Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA

Size: px
Start display at page:

Download "Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA"

Transcription

1 JAPANESE BEETLE DATA 6 MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA Gauge Plots TuscaroraLisa Central Madsen Fairways, 996 January 9, 7 Grubs Adult Activity Grub Counts 6 8 Organic Matter % Gauge Plots Tuscarora Central Fairways, 996 JAPANESE BEETLE DATA Distance to Organic Nearest Grubs Tree Adult Activity Matter JAPANESE BEETLE DATA Model The data are overdispersed counts. A sensible model is negative binomial with mean given by a function of organic matter. E(Y i ) = exp(β + β x i + β x i + β x i ) Distance to Organic No Grubs Nearest Many Tree Grubs Low OM High OM Matter where Y i is the ith grub count and x i is the percent organic matter at that location.

2 Grub Example Geostatistical Model Spatial GEE Model OUTLINE Spatial Gaussian Copula Continuing Discrete Random Variables Spatial Gaussian Copula For Discrete Data Analysis of the Grub Data Simulations Conclusions, Extensions, and Further Research THE EXPONENTIAL COVARIOGRAM MODEL If h ij =distance between locations of Y i and Y j, θ + θ, h ij = cov(y i, Y j ) = Σ ij = θ exp( θ h ij ), h ij > θ θ θ = nugget (measurement error) = partial sill = decay (reciprocal of range) THE GEOSTATISTICAL MODEL For Normal Data Y = Xβ + ɛ ɛ N(, Σ) Covariance matrix Σ is constructed from a spatial covariogram, a function depending on distance and a vector of parameters. THE EXPONENTIAL COVARIOGRAM MODEL θ +θ Covariance θ θ = θ = θ =. 6 8 Lag Distance h

3 THE GEOSTATISTICAL LIKELIHOOD Combining the covariogram model with the normal assumption yields a likelihood f(y β, θ) = exp (π) n/ Σ(θ) / [ (Y Xβ) Σ(θ) (Y Xβ) from which we can find maximum likelihood estimates for the parameters β and θ. ] THE LATENT PROCESS SPATIAL GEE MODEL A latent process, typically lognormal, is used to model the spatial correlation. A conditionally independent discrete process, typically Poisson for counts, is assumed to model the data. Let s = spatial location x(s) = vector of known covariates at location s β = vector of unknown regression coefficients Z(s) lognormal with E[Z(s)] =, var[z(s)] = σ Y (s) Z( ) independent Poisson{exp[x (s)β] Z(s)}. THE SPATIAL GEE MODEL Some History Liang and Zeger s (986) pioneering paper in Biometrika introduced GEEs for longitudinal data. Zeger (988) developed GEE analysis for a time series of counts using a latent process model. McShane, Albert, and Palmatier (997) adapted Zeger s model and analysis to spatially correlated count data. Gotway and Stroup (997) used GEEs to model and predict spatially correlated binary and count data. Lin and Clayton () develop asymptotic theory for GEE estimators of parameters in a spatial logistic regression model THE LATENT PROCESS SPATIAL GEE MODEL Marginal Moments The marginal moments of lognormal-poisson Y (s), E[Y (s)] = exp[x (s)β] var[y (s)] = E[Y (s)] + σ E[Y (s)], closely resemble those of a negative binomial process: If W is distributed as negative binomial, then for some k >. var(w ) = E(W ) + E(W ) k 6

4 THE LATENT PROCESS SPATIAL GEE MODEL Correlations The latent process Z( ) carries the spatial correlation. corr[z(s), Z(s + h)] = ρ Z (h), which induces correlation among the Y (s): corr[y (s), Y (s + h)] = ρ Z (h){ + σ E[Y (s)] }{ + σ E[Y (s + h)] }. These correlations are severely limited compared to those possible between negative binomial random variables. THE LATENT PROCESS SPATIAL GEE MODEL The latent process model may underestimate correlations among the data. When correlations are underestimated, standard errors are also underestimated. THE LATENT PROCESS SPATIAL GEE MODEL Limits to Correlation BRASH ASSERTION UB for ρ.. µ j... µ i UB for ρ.. µ j... µ i Correlation is not an appropriate measure of dependence for discrete random variables. In fact it s only appropriate for normal random variables. (a) Lognormal-Poisson (b) Negative binomial 7 8

5 Y Y (a) Perfect correlation Y Y (b) Almost perfect correlation THE MULTIVARIATE GAUSSIAN COPULA The bivariate Gaussian copula can be generalized. For i =... n, let Y i F i be continuous random variables and Φ = standard normal cdf Φ Σ = multivariate Gaussian cdf with covariance matrix Σ. Σ = a correlation matrix A joint distribution function is [ C(y,..., y n ; Σ) = Φ Σ Φ (F (y )),... Φ (F n (y n )) ]. THE BIVARIATE GAUSSIAN COPULA Let Y F and Y F be continuous random variables. The Gaussian copula defines a joint distribution function [ C(y, y ; δ) = Φ δ Φ (F (y )), Φ (F (y )) ]. Φ = standard normal cdf Φ δ = bivariate normal cdf with correlation δ Maximum correlation between Y and Y is achieved by setting δ =. THE MULTIVARIATE GAUSSIAN COPULA Joint Density Differentiating the distribution function yields a joint density for random variables Y i with marginal density f i : [ c(y; Σ) = Σ / exp ] [ ] n z Σ z exp z z f i (y i ) where z = [ Φ {F (y )},..., Φ {F n (y n )} ]. i= Σ determines the dependence structure. 9

6 THE SPATIAL GAUSSIAN COPULA Bring non-normal Y,..., Y n into the geostatistical framework by modeling the Gaussian copula s Σ as a spatial correlation matrix, θ exp( h ij θ ), i j Σ ij = ρ(h ij ) =, i = j where h ij is the distance between the locations of Y i and Y j, and θ (, ] and θ > are parameters. RECAP Observations Y i with cdf F i and density f i, i =,..., n E(Y i ) depends on unknown parameter vector β and known covariates x i Joint density c(y,..., y n ; β, θ) = Σ(θ) / exp [ z Σ(θ) z ] exp [ z z ] n i= f i(y i ) The joint density forms a likelihood for the parameters β and θ which can be maximized to obtain MLEs. A SPATIAL CORRELATION FUNCTION ρ(h).8.6. θ =.7, θ = θ =., θ = θ =., θ =. But...how does this work for discrete data?. 6 8 Lag Distance h

7 CONTINUING DISCRETE RANDOM VARIABLES Denuit and Lambert (): Associate with discrete Y i a continuous random variable Y i = Y i U i where U i Uniform(, ) independent of Y i and of U j for j i. CONTINUING DISCRETE RANDOM VARIABLES A couple of observations: Yi = Y i U i if and only if Y i = [Yi information is lost by continuing Y i. Distribution and density functions + ], so no F i (y) = F i ([y]) + (y [y])p r{y i = [y + ]} f i (y) = P r{y i = [y + ]} depend on only the parameters of the distribution of Y i. CONTINUING DISCRETE RANDOM VARIABLES Y i = Y i U i is a continuous random variable with distribution function and density F i (y) = F i ([y]) + (y [y])p r{y i = [y + ]} f i (y) = P r{y i = [y + ]} where [y] denotes the integer part of y. THE SPATIAL GAUSSIAN COPULA FOR DISCRETE DATA The spatial Gaussian copula joint density for Y,..., Y n, c(y; β, θ) = Σ(θ) / exp [ ] [ ] y Σ(θ) y exp y y n fi (y i ), gives a log-likelihood L(β, θ; Y, U) = log[c(y ; β, θ)]. i=

8 THE SPATIAL GAUSSIAN COPULA FOR DISCRETE DATA Since L(β, θ; Y, U) depends on U, MLEs will be } (ˆβ, ˆθ) = E U {arg max [L(β, θ; Y, U)]. β,θ ANALYSIS OF THE GRUB DATA Model Y i Negative Binomial, i =... E(Y i x i ) = µ i = exp(β + β x i + β x i + β x i ) ( ) + φ var(y i ) = µ i φ θ exp( h ij θ ), i j corr(y i, Y j ) =, i = j ANALYSIS OF THE GRUB DATA Grub Counts Organic Matter % ANALYSIS OF THE GRUB DATA Method. Generate U... U n iid U(, ) and form Y i = Y i U i.. Find ( β, θ) = arg max β,θ [L(β, θ; Y, U)] and approximation of negative Hessian of L at maximum.. Repeat steps and several times.. ˆβ and ˆθ are averages of the ( β, θ).. Standard errors are square roots of the diagonal elements of the average approximated Hessian. 6

9 ANALYSIS OF THE GRUB DATA Fitted Mean Function Grub Counts 6 Observed Fitted Mean 6 8 Organic Matter % SIMULATIONS n = with spatial locations from grub data µ i = exp(β ), where β = Data generated using software package discsim. ( About % of the pairs (Y i, Y j ) had correlations exceeding the lognormal-poisson upper bound. MLE and GEE estimates of β were calculated. ANALYSIS OF THE GRUB DATA Parameter Estimates Nominal 9% Parameter Estimate Standard Error Confidence Interval β..78 ( 6.8,.) β.9.8 (.,.7) β (.7,.) β.9. (.,.776) SIMULATIONS Results Nominal 9% Procedure Bias Variance Confidence Coverage Spatial GEE MLE

10 CONCLUSIONS Latent variable spatial GEE model can dangerously underestimate variance. Spatial Gaussian copula makes it easy to model spatial dependence for non-normal data. ML method is easier to work with than GEE method. FURTHER RESEARCH More simulations to assess performance in a variety of situations. More applications. Asymptotic details. Generating highly correlated discrete data. GENERALIZATIONS TO THE MODEL The method can be used for any non-normal marginals and any correlation structure. It is not necessary that all Y i share the same marginal distribution. For example, data could be overdispersed in some regions and underdispersed in others. For the negative binomial marginal model, φ could be allowed to vary. ACKNOWLEDGEMENTS The research presented here has been partially funded by the U.S. Environmental Protection Agency Grant #CR-899, the Science To Achieve Results (STAR) Program. It has not been subjected to the Agency s review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred. Thanks to Clif Johnson for his extensive help figuring out how to run the simulations on the College of Engineering s Beowulf cluster. 9

11 japanese_beetle_.jpg (JPEG Image, 6x9 pixels) THANK YOU! file:///d:/copula/deptseminarjan7/japanese_beetle_.jpg of /7/7 : PM

Maximum Likelihood Estimation of Regression Parameters With Spatially Dependent Discrete Data

Maximum Likelihood Estimation of Regression Parameters With Spatially Dependent Discrete Data Supplementary materials for this article are available at http://pubs.amstat.org/toc/jabes/14/4. Maximum Likelihood Estimation of Regression Parameters With Spatially Dependent Discrete Data L. MADSEN

More information

Using Estimating Equations for Spatially Correlated A

Using Estimating Equations for Spatially Correlated A Using Estimating Equations for Spatially Correlated Areal Data December 8, 2009 Introduction GEEs Spatial Estimating Equations Implementation Simulation Conclusion Typical Problem Assess the relationship

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Generalized Linear Models. Kurt Hornik

Generalized Linear Models. Kurt Hornik Generalized Linear Models Kurt Hornik Motivation Assuming normality, the linear model y = Xβ + e has y = β + ε, ε N(0, σ 2 ) such that y N(μ, σ 2 ), E(y ) = μ = β. Various generalizations, including general

More information

,..., θ(2),..., θ(n)

,..., θ(2),..., θ(n) Likelihoods for Multivariate Binary Data Log-Linear Model We have 2 n 1 distinct probabilities, but we wish to consider formulations that allow more parsimonious descriptions as a function of covariates.

More information

Generalized Linear Models Introduction

Generalized Linear Models Introduction Generalized Linear Models Introduction Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Linear Models For many problems, standard linear regression approaches don t work. Sometimes,

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

High-Throughput Sequencing Course

High-Throughput Sequencing Course High-Throughput Sequencing Course DESeq Model for RNA-Seq Biostatistics and Bioinformatics Summer 2017 Outline Review: Standard linear regression model (e.g., to model gene expression as function of an

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

Generalized Quasi-likelihood (GQL) Inference* by Brajendra C. Sutradhar Memorial University address:

Generalized Quasi-likelihood (GQL) Inference* by Brajendra C. Sutradhar Memorial University  address: Generalized Quasi-likelihood (GQL) Inference* by Brajendra C. Sutradhar Memorial University Email address: bsutradh@mun.ca QL Estimation for Independent Data. For i = 1,...,K, let Y i denote the response

More information

Generating Spatial Correlated Binary Data Through a Copulas Method

Generating Spatial Correlated Binary Data Through a Copulas Method Science Research 2015; 3(4): 206-212 Published online July 23, 2015 (http://www.sciencepublishinggroup.com/j/sr) doi: 10.11648/j.sr.20150304.18 ISSN: 2329-0935 (Print); ISSN: 2329-0927 (Online) Generating

More information

Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association for binary responses

Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association for binary responses Outline Marginal model Examples of marginal model GEE1 Augmented GEE GEE1.5 GEE2 Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association

More information

Test Problems for Probability Theory ,

Test Problems for Probability Theory , 1 Test Problems for Probability Theory 01-06-16, 010-1-14 1. Write down the following probability density functions and compute their moment generating functions. (a) Binomial distribution with mean 30

More information

Likelihood-Based Methods

Likelihood-Based Methods Likelihood-Based Methods Handbook of Spatial Statistics, Chapter 4 Susheela Singh September 22, 2016 OVERVIEW INTRODUCTION MAXIMUM LIKELIHOOD ESTIMATION (ML) RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

More information

Asymptotic standard errors of MLE

Asymptotic standard errors of MLE Asymptotic standard errors of MLE Suppose, in the previous example of Carbon and Nitrogen in soil data, that we get the parameter estimates For maximum likelihood estimation, we can use Hessian matrix

More information

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III)

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III) Title: Spatial Statistics for Point Processes and Lattice Data (Part III) Lattice Data Tonglin Zhang Outline Description Research Problems Global Clustering and Local Clusters Permutation Test Spatial

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Advanced Methods for Data Analysis (36-402/36-608 Spring 2014 1 Generalized linear models 1.1 Introduction: two regressions So far we ve seen two canonical settings for regression.

More information

Poisson regression 1/15

Poisson regression 1/15 Poisson regression 1/15 2/15 Counts data Examples of counts data: Number of hospitalizations over a period of time Number of passengers in a bus station Blood cells number in a blood sample Number of typos

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

Generalized Quasi-likelihood versus Hierarchical Likelihood Inferences in Generalized Linear Mixed Models for Count Data

Generalized Quasi-likelihood versus Hierarchical Likelihood Inferences in Generalized Linear Mixed Models for Count Data Sankhyā : The Indian Journal of Statistics 2009, Volume 71-B, Part 1, pp. 55-78 c 2009, Indian Statistical Institute Generalized Quasi-likelihood versus Hierarchical Likelihood Inferences in Generalized

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Research Projects. Hanxiang Peng. March 4, Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis

Research Projects. Hanxiang Peng. March 4, Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis Hanxiang Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis March 4, 2009 Outline Project I: Free Knot Spline Cox Model Project I: Free Knot Spline Cox Model Consider

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

Fisher information for generalised linear mixed models

Fisher information for generalised linear mixed models Journal of Multivariate Analysis 98 2007 1412 1416 www.elsevier.com/locate/jmva Fisher information for generalised linear mixed models M.P. Wand Department of Statistics, School of Mathematics and Statistics,

More information

Probability and Stochastic Processes

Probability and Stochastic Processes Probability and Stochastic Processes A Friendly Introduction Electrical and Computer Engineers Third Edition Roy D. Yates Rutgers, The State University of New Jersey David J. Goodman New York University

More information

MLE for a logit model

MLE for a logit model IGIDR, Bombay September 4, 2008 Goals The link between workforce participation and education Analysing a two-variable data-set: bivariate distributions Conditional probability Expected mean from conditional

More information

Gaussian Processes 1. Schedule

Gaussian Processes 1. Schedule 1 Schedule 17 Jan: Gaussian processes (Jo Eidsvik) 24 Jan: Hands-on project on Gaussian processes (Team effort, work in groups) 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik) 7 Feb: Hands-on project

More information

Chap 2. Linear Classifiers (FTH, ) Yongdai Kim Seoul National University

Chap 2. Linear Classifiers (FTH, ) Yongdai Kim Seoul National University Chap 2. Linear Classifiers (FTH, 4.1-4.4) Yongdai Kim Seoul National University Linear methods for classification 1. Linear classifiers For simplicity, we only consider two-class classification problems

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Put your solution to each problem on a separate sheet of paper. Problem 1. (5166) Assume that two random samples {x i } and {y i } are independently

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference

The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference An application to longitudinal modeling Brianna Heggeseth with Nicholas Jewell Department of Statistics

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

PQL Estimation Biases in Generalized Linear Mixed Models

PQL Estimation Biases in Generalized Linear Mixed Models PQL Estimation Biases in Generalized Linear Mixed Models Woncheol Jang Johan Lim March 18, 2006 Abstract The penalized quasi-likelihood (PQL) approach is the most common estimation procedure for the generalized

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Figure 36: Respiratory infection versus time for the first 49 children.

Figure 36: Respiratory infection versus time for the first 49 children. y BINARY DATA MODELS We devote an entire chapter to binary data since such data are challenging, both in terms of modeling the dependence, and parameter interpretation. We again consider mixed effects

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X.

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X. Optimization Background: Problem: given a function f(x) defined on X, find x such that f(x ) f(x) for all x X. The value x is called a maximizer of f and is written argmax X f. In general, argmax X f may

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Non-maximum likelihood estimation and statistical inference for linear and nonlinear mixed models

Non-maximum likelihood estimation and statistical inference for linear and nonlinear mixed models Optimum Design for Mixed Effects Non-Linear and generalized Linear Models Cambridge, August 9-12, 2011 Non-maximum likelihood estimation and statistical inference for linear and nonlinear mixed models

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Mathematical statistics

Mathematical statistics October 1 st, 2018 Lecture 11: Sufficient statistic Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes Maximum Likelihood Estimation Econometrics II Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico Outline 1 3 4 General Approaches to Parameter

More information

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise.

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise. 1. Suppose Y 1, Y 2,..., Y n is an iid sample from a Bernoulli(p) population distribution, where 0 < p < 1 is unknown. The population pmf is p y (1 p) 1 y, y = 0, 1 p Y (y p) = (a) Prove that Y is the

More information

Web-based Supplementary Material for A Two-Part Joint. Model for the Analysis of Survival and Longitudinal Binary. Data with excess Zeros

Web-based Supplementary Material for A Two-Part Joint. Model for the Analysis of Survival and Longitudinal Binary. Data with excess Zeros Web-based Supplementary Material for A Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with excess Zeros Dimitris Rizopoulos, 1 Geert Verbeke, 1 Emmanuel Lesaffre 1 and Yves

More information

Generalized Linear Models. Last time: Background & motivation for moving beyond linear

Generalized Linear Models. Last time: Background & motivation for moving beyond linear Generalized Linear Models Last time: Background & motivation for moving beyond linear regression - non-normal/non-linear cases, binary, categorical data Today s class: 1. Examples of count and ordered

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Charles E. McCulloch Biometrics Unit and Statistics Center Cornell University

Charles E. McCulloch Biometrics Unit and Statistics Center Cornell University A SURVEY OF VARIANCE COMPONENTS ESTIMATION FROM BINARY DATA by Charles E. McCulloch Biometrics Unit and Statistics Center Cornell University BU-1211-M May 1993 ABSTRACT The basic problem of variance components

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak.

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak. Large Sample Theory Large Sample Theory is a name given to the search for approximations to the behaviour of statistical procedures which are derived by computing limits as the sample size, n, tends to

More information

Simulating Realistic Ecological Count Data

Simulating Realistic Ecological Count Data 1 / 76 Simulating Realistic Ecological Count Data Lisa Madsen Dave Birkes Oregon State University Statistics Department Seminar May 2, 2011 2 / 76 Outline 1 Motivation Example: Weed Counts 2 Pearson Correlation

More information

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University Spatial Lasso with Application to GIS Model Selection F. Jay Breidt Colorado State University with Hsin-Cheng Huang, Nan-Jung Hsu, and Dave Theobald September 25 The work reported here was developed under

More information

LOGISTIC REGRESSION Joseph M. Hilbe

LOGISTIC REGRESSION Joseph M. Hilbe LOGISTIC REGRESSION Joseph M. Hilbe Arizona State University Logistic regression is the most common method used to model binary response data. When the response is binary, it typically takes the form of

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

MLE and GMM. Li Zhao, SJTU. Spring, Li Zhao MLE and GMM 1 / 22

MLE and GMM. Li Zhao, SJTU. Spring, Li Zhao MLE and GMM 1 / 22 MLE and GMM Li Zhao, SJTU Spring, 2017 Li Zhao MLE and GMM 1 / 22 Outline 1 MLE 2 GMM 3 Binary Choice Models Li Zhao MLE and GMM 2 / 22 Maximum Likelihood Estimation - Introduction For a linear model y

More information

General Regression Model

General Regression Model Scott S. Emerson, M.D., Ph.D. Department of Biostatistics, University of Washington, Seattle, WA 98195, USA January 5, 2015 Abstract Regression analysis can be viewed as an extension of two sample statistical

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random STA 216: GENERALIZED LINEAR MODELS Lecture 1. Review and Introduction Much of statistics is based on the assumption that random variables are continuous & normally distributed. Normal linear regression

More information

Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data

Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data Eduardo Elias Ribeiro Junior 1 2 Walmes Marques Zeviani 1 Wagner Hugo Bonat 1 Clarice Garcia

More information

Estimation in Generalized Linear Models with Heterogeneous Random Effects. Woncheol Jang Johan Lim. May 19, 2004

Estimation in Generalized Linear Models with Heterogeneous Random Effects. Woncheol Jang Johan Lim. May 19, 2004 Estimation in Generalized Linear Models with Heterogeneous Random Effects Woncheol Jang Johan Lim May 19, 2004 Abstract The penalized quasi-likelihood (PQL) approach is the most common estimation procedure

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

2. Inference method for margins and jackknife.

2. Inference method for margins and jackknife. The Estimation Method of Inference Functions for Margins for Multivariate Models Harry Joe and James J. Xu Department of Statistics, University of British Columbia ABSTRACT An estimation approach is proposed

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

1/15. Over or under dispersion Problem

1/15. Over or under dispersion Problem 1/15 Over or under dispersion Problem 2/15 Example 1: dogs and owners data set In the dogs and owners example, we had some concerns about the dependence among the measurements from each individual. Let

More information

Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52

Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52 Statistics for Applications Chapter 10: Generalized Linear Models (GLMs) 1/52 Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52 Components of a linear model The two

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58 Generalized Linear Mixed-Effects Models Copyright c 2015 Dan Nettleton (Iowa State University) Statistics 510 1 / 58 Reconsideration of the Plant Fungus Example Consider again the experiment designed to

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

Composite likelihood methods

Composite likelihood methods 1 / 20 Composite likelihood methods Nancy Reid University of Warwick, April 15, 2008 Cristiano Varin Grace Yun Yi, Zi Jin, Jean-François Plante 2 / 20 Some questions (and answers) Is there a drinks table

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Overview of Extreme Value Theory. Dr. Sawsan Hilal space Overview of Extreme Value Theory Dr. Sawsan Hilal space Maths Department - University of Bahrain space November 2010 Outline Part-1: Univariate Extremes Motivation Threshold Exceedances Part-2: Bivariate

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

Frailty Models and Copulas: Similarities and Differences

Frailty Models and Copulas: Similarities and Differences Frailty Models and Copulas: Similarities and Differences KLARA GOETHALS, PAUL JANSSEN & LUC DUCHATEAU Department of Physiology and Biometrics, Ghent University, Belgium; Center for Statistics, Hasselt

More information

Quasi-likelihood Scan Statistics for Detection of

Quasi-likelihood Scan Statistics for Detection of for Quasi-likelihood for Division of Biostatistics and Bioinformatics, National Health Research Institutes & Department of Mathematics, National Chung Cheng University 17 December 2011 1 / 25 Outline for

More information

Hierarchical Modelling for Univariate and Multivariate Spatial Data

Hierarchical Modelling for Univariate and Multivariate Spatial Data Hierarchical Modelling for Univariate and Multivariate Spatial Data p. 1/4 Hierarchical Modelling for Univariate and Multivariate Spatial Data Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota

More information

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. semi-parametric likelihood, partial likelihood 3. empirical likelihood,

More information

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions.

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions. Large Sample Theory Study approximate behaviour of ˆθ by studying the function U. Notice U is sum of independent random variables. Theorem: If Y 1, Y 2,... are iid with mean µ then Yi n µ Called law of

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1 Count models A classical, theoretical argument for the Poisson distribution is the approximation Binom(n, p) Pois(λ) for large n and small p and λ = np. This can be extended considerably to n approx Z

More information