Smoothness Selection. Simon Wood Mathematical Sciences, University of Bath, U.K.

Size: px
Start display at page:

Download "Smoothness Selection. Simon Wood Mathematical Sciences, University of Bath, U.K."

Transcription

1 Smoothness Selection Simon Wood Mathematical Sciences, Universit of Bath, U.K.

2 Smoothness selection approaches The smoothing model i = f ( i ) + ɛ i, ɛ i N(0, σ 2 ), is represented via a basis epansion of f, with coefficients β. The β estimates are ˆβ = arg min β Xβ 2 + λβ T Sβ where X is the model matri derived from the basis, and S is the wiggliness penalt matri. λ controls smoothness how should it be chosen? There are 3 main statistical approaches 1. Choose λ to minimize error in predicting new data. 2. Treat smooths as random effects, following the Baesian smoothing model, and estimate λ as a variance parameter using a marginal likelihood approach. 3. Go full Baesian b completing the Baesian model with a prior on λ (requires simulation and not pursued here).

3 Prediction error: C p /UBRE Suppose σ 2 is known, and let A = X(X T X + λs) 1 X T. ˆµ = A where E() = µ, so consider µ ˆµ 2 = µ A 2 = A ɛ 2 = A 2 + ɛ T ɛ 2ɛ T ( A) = A 2 + ɛ T ɛ 2ɛ T (µ + ɛ) + 2ɛ T A(µ + ɛ) = A 2 ɛ T ɛ 2ɛ T µ + 2ɛ T Aµ + 2ɛ T Aɛ Hence E µ ˆµ 2 = E A 2 nσ 2 + 2σ 2 tr(a) Estimating E A 2 ields... C p = A 2 nσ 2 + 2σ 2 tr(a) Can choose λ to minimize C p.

4 σ 2 unknown: cross validation λ too high λ about right λ too low Choose λ to tr to minimize the error predicting new data. 2. Minimize the average error in predicting single datapoints omitted from the fit. Each datum left out once in average. 3. It turns out that V o (λ) = 1 ( i ˆµ [ i] i ) 2 = 1 ( i ˆµ i ) 2 n n (1 A ii ) 2 i i

5 OCV not invariant ocv OCV is not invariant in an odd wa. If Q is orthogonal then fitting objective Q QXβ 2 + λβ T Sβ ields identical inferences about β as the original objective, but it gives a different V o. edf

6 GCV: generalized cross validation If we find the Q that causes the leading diagonal elements of A to be constant, and then perform OCV, the result is the invariant alternative GCV: V g = n ˆµ 2 {n tr(a)} 2 It is eas to show that tr(a) = tr(f), where F is the degrees of freedom matri. In addition to invariance, GCV is much easier to optimize efficientl in the multiple smoothing parameter case.

7 REML/ML λ estimation The Baesian smooth model is = Xβ + ɛ, β N(0, S σ 2 /λ), ɛ N(0, Iσ 2 ) This can be viewed as a mied model for computational purposes, but the impropiet of f (β) is awkward. To fi this, find the eigen-decomposition S = UΛU T Reparameterize β = U T β and let Λ + denote the diagonal matri of +ve eigenvalues. Now β T Sβ = β T Λβ = b T Λ + b where β = (b T, γ T ) T. Now partition X = XU = (Z : X), so that the model becomes = Xγ + Zb + ɛ, b N(0, Λ 1 + σ2 /λ), ɛ N(0, Iσ 2 )

8 REML/ML λ estimation Now that the model is in standard mied model form, mied model methods can estimate λ as a variance parameter. MLE or REML can be used. From a Baesian perspective we are being empirical Baesians and using marginal likelihood. Notice that the restricted/marginal likelihood has the form f ( β)f (β)dβ That is, we are taking the epectation of the likelihood over the prior on β. From this perspective it is possible to plot wh the approach is intuitivel sensible.

9 Basic principle of ML smoothness selection λ too low, prior variance too high λ and prior variance about right λ too high, prior variance too low Choose λ to maimize the average likelihood of random draws from the prior implied b λ. 2. If λ too low, then almost all draws are too variable to have high likelihood. If λ too high, then draws all underfit and have low likelihood. The right λ maimizes the proportion of draws close enough to data to give high likelihood. 3. Formall, maimize e.g. V r (λ) = log f ( β)f λ (β)dβ.

10 Prediction error vs. likelihood λ estimation s(,12.07) log GCV log(λ) REML/n log(λ) s(,1) log GCV log(λ) REML/n log(λ) 1. Pictures show GCV and REML scores for different replicates from same truth. 2. Compared to REML, GCV penalizes overfit onl weakl, and so tends to undersmooth.

11 Are smoothers reall random effects? Most times that smooth functions are used in models, the modeller believes that the function is a fied state of nature. i.e. the assumption is that the true function is something that would sta fied on replication of the dataset. So we are reall being Baesian in treating the function as random. If the function was a true frequentist random effect then we would epect to get a different random draw from its prior at each dataset replication. This almost never makes sense. Does this mean that using mied modelling methods is wrong? No. It just happens that the mied model methods can convenientl compute the Baesian answers for us.

Basis Penalty Smoothers. Simon Wood Mathematical Sciences, University of Bath, U.K.

Basis Penalty Smoothers. Simon Wood Mathematical Sciences, University of Bath, U.K. Basis Penalty Smoothers Simon Wood Mathematical Sciences, University of Bath, U.K. Estimating functions It is sometimes useful to estimate smooth functions from data, without being too precise about the

More information

An Introduction to GAMs based on penalized regression splines. Simon Wood Mathematical Sciences, University of Bath, U.K.

An Introduction to GAMs based on penalized regression splines. Simon Wood Mathematical Sciences, University of Bath, U.K. An Introduction to GAMs based on penalied regression splines Simon Wood Mathematical Sciences, University of Bath, U.K. Generalied Additive Models (GAM) A GAM has a form something like: g{e(y i )} = η

More information

Model checking overview. Checking & Selecting GAMs. Residual checking. Distribution checking

Model checking overview. Checking & Selecting GAMs. Residual checking. Distribution checking Model checking overview Checking & Selecting GAMs Simon Wood Mathematical Sciences, University of Bath, U.K. Since a GAM is just a penalized GLM, residual plots should be checked exactly as for a GLM.

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

Modelling with smooth functions. Simon Wood University of Bath, EPSRC funded

Modelling with smooth functions. Simon Wood University of Bath, EPSRC funded Modelling with smooth functions Simon Wood University of Bath, EPSRC funded Some data... Daily respiratory deaths, temperature and ozone in Chicago (NMMAPS) 0 50 100 150 200 deaths temperature ozone 2000

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

Checking, Selecting & Predicting with GAMs. Simon Wood Mathematical Sciences, University of Bath, U.K.

Checking, Selecting & Predicting with GAMs. Simon Wood Mathematical Sciences, University of Bath, U.K. Checking, Selecting & Predicting with GAMs Simon Wood Mathematical Sciences, University of Bath, U.K. Model checking Since a GAM is just a penalized GLM, residual plots should be checked, exactly as for

More information

15. Eigenvalues, Eigenvectors

15. Eigenvalues, Eigenvectors 5 Eigenvalues, Eigenvectors Matri of a Linear Transformation Consider a linear ( transformation ) L : a b R 2 R 2 Suppose we know that L and L Then c d because of linearit, we can determine what L does

More information

Biostatistics in Research Practice - Regression I

Biostatistics in Research Practice - Regression I Biostatistics in Research Practice - Regression I Simon Crouch 30th Januar 2007 In scientific studies, we often wish to model the relationships between observed variables over a sample of different subjects.

More information

Machine Learning. 1. Linear Regression

Machine Learning. 1. Linear Regression Machine Learning Machine Learning 1. Linear Regression Lars Schmidt-Thieme Information Sstems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Sstems & Institute for Computer

More information

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector.

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector. LESSON 5: EIGENVALUES AND EIGENVECTORS APRIL 2, 27 In this contet, a vector is a column matri E Note 2 v 2, v 4 5 6 () We might also write v as v Both notations refer to a vector (2) A vector can be man

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

Introduction to Linear Models

Introduction to Linear Models Introduction to Linear Models STA721 Linear Models Duke Universit Merlise Clde August 25, 2015 Coordinates Instructor: Merlise Clde 214 Old Chemistr Office Hours MWF 1:00-2:0 or right after class (or b

More information

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Jonathan Taylor - p. 1/15 Today s class Bias-Variance tradeoff. Penalized regression. Cross-validation. - p. 2/15 Bias-variance

More information

MLES & Multivariate Normal Theory

MLES & Multivariate Normal Theory Merlise Clyde September 6, 2016 Outline Expectations of Quadratic Forms Distribution Linear Transformations Distribution of estimates under normality Properties of MLE s Recap Ŷ = ˆµ is an unbiased estimate

More information

Lecture 3: Introduction to Complexity Regularization

Lecture 3: Introduction to Complexity Regularization ECE90 Spring 2007 Statistical Learning Theory Instructor: R. Nowak Lecture 3: Introduction to Complexity Regularization We ended the previous lecture with a brief discussion of overfitting. Recall that,

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 2 2 MACHINE LEARNING Overview Definition pdf Definition joint, condition, marginal,

More information

Lecture 6: Methods for high-dimensional problems

Lecture 6: Methods for high-dimensional problems Lecture 6: Methods for high-dimensional problems Hector Corrada Bravo and Rafael A. Irizarry March, 2010 In this Section we will discuss methods where data lies on high-dimensional spaces. In particular,

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

Perturbation Theory for Variational Inference

Perturbation Theory for Variational Inference Perturbation heor for Variational Inference Manfred Opper U Berlin Marco Fraccaro echnical Universit of Denmark Ulrich Paquet Apple Ale Susemihl U Berlin Ole Winther echnical Universit of Denmark Abstract

More information

Overview. IAML: Linear Regression. Examples of regression problems. The Regression Problem

Overview. IAML: Linear Regression. Examples of regression problems. The Regression Problem 3 / 38 Overview 4 / 38 IAML: Linear Regression Nigel Goddard School of Informatics Semester The linear model Fitting the linear model to data Probabilistic interpretation of the error function Eamples

More information

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Xiuming Zhang zhangxiuming@u.nus.edu A*STAR-NUS Clinical Imaging Research Center October, 015 Summary This report derives

More information

mgcv: GAMs in R Simon Wood Mathematical Sciences, University of Bath, U.K.

mgcv: GAMs in R Simon Wood Mathematical Sciences, University of Bath, U.K. mgcv: GAMs in R Simon Wood Mathematical Sciences, University of Bath, U.K. mgcv, gamm4 mgcv is a package supplied with R for generalized additive modelling, including generalized additive mixed models.

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Multivariate Gaussians Mark Schmidt University of British Columbia Winter 2019 Last Time: Multivariate Gaussian http://personal.kenyon.edu/hartlaub/mellonproject/bivariate2.html

More information

Spatial Regression. 9. Specification Tests (1) Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 9. Specification Tests (1) Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 9. Specification Tests (1) Luc Anselin http://spatial.uchicago.edu 1 basic concepts types of tests Moran s I classic ML-based tests LM tests 2 Basic Concepts 3 The Logic of Specification

More information

When is MLE appropriate

When is MLE appropriate When is MLE appropriate As a rule of thumb the following to assumptions need to be fulfilled to make MLE the appropriate method for estimation: The model is adequate. That is, we trust that one of the

More information

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION SEAN GERRISH AND CHONG WANG 1. WAYS OF ORGANIZING MODELS In probabilistic modeling, there are several ways of organizing models:

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. semi-parametric likelihood, partial likelihood 3. empirical likelihood,

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Chapter 7: Model Assessment and Selection

Chapter 7: Model Assessment and Selection Chapter 7: Model Assessment and Selection DD3364 April 20, 2012 Introduction Regression: Review of our problem Have target variable Y to estimate from a vector of inputs X. A prediction model ˆf(X) has

More information

2.1 Linear regression with matrices

2.1 Linear regression with matrices 21 Linear regression with matrices The values of the independent variables are united into the matrix X (design matrix), the values of the outcome and the coefficient are represented by the vectors Y and

More information

Prelim Examination. Friday August 11, Time limit: 150 minutes

Prelim Examination. Friday August 11, Time limit: 150 minutes University of Pennsylvania Economics 706, Fall 2017 Prelim Prelim Examination Friday August 11, 2017. Time limit: 150 minutes Instructions: (i) The total number of points is 80, the number of points for

More information

COMPRESSED AND PENALIZED LINEAR

COMPRESSED AND PENALIZED LINEAR COMPRESSED AND PENALIZED LINEAR REGRESSION Daniel J. McDonald Indiana University, Bloomington mypage.iu.edu/ dajmcdon 2 June 2017 1 OBLIGATORY DATA IS BIG SLIDE Modern statistical applications genomics,

More information

6. Vector Random Variables

6. Vector Random Variables 6. Vector Random Variables In the previous chapter we presented methods for dealing with two random variables. In this chapter we etend these methods to the case of n random variables in the following

More information

Lecture 3: Latent Variables Models and Learning with the EM Algorithm. Sam Roweis. Tuesday July25, 2006 Machine Learning Summer School, Taiwan

Lecture 3: Latent Variables Models and Learning with the EM Algorithm. Sam Roweis. Tuesday July25, 2006 Machine Learning Summer School, Taiwan Lecture 3: Latent Variables Models and Learning with the EM Algorithm Sam Roweis Tuesday July25, 2006 Machine Learning Summer School, Taiwan Latent Variable Models What to do when a variable z is always

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

Lecture 14 October 13

Lecture 14 October 13 STAT 383C: Statistical Modeling I Fall 2015 Lecture 14 October 13 Lecturer: Purnamrita Sarkar Scribe: Some one Disclaimer: These scribe notes have been slightly proofread and may have typos etc. Note:

More information

Week 3: Linear Regression

Week 3: Linear Regression Week 3: Linear Regression Instructor: Sergey Levine Recap In the previous lecture we saw how linear regression can solve the following problem: given a dataset D = {(x, y ),..., (x N, y N )}, learn to

More information

Some properties of Likelihood Ratio Tests in Linear Mixed Models

Some properties of Likelihood Ratio Tests in Linear Mixed Models Some properties of Likelihood Ratio Tests in Linear Mixed Models Ciprian M. Crainiceanu David Ruppert Timothy J. Vogelsang September 19, 2003 Abstract We calculate the finite sample probability mass-at-zero

More information

1 Least Squares Estimation - multiple regression.

1 Least Squares Estimation - multiple regression. Introduction to multiple regression. Fall 2010 1 Least Squares Estimation - multiple regression. Let y = {y 1,, y n } be a n 1 vector of dependent variable observations. Let β = {β 0, β 1 } be the 2 1

More information

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA JAPANESE BEETLE DATA 6 MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA Gauge Plots TuscaroraLisa Central Madsen Fairways, 996 January 9, 7 Grubs Adult Activity Grub Counts 6 8 Organic Matter

More information

POLI 8501 Introduction to Maximum Likelihood Estimation

POLI 8501 Introduction to Maximum Likelihood Estimation POLI 8501 Introduction to Maximum Likelihood Estimation Maximum Likelihood Intuition Consider a model that looks like this: Y i N(µ, σ 2 ) So: E(Y ) = µ V ar(y ) = σ 2 Suppose you have some data on Y,

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

CS 340 Lec. 15: Linear Regression

CS 340 Lec. 15: Linear Regression CS 340 Lec. 15: Linear Regression AD February 2011 AD () February 2011 1 / 31 Regression Assume you are given some training data { x i, y i } N where x i R d and y i R c. Given an input test data x, you

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

CMSC858P Supervised Learning Methods

CMSC858P Supervised Learning Methods CMSC858P Supervised Learning Methods Hector Corrada Bravo March, 2010 Introduction Today we discuss the classification setting in detail. Our setting is that we observe for each subject i a set of p predictors

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013 Lecture 32: Infinite-dimensional/Functionvalued Traits: Covariance Functions and Random Regressions Bruce Walsh lecture notes Synbreed course version 11 July 2013 1 Longitudinal traits Many classic quantitative

More information

Sampling Distributions

Sampling Distributions Merlise Clyde Duke University September 8, 2016 Outline Topics Normal Theory Chi-squared Distributions Student t Distributions Readings: Christensen Apendix C, Chapter 1-2 Prostate Example > library(lasso2);

More information

Penalized least squares versus generalized least squares representations of linear mixed models

Penalized least squares versus generalized least squares representations of linear mixed models Penalized least squares versus generalized least squares representations of linear mixed models Douglas Bates Department of Statistics University of Wisconsin Madison April 6, 2017 Abstract The methods

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

Multiple regression. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar

Multiple regression. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Multiple regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Multiple regression 1 / 36 Previous two lectures Linear and logistic

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

Chapter 3 Best Linear Unbiased Estimation

Chapter 3 Best Linear Unbiased Estimation Chapter 3 Best Linear Unbiased Estimation C R Henderson 1984 - Guelph In Chapter 2 we discussed linear unbiased estimation of k β, having determined that it is estimable Let the estimate be a y, and if

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

Can we do statistical inference in a non-asymptotic way? 1

Can we do statistical inference in a non-asymptotic way? 1 Can we do statistical inference in a non-asymptotic way? 1 Guang Cheng 2 Statistics@Purdue www.science.purdue.edu/bigdata/ ONR Review Meeting@Duke Oct 11, 2017 1 Acknowledge NSF, ONR and Simons Foundation.

More information

Fundamentals of Machine Learning. Mohammad Emtiyaz Khan EPFL Aug 25, 2015

Fundamentals of Machine Learning. Mohammad Emtiyaz Khan EPFL Aug 25, 2015 Fundamentals of Machine Learning Mohammad Emtiyaz Khan EPFL Aug 25, 25 Mohammad Emtiyaz Khan 24 Contents List of concepts 2 Course Goals 3 2 Regression 4 3 Model: Linear Regression 7 4 Cost Function: MSE

More information

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

arxiv: v1 [stat.me] 25 Sep 2007

arxiv: v1 [stat.me] 25 Sep 2007 Fast stable direct fitting and smoothness selection arxiv:0709.3906v1 [stat.me] 25 Sep 2007 for Generalized Additive Models Simon N. Wood Mathematical Sciences, University of Bath, Bath BA2 7AY U.K. s.wood@bath.ac.uk

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University Integrated Likelihood Estimation in Semiparametric Regression Models Thomas A. Severini Department of Statistics Northwestern University Joint work with Heping He, University of York Introduction Let Y

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Modeling regional economic dynamics: spatial dependence, spatial heterogeneity and nonlinearities

Modeling regional economic dynamics: spatial dependence, spatial heterogeneity and nonlinearities Modeling regional economic dynamics: spatial dependence, spatial heterogeneity and nonlinearities Roberto Basile, Saime S. Kayam, Román Mínguez, Jose María Montero and Jesús Mur 1 Introduction Modeling

More information

Bayesian Inference of Noise Levels in Regression

Bayesian Inference of Noise Levels in Regression Bayesian Inference of Noise Levels in Regression Christopher M. Bishop Microsoft Research, 7 J. J. Thomson Avenue, Cambridge, CB FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

More on nuisance parameters

More on nuisance parameters BS2 Statistical Inference, Lecture 3, Hilary Term 2009 January 30, 2009 Suppose that there is a minimal sufficient statistic T = t(x ) partitioned as T = (S, C) = (s(x ), c(x )) where: C1: the distribution

More information

Semi-Supervised Laplacian Regularization of Kernel Canonical Correlation Analysis

Semi-Supervised Laplacian Regularization of Kernel Canonical Correlation Analysis Semi-Supervised Laplacian Regularization of Kernel Canonical Correlation Analsis Matthew B. Blaschko, Christoph H. Lampert, & Arthur Gretton Ma Planck Institute for Biological Cbernetics Tübingen, German

More information

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Model Evaluation and Selection Predictive Ability of a Model: Denition and Estimation We aim at achieving a balance between parsimony

More information

Machine Learning Foundations

Machine Learning Foundations Machine Learning Foundations ( 機器學習基石 ) Lecture 13: Hazard of Overfitting Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan Universit

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

Penalized Regression

Penalized Regression Penalized Regression Deepayan Sarkar Penalized regression Another potential remedy for collinearity Decreases variability of estimated coefficients at the cost of introducing bias Also known as regularization

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling Due: Tuesday, May 10, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to the questions below, including

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Gaussian Models (9/9/13)

Gaussian Models (9/9/13) STA561: Probabilistic machine learning Gaussian Models (9/9/13) Lecturer: Barbara Engelhardt Scribes: Xi He, Jiangwei Pan, Ali Razeen, Animesh Srivastava 1 Multivariate Normal Distribution The multivariate

More information

MA Game Theory 2005, LSE

MA Game Theory 2005, LSE MA. Game Theor, LSE Problem Set The problems in our third and final homework will serve two purposes. First, the will give ou practice in studing games with incomplete information. Second (unless indicated

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

MATH 829: Introduction to Data Mining and Analysis Principal component analysis

MATH 829: Introduction to Data Mining and Analysis Principal component analysis 1/11 MATH 829: Introduction to Data Mining and Analysis Principal component analysis Dominique Guillot Departments of Mathematical Sciences University of Delaware April 4, 2016 Motivation 2/11 High-dimensional

More information

11. Learning graphical models

11. Learning graphical models Learning graphical models 11-1 11. Learning graphical models Maximum likelihood Parameter learning Structural learning Learning partially observed graphical models Learning graphical models 11-2 statistical

More information

CSE 546 Midterm Exam, Fall 2014

CSE 546 Midterm Exam, Fall 2014 CSE 546 Midterm Eam, Fall 2014 1. Personal info: Name: UW NetID: Student ID: 2. There should be 14 numbered pages in this eam (including this cover sheet). 3. You can use an material ou brought: an book,

More information

Focused fine-tuning of ridge regression

Focused fine-tuning of ridge regression Focused fine-tuning of ridge regression Kristoffer Hellton Department of Mathematics, University of Oslo May 9, 2016 K. Hellton (UiO) Focused tuning May 9, 2016 1 / 22 Penalized regression The least-squares

More information

Review: critical point or equivalently f a,

Review: critical point or equivalently f a, Review: a b f f a b f a b critical point or equivalentl f a, b A point, is called a of if,, 0 A local ma or local min must be a critical point (but not conversel) 0 D iscriminant (or Hessian) f f D f f

More information

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression Local regression I Patrick Breheny November 1 Patrick Breheny STA 621: Nonparametric Statistics 1/27 Simple local models Kernel weighted averages The Nadaraya-Watson estimator Expected loss and prediction

More information

Smooth additive models for large datasets

Smooth additive models for large datasets Smooth additive models for large datasets Simon Wood, University of Bristol 1, U.K. in collaboration with Zheyuan Li, Gavin Shaddick, Nicole Augustin University of Bath Funded by EPSRC and the University

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 22 MACHINE LEARNING Discrete Probabilities Consider two variables and y taking discrete

More information

Bayes Estimators & Ridge Regression

Bayes Estimators & Ridge Regression Readings Chapter 14 Christensen Merlise Clyde September 29, 2015 How Good are Estimators? Quadratic loss for estimating β using estimator a L(β, a) = (β a) T (β a) How Good are Estimators? Quadratic loss

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information