Laboratory #29: Spectrometer

Size: px
Start display at page:

Download "Laboratory #29: Spectrometer"

Transcription

1 INDIANA UNIVERSITY, DEPARTMENT OF PHYSICS, P309 LABORATORY Laboratory #29: Spectrometer Goal: Learn to adjust an optical spectrometer, use a transmission grating to measure known spectral lines of mercury, calibrate the grating spacing a. Measure the unknown lines of hydrogen, compare with the Balmer formula. Determine the index of refraction and the dispersion of a prism. Equipment: Spectrometer, grating, prism, and spectral discharge tubes. A. Getting to know the spectrometer, adjustment procedure A.. Principle The spectrometer consists of o light source, an telescope adjustable slit, and the collimator that produces a collimator parallel beam of light. This beam interacts with the grating or the prism that is mounted on the stage stage. The outgoing beam is observed with the telescope. The telescope rotates around a vertical axis; its angle can be read with a precision of 30 (arc seconds). A.2. Adjustment of the instrument Before you start any measurement, you need to adjust the instrument. Follow all steps in Appendix: Spectrometer Adjustment., and make sure that you understand the possible adjustments and the criteria that are used to make them. B. Calibration of the transmission diffraction grating Refresh your knowledge of diffraction on a grating: why does a grating disperse light into its spectral components? (See any textbook on introductory physics or on optics, e.g., [HEC02]). For a transmission grating at normal incidence, the deflection angle θ and wavelength λ are related by the equation m λ = a sinθ, () where a is the grating spacing and m is an integer, called the order (thus, each line in a spectrum makes multiple appearances for m =,2 etc.). The deflection angle is obtained from the current telescope angle minus the reference angle θ 0. The wavelengths of the four most prominent lines in mercury are listed in table. Measure, as accurately as possible, these lines in the st and 2 nd order diffraction spectrum, both on the left and the right of the collimator axis. Deduce the grating line separation, a i, from each of these 6 measurements. Obtain the grating spacing a and its error. 29 -

2 Color Purple Green Yellow Yellow 2 Wavelength nm nm nm nm Table : the four most intense, visible lines in the mercury spectrum. Listed are the wavelengths in dry air. C. The Balmer series in hydrogen The Bohr model predicts that the electron in the hydrogen atom exists in discrete energy states (see, e.g., [PRE9]). Since the electron is bound, these states have negative energy: n E n = hcr. (2) 2 Here, R = m - is called the Rydberg constant and n is the quantum number of the level. The lowest energy, E = -3.6 ev, corresponds to the ground state. Spectral lines correspond to transitions between these energy levels. The energy of a photon is given by E=hf, where f is the frequency of the radiation. The speed of light is related to frequency and wavelength λ by c=fλ. Thus, the wavelength is given by (/λ)=e/hc. With this, we find for the wavelength of a transition from level n i to level n f λ if = R 2 2 n f ni. (3) The lines in the hydrogen spectrum form groups, depending on the final level. The group with n f =, n i =2,3, is called the Lyman series, and the one with n f =3 the Paschen series. Here, we are concerned with transitions with n f =2, n i =3,4,, called the Balmer series. These transitions lead to radiation in the visible part of the spectrum. Mount the hydrogen spectral lamp in front of the collimator. Measure the deflection angles for all visible lines and deduce their wavelengths (with their errors). Plot (/λ i2 ) against (¼ /n i 2 ), starting with n i =3 (see eq.3). Fit a straight line through your data and determine the value of the Rydberg constant. D. Index of refraction of a prism Remove the diffraction grating and mount the equilateral triangle prism on the stage. Unlock the ring {3.} and raise the stage until the midplane of the prism is at beam height. Lock ring {3.}. Repeat step 4 of the adjustment procedure (see Appendix) to level the stage. The following measurements require the knowledge of the diffracting angle α of the prism. We can use the spectrometer to measure this angle. To this aim, place the prism on the stage, with its diffracting edge at the center of the stage. Then determine the angles Θ L and Θ R at which the image of the slit is reflected from the faces of the prism. The difference Θ L Θ R is twice the diffracting angle α. Θ L α Θ R 29-2

3 α α δ R δ L To study diffraction by the prism, shift the prism such that its center is at the center of the stage. Use the mercury spectral lamp. Observe the deflection angle δ for the green line. Rotate the stage until the deflection angle is a minimum. This corresponds to symmetric beam traversal (the angles at the entrance and exit faces of the prism are the same). In this case, the index of refraction n(λ) is given by sin ( α + δ ( λ)) 2 n ( λ) = (4) sin α 2 Carry out a measurement on both sides of the collimator axis: the deflection angle δ is then half the difference δ L δ R. Repeat this procedure for all visible lines in the mercury and hydrogen spectra, as well as for the yellow line in the helium spectrum. Make a plot of n(λ) versus λ. The dispersive power of a material is usually expressed in terms of the Abbė number V d. This number can be obtained from a measurement of the index of refraction at three different wavelengths. V d n = n F. (4) n The subscripts refer to prominent spectral lines. These lines are among the so-called Fraunhofer lines (see table 2). d C Fraunhofer name λ (nm) color origin element d yellow He F blue H C red H Table 2: wavelengths of some Fraunhofer lines E. References [PRE9] D.W. Preston and E.R. Dietz, The Art of Experimental Physics, John Wiley, New York 99. [HEC02] E. Hecht, Optics, Addison-Wesley, San Francisco, 2002 table 3: colors in the visible spectrum Color: violet blue green yellow orange red Wavelength (nm) :

4 Appendix: Spectrometer Adjustment. The first goal is to set up a parallel beam through the instrument. Refer to fig., Spectrometer Adjustments. To receive a parallel beam the telescope must be focused to infinity. Open a window to view a distant object. Release lock screw {.4} and focus the telescope to infinity with knurled ring {.3}. Turning the eyepiece assembly until the cross hairs are vertical. Re-lock screw {.4}. Focus the cross hairs with ring {.5}. To test for parallax move your eye sideways: the cross hairs should not move relative to the distant object. 2. Aim the telescope into the collimator {2}. Place a lamp in front of the slit {2.5} and close the slit jaws almost completely with screw {2.}. You should see a narrow vertical line. Release lock screw {2.4} and slide and rotate the slit assembly {2.5} until it is in focus and aligned with the vertical cross hair. Tighten screw {2.4}. The slit is now at the focal point of the collimator lens. Align the slit image with the center cross hair. a b Next we level telescope, collimator and stage. The figure on the left shows the stage seen from above with the three leveling screws {3.3}. Place the auto-collimation mirror (ACM, transparent glass plate) in position a on the stage. Release (counterclockwise) the ring {3.}, which locks the stage post. Slide the stage vertically until the center of the ACM is at the same height as the telescope axis. Re-tighten ring {3.}. Center the ACM on the stage Turn on the power to the telescope (switch {4.}). This illuminates the little cross that protrudes from the left into the field of view of the telescope. This cross is projected out of the telescope. When it is reflected from a plane that is normal to the telescope axis, it produces an image that appears at the secondary cross hair on the right (see figure on the right). Unlock the stage rotation (screw {3.4}) and the telescope leveling (screw {.2}). Rotate the stage until you see the cross image. Rotate the stage by 80 o until you see Slit image cross image the cross image again. If the two images are not at the same height, adjust the two leveling screws {3.3} on the right in the figure above. If the two images are not centered horizontally, adjust {.} to level the telescope. Repeat until the cross image appears at the right cross hair in both orientations of the ACM. Rotate the ACM by 90 o to the position b. Repeat the above procedure, but this time you only need to adjust the one remaining leveling screw {3.3}. When done, lock screw {.2}. Unlock {2.3} and level the collimator with screw {2.2} until the slit image is centered up-down and fix this adjustment with screw {2.3}. Telescope and collimator are now in line. Also, this line and the plane of the stage are orthogonal to the main axis of the spectrometer. 5. Place a mercury lamp in front of the slit and adjust the lamp position sideways until the image is brightest. Place the transmission grating in the center of the stage {3}. Rotate the telescope until the slit image is aligned with the center cross hair. Rotate the stage until the reflected cross is centered at the right cross hair (see figure). Lock the stage rotation {3.4}. The grating is now perpendicular to the incident light beam (the collimator axis), as well as the telescope axis. 29-4

5 The angle of the telescope in this position is the reference angle θ 0 relative to which all subsequent measurements are taken. Read this angle carefully. Angle readings are taken as follows. 6. How to read angles: There are two ports with little covers {4.2} on opposite sides of the main body {4}. Looking down into one of them, you see two scales. The outer scale is part of a ring that goes all the way around the table from 0 to The major tick marks are 0 apart. They are separated by two minor tick marks, 20 (arc minutes) apart. The inner scale is the vernier. First, note the angle of the minor tick mark on the outer scale that is just to the right of the zero (right end) of the inner scale (say, ). Now look at the inner scale. It goes from 0 to 20 in steps of 0.5 (or 30 ). Somewhere along that scale you will see a bright line that connects it to the outer scale. Note the position of that bright line on the inner scale (say,.5 ). The present angle of the telescope is the sum of the two values ( ). 29-5

6 Fig..: Spectrometer Adjustments

Ph 3455/MSE 3255 Experiment 2: Atomic Spectra

Ph 3455/MSE 3255 Experiment 2: Atomic Spectra Ph 3455/MSE 3255 Experiment 2: Atomic Spectra Background Reading: Tipler, Llewellyn pp. 163-165 Apparatus: Spectrometer, sodium lamp, hydrogen lamp, mercury lamp, diffraction grating, watchmaker eyeglass,

More information

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Name Section Return this spreadsheet to your TA that will use it to score your lab. To receive full credit you must use complete sentences and

More information

Any first year text, sections on atomic structure, spectral lines and spectrometers

Any first year text, sections on atomic structure, spectral lines and spectrometers Physics 33 Experiment 5 Atomic Spectra References Any first year text, sections on atomic structure, spectral lines and spectrometers Any modern physics text, eg F.K. Richtmeyer, E.H. Kennard and J.N.

More information

DISPERSION OF A GLASS PRISM

DISPERSION OF A GLASS PRISM PH2 page 1 DISPERSION OF A GLASS PRISM OBJECTIVE The objective of this experiment is to analyze the emission spectrum of helium and to analyze the dispersion of a glass prism by measuring the index of

More information

THE DIFFRACTION GRATING SPECTROMETER

THE DIFFRACTION GRATING SPECTROMETER Purpose Theory THE DIFFRACTION GRATING SPECTROMETER a. To study diffraction of light using a diffraction grating spectrometer b. To measure the wavelengths of certain lines in the spectrum of the mercury

More information

The Grating Spectrometer and Atomic Spectra

The Grating Spectrometer and Atomic Spectra PHY 192 Grating Spectrometer Spring 2012 1 The Grating Spectrometer and Atomic Spectra Introduction In the previous experiment diffraction and interference were discussed and at the end a diffraction grating

More information

EXPERIMENT 12 THE GRATING SPECTROMETER AND ATOMIC SPECTRA

EXPERIMENT 12 THE GRATING SPECTROMETER AND ATOMIC SPECTRA OBJECTIVES Learn the theory of the grating spectrometer Observe the spectrum of mercury and hydrogen Measure the grating constant of a diffraction grating Measure the Rydberg Constant EXPERIMENT THE GRATING

More information

The Grating Spectrometer and Atomic Spectra

The Grating Spectrometer and Atomic Spectra PHY 192 Grating Spectrometer 1 The Grating Spectrometer and Atomic Spectra Introduction In the previous experiment diffraction and interference were discussed and at the end a diffraction grating was introduced.

More information

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Name Section This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit

More information

The Quantum Model of the Hydrogen Atom

The Quantum Model of the Hydrogen Atom Physics 109 Science 1 Experiment 1 1 The Quantum Model of the Hydrogen Atom In this experiment you will use a spectrometer to determine the wavelengths of the visible lines of atomic hydrogen. The goal

More information

Pre-lab Quiz/PHYS 224. Your name Lab section

Pre-lab Quiz/PHYS 224. Your name Lab section Pre-lab Quiz/PHYS 224 THE DIFFRACTION GRATING AND THE OPTICAL SPECTRUM Your name Lab section 1. What are the goals of this experiment? 2. If the period of a diffraction grating is d = 1,000 nm, where the

More information

Atomic Spectra. d sin θ = mλ (1)

Atomic Spectra. d sin θ = mλ (1) Atomic Spectra Objectives: To measure the wavelengths of visible light emitted by atomic hydrogen and verify that the measured wavelengths obey the empirical Rydberg formula. To observe emission spectra

More information

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 14. The Atomic Spectrum of Hydrogen

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 14. The Atomic Spectrum of Hydrogen Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 14 The Atomic Spectrum of Hydrogen 0. Pre-Laboratory Work [2 pts] 1. You will be using a diffraction grating in

More information

Atomic emission spectra experiment

Atomic emission spectra experiment Atomic emission spectra experiment Contents 1 Overview 1 2 Equipment 1 3 Measuring the grating spacing using the sodium D-lines 4 4 Measurement of hydrogen lines and the Rydberg Constant 5 5 Measurement

More information

ATOMIC SPECTRA. Objective:

ATOMIC SPECTRA. Objective: 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

PC1144 Physics IV. Atomic Spectra

PC1144 Physics IV. Atomic Spectra PC1144 Physics IV Atomic Spectra 1 Objectives Investigate how well the visible light wavelengths of hydrogen predicted by the Bohr theory agree with experimental values. Determine an experimental value

More information

HYDROGEN SPECTRUM. Figure 1 shows the energy level scheme for the hydrogen atom as calculated from equation. Figure 1 Figure 2

HYDROGEN SPECTRUM. Figure 1 shows the energy level scheme for the hydrogen atom as calculated from equation. Figure 1 Figure 2 15 Jul 04 Hydrogen.1 HYDROGEN SPECTRUM In this experiment the wavelengths of the visible emission lines of hydrogen (Balmer series) will be measured and compared to the values predicted by Bohr s quantum

More information

Rydberg constant from atomic spectra of gases

Rydberg constant from atomic spectra of gases Page 1 of 8 Rydberg constant from atomic spectra of gases Objective - Calibrating a prism spectrometer to convert the scale readings in wavelengths of spectral lines. - Observing the Balmer series of atomic

More information

EXPERIMENT 14. The Atomic Spectrum of Hydrogen

EXPERIMENT 14. The Atomic Spectrum of Hydrogen Name: Laboratory Section: Laboratory Section Date: Partners Names: Grade: Last Revised on March 18, 2003 EXPERIMENT 14 The Atomic Spectrum of Hydrogen 0. Pre-Laboratory Work [2 pts] 1. You will be using

More information

LAB 10: OPTICAL MATERIALS AND DISPERSION I

LAB 10: OPTICAL MATERIALS AND DISPERSION I OPTI 202L - Geometrical and Instrumental Optics Lab LAB 10: OPTICAL MATERIALS AND DISPERSION I 10-1 Measuring the refractive index of a material is one of the most fundamental optical measurements, and

More information

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp.

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp. ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify elements through

More information

Visible Spectrometer

Visible Spectrometer Visible Spectrometer Experiment VIS University of Florida Department of Physics PHY4803L Advanced Physics Laboratory Objective The Balmer spectral lines from a hydrogen discharge lamp are observed with

More information

The Emission Spectra of Light

The Emission Spectra of Light The Emission Spectra of Light Objectives: Theory: 1.... measured the wavelength limits of the color bands in the visible spectrum, 2.... measured the wavelengths of the emission lines of the hydrogen Balmer

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #9: Diffraction Spectroscopy Lab Writeup Due: Mon/Wed/Thu/Fri, April 30/ May 2/3/4, 2018 Background All

More information

Optics. Measuring the line spectra of inert gases and metal vapors using a prism spectrometer. LD Physics Leaflets P

Optics. Measuring the line spectra of inert gases and metal vapors using a prism spectrometer. LD Physics Leaflets P Optics Spectrometer Prism spectrometer LD Physics Leaflets P5.7.1.1 Measuring the line spectra of inert gases and metal vapors using a prism spectrometer Objects of the experiment Adjusting the prism spectrometer.

More information

Emission Spectrum of Atomic Gases. Prelab Questions

Emission Spectrum of Atomic Gases. Prelab Questions Emission Spectrum of Atomic Gases Prelab Questions Before this coming to this lab, please review your text for the physics of the spectrum of visible light and of diffraction grating spectrometer.. Which

More information

10. Wavelength measurement using prism spectroscopy

10. Wavelength measurement using prism spectroscopy Spk 0. Wavelength measurement using prism spectroscopy 0. Introduction The study of emitted spectra of electromagnetic waves by excited atoms makes for one of the most important methods to investigate

More information

EXPERIMENT 5:Determination of the refractive index (µ) of the material of a prism using sprectometer

EXPERIMENT 5:Determination of the refractive index (µ) of the material of a prism using sprectometer EXPERIMENT 5:Determination of the refractive index (µ) of the material of a prism using sprectometer Debangshu Mukherjee B.Sc Physics,1st year Chennai Mathematical Institute 17.10.008 1 Aim of Experiment

More information

Atomic spectra of one and two-electron systems

Atomic spectra of one and two-electron systems Atomic spectra of one and two-electron systems Key Words Term symbol, Selection rule, Fine structure, Atomic spectra, Sodium D-line, Hund s rules, Russell-Saunders coupling, j-j coupling, Spin-orbit coupling,

More information

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating.

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. 12. Diffraction grating OBJECT To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. INTRODUCTION: Consider a light beam transmitted through an aperture

More information

Visible Spectrometer

Visible Spectrometer Visible Spectrometer Experiment VIS University of Florida Department of Physics PHY4803L Advanced Physics Laboratory Objective The Balmer spectral lines from a hydrogen discharge lamp are observed with

More information

Experiment #5: Cauchy s Formula

Experiment #5: Cauchy s Formula Experiment #5: Cauchy s Formula Carl Adams October 14, 2011 1 Purpose This experiment is a continuation of Experiment #4. It is assumed you have an aligned spectrometer. 2 Safety/Protocol 1. The gas discharge

More information

Atomic Spectra HISTORY AND THEORY

Atomic Spectra HISTORY AND THEORY Atomic Spectra HISTORY AND THEORY When atoms of a gas are excited (by high voltage, for instance) they will give off light. Each element (in fact, each isotope) gives off a characteristic atomic spectrum,

More information

Physics 23 Fall 1998 Lab 4 - The Hydrogen Spectrum

Physics 23 Fall 1998 Lab 4 - The Hydrogen Spectrum Physics 3 Fall 998 Lab 4 - The Hydrogen Spectrum Theory In the late 800's, it was known that when a gas is excited by means of an electric discharge and the light emitted is viewed through a diffraction

More information

Physics 24, Spring 2007 Lab 2 - Complex Spectra

Physics 24, Spring 2007 Lab 2 - Complex Spectra Physics 24, Spring 2007 Lab 2 - Complex Spectra Theory The optical spectra of isolated atoms consist of discrete, unequally spaced lines. This fact could not be understood on the basis of classical atomic

More information

n(λ) = c/v(λ). Figure 1: Dispersion curves for some common optical glass types.

n(λ) = c/v(λ). Figure 1: Dispersion curves for some common optical glass types. Physics 2310 Lab 2: The Dispersion of Optical Glass Dr. Michael Pierce (Univ. of Wyoming) Based on a lab by Dr. M. Kruger (Univ. of Missouri, Kansas City) Purpose: The purpose of this lab is to introduce

More information

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus Chapter 4 Dispersion of Glass 4.1 Introduction This experiment will develop skills in choosing a suitable fit for data and plotting the resulting curve. Curve fitting will count for a big chunk of the

More information

Observation of Atomic Spectra

Observation of Atomic Spectra Observation of Atomic Spectra Introduction In this experiment you will observe and measure the wavelengths of different colors of light emitted by atoms. You will first observe light emitted from excited

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION References for Fraunhofer Diffraction 1. Jenkins and White Fundamentals of Optics. Chapters on Fraunhofer diffraction and

More information

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths.

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. DIFFRACTION GRATING OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. THEORY: The operation of the grating is depicted in Fig. 1 on page Lens

More information

Atomic Spectra. Eric Reichwein David Steinberg Department of Physics University of California, Santa Cruz. August 30, 2012

Atomic Spectra. Eric Reichwein David Steinberg Department of Physics University of California, Santa Cruz. August 30, 2012 Atomic Spectra Eric Reichwein David Steinberg Department of Physics University of California, Santa Cruz August 30, 0 Abstract To observe helium spectral lines we used a spectrometer. From a table of known

More information

LAB 12 ATOMIC SPECTRA

LAB 12 ATOMIC SPECTRA 217 Name Date Partners LAB 12 ATOMIC SPECTRA OBJECTIVES Review the quantum nature of light and how light photons are produced in atoms. Learn to use an optical spectrometer to measure light wavelengths.

More information

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s PHYS 1040 - General Physics II Lab The Balmer Series for Hydrogen Source Purpose: The purpose of this experiment is to analyze the emission of light from a hydrogen source and measure and the wavelengths

More information

Determination of Cauchy s Contants

Determination of Cauchy s Contants 8. Determination of Cauchy s Contants 8.1 Objective: To determine Cauchy s Constants using a prism and spectrometer. Apparatus: Glass prism, spectrometer and mercury vapour lamp. 8. Theory: The wavelength

More information

Using the Spectrometer

Using the Spectrometer Using the Spectrometer Introduction When an atom is stimulated it can respond by emitting a spectrum of light. The spectrum comprises discrete wavelengths whose values are characteristic of the particular

More information

Note: Common units for visible light wavelengths are the Angstrom (Å) and the nanometer (nm).

Note: Common units for visible light wavelengths are the Angstrom (Å) and the nanometer (nm). Modern Physics Laboratory Spectra and Spectrometers, Balmer Spectrum of Hydrogen In this experiment, we display continuous and discrete emission spectra and explore the use of several types of spectrometers.

More information

Atomic Spectra 1. Name Date Partners ATOMIC SPECTRA

Atomic Spectra 1. Name Date Partners ATOMIC SPECTRA Atomic Spectra 1 Name Date Partners ATOMIC SPECTRA Sodium Mercury Lithium Hydrogen Atomic line spectra are characteristic for every element. These are emission spectra (without color). OBJECTIVES Review

More information

Spectrum of Hydrogen. Physics 227 Lab

Spectrum of Hydrogen. Physics 227 Lab Introduction In today's lab you will be dealing with an area of physics called quantum mechanics. The only quantum mechanical idea that you will be using today is that electrons in an atom can exist only

More information

Experiment #4: Optical Spectrometer and the Prism Deviation

Experiment #4: Optical Spectrometer and the Prism Deviation Experiment #4: Optical Spectrometer and the Prism Deviation Carl Adams October 2, 2011 1 Purpose In the first part of this lab you will set up and become familiar with an optical spectrometer. In the second

More information

Dispersion of Glass Introduction Apparatus Theory

Dispersion of Glass Introduction Apparatus Theory Dispersion of Glass Introduction This experiment will develop skills in aligning and using a spectrometer to measure dispersion of glass, and choosing a suitable fit for data and plotting the resulting

More information

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction Introduction In this lab you will use a diffraction grating to split up light into its various colors (like a rainbow). You will assemble a spectrometer, incorporating the diffraction grating. A spectrometer

More information

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure This experiment has four parts: 1. Spectroscope Setup - Your lab

More information

Lab report 30 EXPERIMENT 4. REFRACTION OF LIGHT

Lab report 30 EXPERIMENT 4. REFRACTION OF LIGHT 30 EXPERIMENT 4. REFRACTION OF LIGHT Lab report Go to your course homepage on Sakai (Resources, Lab templates) to access the online lab report worksheet for this experiment. The worksheet has to be completed

More information

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY SPECTROSCOPY SYNOPSIS: In this lab you will eplore different types of emission spectra, calibrate a spectrometer using the spectrum of a known element, and use your calibration to identify an unknown element.

More information

Operating Instructions Spectro-Goniometer Student. 1 Functional Elements. 2 Safety Precautions. Figure 1: Spectro-Goniometer Student

Operating Instructions Spectro-Goniometer Student. 1 Functional Elements. 2 Safety Precautions. Figure 1: Spectro-Goniometer Student Operating Instructions Spectro-Goniometer Student 1 Functional Elements Figure 1: Spectro-Goniometer Student 1. Adjustable entrance slit, holding screw for slit cover 2. Lock ring fixing entrance slit

More information

Protokoll. Grundpraktikum II - Optical Spectroscopy

Protokoll. Grundpraktikum II - Optical Spectroscopy Protokoll Grundpraktikum II - Optical Spectroscopy 1 Elaboration 1.1 Optical Spectroscopy Student: Hauke Rasch, Martin Borchert Tutor: Madsen Date: 22.October2014 This experiment is about the fundamental

More information

Introduction. Procedure and Data

Introduction. Procedure and Data Introduction The spectrum is the entire range over which some measurable property of a physical system of phenomenon can vary. Systems that have spectrums include sound frequency, electromagnetic radiation

More information

EXPERIMENT 12 THE WAVELENGTH OF LIGHT; THE DIFFRACTION GRATING

EXPERIMENT 12 THE WAVELENGTH OF LIGHT; THE DIFFRACTION GRATING EXPERIMENT 12 THE WAVELENGTH OF LIGHT; THE DIFFRACTION GRATING INTRODUCTION: One of the most fascinating chapters in the history of physics has been the search for an understanding of the true nature of

More information

Experiment 7: Spectrum of the Hydrogen Atom

Experiment 7: Spectrum of the Hydrogen Atom Experiment 7: Spectrum of the Hydrogen Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30-6:30PM INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction The physics behind: The spectrum of

More information

University of Massachusetts, Amherst

University of Massachusetts, Amherst PHYSICS 286: Modern Physics Laboratory SPRING 2010 (A. Dinsmore and K. Kumar) Feb 2009 Experiment 4: THE FRANCK HERTZ EXPERIMENT Electronic Excitations of a Gas, and Evidence for the Quantization of Atomic

More information

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010 Introduction In this lab, you will use a diffraction grating to split up light into the various colors which make up the different wavelengths of the visible electromagnetic spectrum. You will assemble

More information

where c m s (1)

where c m s (1) General Physics Experiment 6 Spectrum of Hydrogen s Emission Lines Objectives: < To determine wave lengths of the bright emission lines of hydrogen. < To test the relationship between wavelength and energy

More information

Dispersion and resolving power of the prism and grating spectroscope (Item No.: P )

Dispersion and resolving power of the prism and grating spectroscope (Item No.: P ) Dispersion and resolving power of the prism and grating spectroscope (Item No.: P2210300) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Light and Optics Subtopic: Diffraction

More information

OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July Greg Elliott, University of Puget Sound

OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July Greg Elliott, University of Puget Sound OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July 5-7 Greg Elliott, University of Puget Sound The Zeeman effect offers a striking visual demonstration of a quantum

More information

DISPERSION AND SPECTRA CHAPTER 20

DISPERSION AND SPECTRA CHAPTER 20 CHAPTER 20 DISPERSION AND SPECTRA 20.1 DISPERSION As mentioned earlier, the refractive index of a material depends slightly on the wavelength of light. The relation between the two may be approximately

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 133 PROFESSOR: SHER. Atomic Spectra. Benjamin Stahl

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 133 PROFESSOR: SHER. Atomic Spectra. Benjamin Stahl UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 133 PROFESSOR: SHER Atomic Spectra Benjamin Stahl Lab Partners: Aaron Lopez & Dillon Teal April 2, 2014 Abstract As an introduction to spectroscopy,

More information

Experiment 24: Spectroscopy

Experiment 24: Spectroscopy Experiment 24: Spectroscopy Figure 24.1: Spectroscopy EQUIPMENT High Voltage Power Supply Incandescent Light Source (3) Gas Discharge Tubes: 1. Helium 2. Hydrogen 3. Unknown Element Spectrometer Felt (1)

More information

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246 The Spectrophotometer and Atomic Spectra of Hydrogen Physics 46 Introduction: When heated sufficiently, most elements emit light. With a spectrometer, the emitted light can be broken down into its various

More information

Diffraction of light by a grating

Diffraction of light by a grating (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 5 Diffraction of light by a grating In this Experiment you will learn the geometical analysis of a diffraction

More information

Dispersion of light by a prism

Dispersion of light by a prism Dispersion of light by a prism Aim: (i) To calculate refractive index µ of a prism for various wavelengths (λ) of Hg and to find dispersive power of the material of the prism (ii) To plot µ-/λ curve and

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple meter-stick spectroscope that is capable of measuring wavelengths of visible light.

More information

HYDROGEN SPECTRUM = 2

HYDROGEN SPECTRUM = 2 MP6 OBJECT 3 HYDROGEN SPECTRUM MP6. The object o this experiment is to observe some o the lines in the emission spectrum o hydrogen, and to compare their experimentally determined wavelengths with those

More information

Instruction Manual and Experiment Guide for the PASCO scientific Model SP E 2/96 STUDENT SPECTROMETER. Copyright January 1991 $7.

Instruction Manual and Experiment Guide for the PASCO scientific Model SP E 2/96 STUDENT SPECTROMETER. Copyright January 1991 $7. Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268 012-02135E 2/96 STUDENT SPECTROMETER Copyright January 1991 $7.50 012-02135E Spectrometer Table of Contents Section Page

More information

Laboratory Exercise 7 MEASUREMENTS IN ASTRONOMY

Laboratory Exercise 7 MEASUREMENTS IN ASTRONOMY Laboratory Exercise 7 MEASUREMENTS IN ASTRONOMY Introduction Part A: The angular resolution of telescopes For astronomical observations, reflecting telescopes have replaced the refracting type of instrument.

More information

high energy state for the electron in the atom low energy state for the electron in the atom

high energy state for the electron in the atom low energy state for the electron in the atom Atomic Spectra Objectives The objectives of this experiment are to: 1) Build and calibrate a simple spectroscope capable of measuring wavelengths of visible light. 2) Measure several wavelengths of light

More information

ONE-ELECTRON AND TWO-ELECTRON SPECTRA

ONE-ELECTRON AND TWO-ELECTRON SPECTRA ONE-ELECTRON AND TWO-ELECTRON SPECTRA (A) FINE STRUCTURE AND ONE-ELECTRON SPECTRUM PRINCIPLE AND TASK The well-known spectral lines of He are used for calibrating the diffraction spectrometer. The wavelengths

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA PHYSICS 1/14 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA The purpose of this laboratory is to study energy levels of the Hydrogen atom by observing the spectrum of emitted light when Hydrogen atoms make transitions

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics Atomic shell Normal Zeeman effect LEYBOLD Physics Leaflets Observing the normal Zeeman effect in transverse and longitudinal Objects of the experiment Observing the line triplet

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA 1 Candidates should be able to : EMISSION LINE SPECTRA Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms (i.e. in a gas discharge lamp). Describe the

More information

EXPERIMENT 09 OBSERVATION OF SPECTRA

EXPERIMENT 09 OBSERVATION OF SPECTRA EXPERIMENT 09 OBSERVATION OF SPECTRA INTRODUCTION: In physics, as in very other area of study, one of the most valuable questions a student can learn to ask is, How do they know that? Thus, when you read

More information

L-7 SPECTROMETER. (3) To plot a dispersion curve for the glass prism, and use the curve for the identification of unknown wavelengths.

L-7 SPECTROMETER. (3) To plot a dispersion curve for the glass prism, and use the curve for the identification of unknown wavelengths. http://www.lhup.edu/~dsimanek/scenario/labman3/spectrom.htm 1. PURPOSE: L-7 SPECTROMETER (1) To learn the use of a prism spectrometer. (2) To accurately determine the index of refraction of a glass prism

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

EXPERIMENT NO. 6. OBJECT: To determine the wavelength of any three lines of mercury light by diffraction grating in1 st and 2 nd order spectrum.

EXPERIMENT NO. 6. OBJECT: To determine the wavelength of any three lines of mercury light by diffraction grating in1 st and 2 nd order spectrum. EXPEIMENT NO. 6 OBJECT: To determine the wavelength of any three lines of mercury light by diffraction grating in1 st and 2 nd order spectrum. APPAATUS: A diffraction grating, Spectrometer, spirit level,

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee Module-04 Lecture-02 Diffraction Part - 02 In the previous lecture I discussed single slit and double

More information

Quantum Physics Objective: Apparatus:

Quantum Physics Objective: Apparatus: 1 Quantum Physics Objective: 1. To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Science Lab I Properties of Light

Science Lab I Properties of Light Art & Science of Light Fall 2007 Science Lab I Properties of Light Prepared by: Dr. Dharshi Bopegedera 1 Using the Filtergraph (15 minutes) 1. Turn on the filtergraph, place a card on it and look at the

More information

ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral.

ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral. ATOMIC MODELS Models are formulated to fit the available data. 1900 Atom was known to have certain size. Atom was known to be neutral. Atom was known to give off electrons. THOMPSON MODEL To satisfy the

More information

ARC SPECTRUM OF IRON /COPPER / BRASS

ARC SPECTRUM OF IRON /COPPER / BRASS ARC PECTRUM OF IRON /COPPER / BRA Aim : To determine the wavelength of prominent lines in the emission spectrum of iron/ copper/ brass. Apparatus : Constant deviation spectrometer, dc voltage source, metal

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

Experiment #9. Atomic Emission Spectroscopy

Experiment #9. Atomic Emission Spectroscopy Introduction Experiment #9. Atomic Emission Spectroscopy Spectroscopy is the study of the interaction of light with matter. This interaction can be in the form of the absorption or the emission of electromagnetic

More information

Atomic Spectra & Electron Energy Levels

Atomic Spectra & Electron Energy Levels CHM151LL: ATOMIC SPECTRA & ELECTRON ENERGY LEVELS 1 Atomic Spectra & Electron Energy Levels OBJECTIVES: To measure the wavelength of visible light emitted by excited atoms to calculate the energy of that

More information

LC-4: Photoelectric Effect

LC-4: Photoelectric Effect LC-4: Photoelectric Effect Lab Worksheet Name In this lab you investigate the photoelectric effect, one of the experiments whose explanation by Einstein forced scientists into accepting the ideas of quantum

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information