 Acousto-optic spectrometer.. AOTF Texte 66

67 Acousto-optic spectrometer.. AOTF Texte 67

68 Acousto-optic spectrometer.. AOTF Texte 68

69 Acousto-optic spectrometer.. AOTF Texte 69

70 FTIR spectrometer 70

71 FTIR spectrometer 71

72 FTIR spectrometer I o1 (x) = B(o 1 ) $ cos 2ro 1 x I o2 (x) = B(o 2 ) $ cos 2ro 2 x I (x) = I 1 (x)+ I 2 (x) 72

73 FTIR spectrometer The mesured intensity (interferogram) in fonction of the displacement, x, is given by: I(x) = 2r 1 3 # -3 B(o) $ cos(2rox)do we observe immediately that the spectral information B(V) is nothing else than the Fourier transform of the measured intensity: B(o) = 3 # -3 I(x) $ cos(2rox)dx 73

74 FTIR spectrometer 74

75 FTIR spectrometer 75

76 Hyperspectral Visual perception of colors 76

77 Hyperspectral 77

78 Hyperspectral 78

79 Hyperspectral 79

80 Hyperspectral 80

81 Hyperspectral 81

82 Hyperspectral 82

83 Hyperspectral 83

84 Hyperspectral 84

85 Hyperspectral 85

86 Minimum Deviation by a Prism i i1 a i t2 d sin(i n = i1 ) sin(i = t2 ) sin(it1 ) sin(ii2) i t1 i i2 a = i + i t1 i2 d = i + i -a i1 t2 arcsin n sin arcsin sin i d = i + ; $ ca- ' i1 1mE -a i1 n 86

87 Minimum deviation angle d i i1 a i t2 d i t1 i i2 n=1.5 i i1 87

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph Lecture 7: Optical Spectroscopy Outline 1 Astrophysical Spectroscopy 2 Broadband Filters 3 Fabry-Perot Filters 4 Interference Filters 5 Prism Spectrograph 6 Grating Spectrograph 7 Fourier Transform Spectrometer

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

Overview: Astronomical Spectroscopy

Overview: Astronomical Spectroscopy Overview: Astronomical Spectroscopy or How to Start Thinking Creatively about Measuring the Universe Basic Spectrograph Optics Objective Prism Spectrometers - AESoP Slit Spectrometers Spectrometers for

More information

= nm. = nm. = nm

= nm. = nm. = nm Chemistry 60 Analytical Spectroscopy PROBLEM SET 5: Due 03/0/08 1. At a recent birthday party, a young friend (elementary school) noticed that multicolored rings form across the surface of soap bubbles.

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Oxford Physics: Second Year, Optics Parallel reflecting surfaces t images source Extended source path difference xcos 2t=x Fringes localized at infinity Circular fringe constant

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating Where are the Fringes? (in a real system) Fringe Localisation Double Slit spatial modulation transverse fringes? everywhere or well localised? affected by source properties: coherence, extension Plane

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Overview of Spectroscopy

Overview of Spectroscopy Overview of Spectroscopy A. Definition: Interaction of EM Radiation with Matter We see objects because they remit some part of the light falling on them from a source. We function as reflection/ transmission

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

δ(y 2an) t 1 (x y)dy, that is multiplied by the global aperture function of the size of the grating H(x) = 1 x < Na = 0 x > Na.

δ(y 2an) t 1 (x y)dy, that is multiplied by the global aperture function of the size of the grating H(x) = 1 x < Na = 0 x > Na. 10 Spectroscopy Practical telescopes are usually based upon one or other of two quite separate optical principles interference and differential refraction. In reality, the author has never seen a prism

More information

High-Resolution Imagers

High-Resolution Imagers 40 Telescopes and Imagers High-Resolution Imagers High-resolution imagers look at very small fields of view with diffraction-limited angular resolution. As the field is small, intrinsic aberrations are

More information

NEON Archive School 2006

NEON Archive School 2006 NEON Archive School 2006 Introduction to Spectroscopic Techniques (low dispersion) M. Dennefeld (IAP-Paris) Outline Basic optics of gratings and spectrographs (with emphasis on long-slit spectroscopy)

More information

Astronomical Techniques

Astronomical Techniques Astronomical Techniques Spectrographs & Spectroscopy Spectroscopy What is spectroscopy? A little history. What can we learn from spectroscopy? Play with simple spectrographs. Basic optics of a spectrograph.

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Diffraction gratings. B.Tech-I

Diffraction gratings. B.Tech-I Diffraction gratings B.Tech-I Introduction Diffraction grating can be understood as an optical unit that separates polychromatic light into constant monochromatic composition. Uses are tabulated below

More information

September 14, Monday 4. Tools for Solar Observations-II

September 14, Monday 4. Tools for Solar Observations-II September 14, Monday 4. Tools for Solar Observations-II Spectrographs. Measurements of the line shift. Spectrograph Most solar spectrographs use reflection gratings. a(sinα+sinβ) grating constant Blazed

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is Optical Spectroscopy Lennon O Naraigh, 0000 Date of Submission: 0 th May 004 Abstract: This experiment is an exercise in the principles and practice of optical spectroscopy. The continuous emission spectrum

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

Spectroscopic studies of impurities in the LHD plasmas

Spectroscopic studies of impurities in the LHD plasmas Spectroscopic studies of impurities in the LHD plasmas Visitor: Zhenwei Wu (the institute of plasma physics, CAS -ASIPP) Host: Shigeru Morita (the national institute for fusion science -NIFS) Content 1.

More information

OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July Greg Elliott, University of Puget Sound

OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July Greg Elliott, University of Puget Sound OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July 5-7 Greg Elliott, University of Puget Sound The Zeeman effect offers a striking visual demonstration of a quantum

More information

Spectroscopy. Experimental Optics. Contact: Lisa Kaden Malte Siems

Spectroscopy. Experimental Optics. Contact: Lisa Kaden Malte Siems Experimental Optics Contact: Lisa Kaden (lisa.kaden@uni-jena.de) Malte Siems (malte-per.siems@uni-jena.de) Last edition: Ulrike Blumenröder, January 2017 Spectroscopy Contents 1 Introduction 3 2 Theoretical

More information

Astro 500 A500/L-15 1

Astro 500 A500/L-15 1 Astro 500 A500/L-15 1 Lecture Outline Spectroscopy from a 3D Perspective ü Basics of spectroscopy and spectrographs ü Fundamental challenges of sampling the data cube Approaches and example of available

More information

ASTR 511/O Connell Lec 8 1 UVOIR SPECTROSCOPY. High resolution, optical band solar spectrum

ASTR 511/O Connell Lec 8 1 UVOIR SPECTROSCOPY. High resolution, optical band solar spectrum ASTR 511/O Connell Lec 8 1 UVOIR SPECTROSCOPY High resolution, optical band solar spectrum ASTR 511/O Connell Lec 8 2 SPECTROSCOPY: INTRODUCTION Spectral analysis is the source of most of our astrophysical

More information

CHAPTER 2. Preliminaries A Review of Optical Physics

CHAPTER 2. Preliminaries A Review of Optical Physics CHAPTER 2 Preliminaries A Review of Optical Physics 1.1 Introduction The concentration of metal species in a variety of sample matrices has frequently been measured by observing an atom s interaction with

More information

University of Cyprus. Reflectance and Diffuse Spectroscopy

University of Cyprus. Reflectance and Diffuse Spectroscopy University of Cyprus Biomedical Imaging and Applied Optics Reflectance and Diffuse Spectroscopy Spectroscopy What is it? from the Greek: spectro = color + scope = look at or observe = measuring/recording

More information

The GMT Consortium Large Earth Finder. Sagi Ben-Ami Smithsonian Astrophysical Observatory

The GMT Consortium Large Earth Finder. Sagi Ben-Ami Smithsonian Astrophysical Observatory The GMT Consortium Large Earth Finder Sagi Ben-Ami Smithsonian Astrophysical Observatory The Giant Magellan Telescope The GMT is one of the three next generation optical telescope. Segmented Gregorian

More information

These notes may contain copyrighted material! They are for your own use only during this course.

These notes may contain copyrighted material! They are for your own use only during this course. Licensed for Personal Use Only DO NOT DISTRIBUTE These notes may contain copyrighted material! They are for your own use only during this course. Distributing them in anyway will be considered a breach

More information

Spectroscopy. 1. Introduction

Spectroscopy. 1. Introduction Spectroscopy 1. Introduction Spectrometers divide the light centered at wavelength λ into narrow spectral ranges, Δλ; if the resolution R = λ/δλ > 10, the goals of the observation are generally different

More information

Spectroscopy. Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 25 July 2018

Spectroscopy. Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 25 July 2018 Spectroscopy Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 25 July 2018 Observational Astronomy What? Astronomy gathers the vast majority of its information from the LIGHT emitted by astrophysical

More information

25 Instruments for Optical Spectrometry

25 Instruments for Optical Spectrometry 25 Instruments for Optical Spectrometry 25A INSTRUMENT COMPONENTS (1) source of radiant energy (2) wavelength selector (3) sample container (4) detector (5) signal processor and readout (a) (b) (c) Fig.

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions Ph.D. Dissertation Defense September 5, 2012 Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions David C. Clark Digital Holography

More information

Interference. Part-2. Gambar: Museum Victoria Australia

Interference. Part-2. Gambar: Museum Victoria Australia Interference Part-2 Gambar: Museum Victoria Australia Amplitude Splitting Interferometer S 2. Michelson Interferometer The principle: amplitude splitting d HM D F B M1 Detector C M1 E Interference at F

More information

Observational methods for astrophysics. Pierre Hily-Blant

Observational methods for astrophysics. Pierre Hily-Blant Observational methods for astrophysics Pierre Hily-Blant IPAG pierre.hily-blant@univ-grenoble-alpes.fr, OSUG-D/306 2016-17 P. Hily-Blant (Master2 APP) Observational methods 2016-17 1 / 323 VI Spectroscopy

More information

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages ) Spectroscopy: Introduction Required reading Chapter 18 (pages 378-397) Chapter 20 (pages 424-449) Spectrophotometry is any procedure that uses light to measure chemical concentrations Properties of Light

More information

Optical/IR Observational Astronomy Spectroscopy. David Buckley, SALT

Optical/IR Observational Astronomy Spectroscopy. David Buckley, SALT David Buckley, SALT 1 Background is really just monochromatic photometry History 1637 Descartes explained the origin of the rainbow. 1666 Newton s classic experiments on the nature of colour. 1752 Melvil

More information

Pre-lab Quiz/PHYS 224. Your name Lab section

Pre-lab Quiz/PHYS 224. Your name Lab section Pre-lab Quiz/PHYS 224 THE DIFFRACTION GRATING AND THE OPTICAL SPECTRUM Your name Lab section 1. What are the goals of this experiment? 2. If the period of a diffraction grating is d = 1,000 nm, where the

More information

Spectroscopy. Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 26 July 2017

Spectroscopy. Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 26 July 2017 Spectroscopy Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 26 July 2017 Spectroscopy: What is it? How Bright? (our favorite question): Versus position on the sky Versus wavelength/energy

More information

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Course Details September 22 October 10 September 22 November 7 November 17 December 1 Topic Period Introduction to Spectrometric

More information

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee Module-04 Lecture-02 Diffraction Part - 02 In the previous lecture I discussed single slit and double

More information

COLORIMETER AND LAMBERT S-BEER S LAW. Shingala vaishali Sandha prafulla Tiwari Kuldeep

COLORIMETER AND LAMBERT S-BEER S LAW. Shingala vaishali Sandha prafulla Tiwari Kuldeep COLORIMETER AND LAMBERT S-BEER S LAW Shingala vaishali Sandha prafulla Tiwari Kuldeep TOPIC What is colorimeter? Use of colorimeter. Component & It s function. Function of colorimeter. The principle of

More information

EXPERIMENT 5:Determination of the refractive index (µ) of the material of a prism using sprectometer

EXPERIMENT 5:Determination of the refractive index (µ) of the material of a prism using sprectometer EXPERIMENT 5:Determination of the refractive index (µ) of the material of a prism using sprectometer Debangshu Mukherjee B.Sc Physics,1st year Chennai Mathematical Institute 17.10.008 1 Aim of Experiment

More information

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched Introduction p. xvii Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched String p. 16 Velocities of Mechanical

More information

Introduction to FT-IR Spectroscopy

Introduction to FT-IR Spectroscopy Introduction to FT-IR Spectroscopy An FT-IR Spectrometer is an instrument which acquires broadband NIR to FIR spectra. Unlike a dispersive instrument, i.e. grating monochromator or spectrograph, an FT-IR

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE426F Optical Engineering Final Exam Dec. 17, 2003 Exam Type: D (Close-book + one 2-sided aid sheet + a non-programmable calculator)

More information

Advanced Spectroscopy Laboratory

Advanced Spectroscopy Laboratory Advanced Spectroscopy Laboratory - Raman Spectroscopy - Emission Spectroscopy - Absorption Spectroscopy - Raman Microscopy - Hyperspectral Imaging Spectroscopy FERGIELAB TM Raman Spectroscopy Absorption

More information

Introduction to Spectroscopic Techniques (low dispersion) M. Dennefeld (IAP-Paris) NEON school June 2008 La Palma

Introduction to Spectroscopic Techniques (low dispersion) M. Dennefeld (IAP-Paris) NEON school June 2008 La Palma NEON Observing School 2008 Introduction to Spectroscopic Techniques (low dispersion) (IAP-Paris) Outline Basic optics of gratings and spectrographs (with emphasis on long-slit spectroscopy) Observing steps,

More information

Telescopes: Portals of Discovery

Telescopes: Portals of Discovery Telescopes: Portals of Discovery How do light and matter interact? Emission Absorption Transmission Transparent objects transmit light Opaque objects block (absorb) light Reflection or Scattering Reflection

More information

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc.

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc. Chapter 35 Diffraction and Polarization 35-1 Diffraction by a Single Slit or Disk If light is a wave, it will diffract around a single slit or obstacle. 35-1 Diffraction by a Single Slit or Disk The resulting

More information

Characterisation & Use of Array Spectrometers

Characterisation & Use of Array Spectrometers Characterisation & Use of Array Spectrometers Mike Shaw, Optical Technologies & Scientific Computing Team, National Physical Laboratory, Teddington Middlesex, UK 1 Overview Basic design and features of

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

Two-electron systems

Two-electron systems Two-electron systems Laboratory exercise for FYSC11 Instructor: Hampus Nilsson hampus.nilsson@astro.lu.se Lund Observatory Lund University September 12, 2016 Goal In this laboration we will make use of

More information

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017 Lecture 7: Real Telescopes & Cameras Stephen Eikenberry 05 October 2017 Real Telescopes Research observatories no longer build Newtonian or Parabolic telescopes for optical/ir astronomy Aberrations from

More information

Diagnósticos em Plasmas

Diagnósticos em Plasmas Tecnologia a Plasma para o Processamento de Materiais Diagnósticos em Plasmas Diagnósticos Ópticos João Santos Sousa, nº50901 Semestre Inverno 2004/2005 21 de Janeiro de 2005, 9h-10h, sala F8 Contents

More information

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus Chapter 4 Dispersion of Glass 4.1 Introduction This experiment will develop skills in choosing a suitable fit for data and plotting the resulting curve. Curve fitting will count for a big chunk of the

More information

Optical Telescopes. Telescopes. Refracting/Reflecting Telescopes. Physics 113 Goderya

Optical Telescopes. Telescopes. Refracting/Reflecting Telescopes. Physics 113 Goderya Telescopes Physics 113 Goderya Chapter(s): 6 Learning Outcomes: Optical Telescopes Astronomers use telescopes to gather more light from astronomical objects. The larger the telescope, the more light it

More information

Use of a High-Resolution Overview Spectrometer for the Visible Range in the TEXTOR Boundary Plasma

Use of a High-Resolution Overview Spectrometer for the Visible Range in the TEXTOR Boundary Plasma Use of a High-Resolution Overview Spectrometer for the Visible Range in the TEXTOR Boundary Plasma Sebastijan BREZINSEK, Albrecht POSPIESZCZYK, Gennadij SERGIENKO, Philippe MERTENS and Ulrich SAMM Institut

More information

Wavelength Frequency Measurements

Wavelength Frequency Measurements Wavelength Frequency Measurements Frequency: - unit to be measured most accurately in physics - frequency counters + frequency combs (gear wheels) - clocks for time-frequency Wavelength: - no longer fashionable

More information

Spectral Calibration of Ultra- High Resolution Volume Holographic Spectrometer. Jeff Bourne Majid Badiei (Advisor)

Spectral Calibration of Ultra- High Resolution Volume Holographic Spectrometer. Jeff Bourne Majid Badiei (Advisor) Spectral Calibration of Ultra- High Resolution Volume Holographic Spectrometer Jeff Bourne Majid Badiei (Advisor) What is a spectrometer? Any device that converts different input wavelengths into different

More information

Fourier transform spectroscopy: an introduction. David Naylor University of Lethbridge

Fourier transform spectroscopy: an introduction. David Naylor University of Lethbridge Fourier transform spectroscopy: an introduction David Naylor University of Lethbridge Outline History Ideal vs real FTS Pros/cons Extension to ifts Examples: Sitelle, SPIRE, Safari Michelson s original

More information

Optical Systems Program of Studies Version 1.0 April 2012

Optical Systems Program of Studies Version 1.0 April 2012 Optical Systems Program of Studies Version 1.0 April 2012 Standard1 Essential Understand Optical experimental methodology, data analysis, interpretation, and presentation strategies Essential Understandings:

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

1. Interference condition. 2. Dispersion A B. As shown in Figure 1, the path difference between interfering rays AB and A B is a(sin

1. Interference condition. 2. Dispersion A B. As shown in Figure 1, the path difference between interfering rays AB and A B is a(sin asic equations or astronomical spectroscopy with a diraction grating Jeremy Allington-Smith, University o Durham, 3 Feb 000 (Copyright Jeremy Allington-Smith, 000). Intererence condition As shown in Figure,

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

Laboratory #29: Spectrometer

Laboratory #29: Spectrometer INDIANA UNIVERSITY, DEPARTMENT OF PHYSICS, P309 LABORATORY Laboratory #29: Spectrometer Goal: Learn to adjust an optical spectrometer, use a transmission grating to measure known spectral lines of mercury,

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS Astronomical Optics Second Edition DANIEL J. SCHROEDER Professor of Physics and Astronomy, Emeritus Department of Physics and Astronomy Beloit College, Beloit, Wisconsin ACADEMIC PRESS A Harcourt Science

More information

AGA5802 Spectroscopy II Prism Gratings Applications

AGA5802 Spectroscopy II Prism Gratings Applications AGA5802 Spectroscopy II Prism Gratings Applications Bibliography: To Measure the Sky, Kitchin, Lena and others... Prof. Jorge Meléndez 1 Slit Basic components of the Spectrograph Prism or grating Roy &

More information

Spectrophotometry. Introduction

Spectrophotometry. Introduction Spectrophotometry Spectrophotometry is a method to measure how much a chemical substance absorbs light by measuring the intensity of light as a beam of light passes through sample solution. The basic principle

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia Optical/NIR Spectroscopy A3130 John Wilson Univ of Virginia Topics: Photometry is low resolution spectroscopy Uses of spectroscopy in astronomy Data cubes and dimensionality challenge Spectrograph design

More information

Phys102 Lecture Diffraction of Light

Phys102 Lecture Diffraction of Light Phys102 Lecture 31-33 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution Diffraction Grating and Spectroscopy Polarization References

More information

Astr 2310 Thurs. March 3, 2016 Today s Topics

Astr 2310 Thurs. March 3, 2016 Today s Topics Astr 2310 Thurs. March 3, 2016 Today s Topics Chapter 6: Telescopes and Detectors Optical Telescopes Simple Optics and Image Formation Resolution and Magnification Invisible Astronomy Ground-based Radio

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 1: Atomic Spectroscopy Text: Chapter 12,13 & 14 Rouessac (~2 weeks) 1.0 Review basic concepts in Spectroscopy 2.0 Atomic Absorption and Graphite Furnace Instruments 3.0 Inductively Coupled Plasmas

More information

Optics and Telescopes

Optics and Telescopes Optics and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

More information

FUV Grating Performance for the Cosmic Origins Spectrograph

FUV Grating Performance for the Cosmic Origins Spectrograph FUV Grating Performance for the Cosmic Origins Spectrograph Steve Osterman a, Erik Wilkinson a, James C. Green a, Kevin Redman b a Center for Astrophysics and Space Astronomy, University of Colorado, Campus

More information

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Name Section Return this spreadsheet to your TA that will use it to score your lab. To receive full credit you must use complete sentences and

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

Instrumental Analysis: Spectrophotometric Methods

Instrumental Analysis: Spectrophotometric Methods Instrumental Analysis: Spectrophotometric Methods 2007 By the end of this part of the course, you should be able to: Understand interaction between light and matter (absorbance, excitation, emission, luminescence,fluorescence,

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Chapter 35 Diffraction and Polarization

Chapter 35 Diffraction and Polarization Chapter 35 Diffraction and Polarization If light is a wave, it will diffract around a single slit or obstacle. The resulting pattern of light and dark stripes is called a diffraction pattern. This pattern

More information

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization François Hénault Institut de Planétologie et d Astrophysique de Grenoble Université Joseph Fourier Centre National

More information

Ultraviolet/ Visible Absorption Spectroscopy

Ultraviolet/ Visible Absorption Spectroscopy CHEM*3440 Ultraviolet/ Visible Absorption Spectroscopy Widely used in Chemistry. Perhaps the most widely used in Biological Chemistry. Easy to do. Very easy to do wrong. Understand your experiment. CHEM

More information

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using 4. Dispersion In this lab we will explore how the index of refraction of a material depends on the of the incident light. We first study the phenomenon of minimum deviation of a prism. We then measure

More information

Zeeman effect. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg. 22nd May 2006

Zeeman effect. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg. 22nd May 2006 Zeeman effect Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 22nd May 2006 Introduction The most important experimental technique triggering the development of the modern atomic theory

More information

EXPERIMENT 12 THE WAVELENGTH OF LIGHT; THE DIFFRACTION GRATING

EXPERIMENT 12 THE WAVELENGTH OF LIGHT; THE DIFFRACTION GRATING EXPERIMENT 12 THE WAVELENGTH OF LIGHT; THE DIFFRACTION GRATING INTRODUCTION: One of the most fascinating chapters in the history of physics has been the search for an understanding of the true nature of

More information

Chem 310 rd. 3 Homework Set Answers

Chem 310 rd. 3 Homework Set Answers -1- Chem 310 rd 3 Homework Set Answers 1. A double line labeled S 0 represents the _ground electronic_ state and the _ground vibrational_ state of a molecule in an excitation state diagram. Light absorption

More information

Interferometers. PART 1: Michelson Interferometer The Michelson interferometer is one of the most useful of all optical instru

Interferometers. PART 1: Michelson Interferometer The Michelson interferometer is one of the most useful of all optical instru Interferometers EP421 Lab Interferometers Introduction: Interferometers are the key to accurate distance measurement using optics. Historically, when mechanical measurements dominated, interferometers

More information

GRATING CLASSIFICATION

GRATING CLASSIFICATION GRATING CLASSIFICATION SURFACE-RELIEF GRATING TYPES GRATING CLASSIFICATION Transmission or Reflection Classification based on Regime DIFFRACTION BY GRATINGS Acousto-Optics Diffractive Optics Integrated

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Birefringence dispersion in a quartz crystal retrieved from a channelled spectrum resolved by a fibre-optic spectrometer

Birefringence dispersion in a quartz crystal retrieved from a channelled spectrum resolved by a fibre-optic spectrometer Birefringence dispersion in a quartz crystal retrieved from a channelled spectrum resolved by a fibre-optic spectrometer Petr Hlubina, Dalibor Ciprian Department of Physics, Technical University Ostrava,

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

2.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 2009

2.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 009 Problem 1: Grating with tilted plane wave illumination 1. a) In this problem, one dimensional

More information