MiniBooNE Event Reconstruction and Particle Identification

Size: px
Start display at page:

Download "MiniBooNE Event Reconstruction and Particle Identification"

Transcription

1 MnBooNE Event Recontructon and Partcle Identfcaton Ha-Jun Yang Unverty of Mchgan, Ann Arbor (for the MnBooNE Collaboraton) DNP06, Nahvlle, TN October 25-28, 2006

2 Outlne Phyc Motvaton MnBooNE Event Type Event Recontructon Partcle Identfcaton Summary 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 2

3 Phyc Motvaton LSND oberved a potve gnal, but not confrmed. L m P( e ) n ( )n ( Δ νμ ν = 2 2θ 2 ) = ( ± ± )% E The MnBooNE degned to confrm or refute LSND ocllaton reult at Δm 2 ~ 1.0 ev 2. 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 3

4 MnBooNE Flux 8 GeV proton on Be target gve: p + Be π +, K +, K 0 L ν μ from: π + μ + ν μ K + μ + ν μ K 0 L π - μ + ν μ Intrnc ν e from: μ + e + ν e ν μ K + π 0 e + ν e K 0 L π - e + ν e The ntrnc ν e ~0.5% of the neutrno Flux, t one of major background for ν μ ν e earch. L(m), E(MeV), Δm 2 (ev 2 ) 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 4

5 Event Topology 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 5

6 Event Recontructon To recontruct event poton, drecton, tme, energy and nvarant ma etc. Cerenkov lght prompt, drectonal Scntllaton lght delayed, otropc Ung tme lkelhood and charge lkelhood method to determne the optmal event parameter. Two parallel recontructon package S-Ftter baed on a mple, pont-lke lght ource model; P-Ftter dffer from S-Ftter by ung more 0 th approxmaton tre, addng e/μ track wth longtudnally varyng lght ource term, wavelength-dependent lght propagaton and detecton, non-pont-lke PMT and photon catterng, fluorecence and reflecton. 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 6

7 Recontructon Performance Mchel Electron 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 7

8 Partcle Identfcaton Two complementary and parallel method: Log-lkelhood technque: mple to undertand, wdely ued n HEP data analy but le entve Booted Decon Tree: Non-lnear combnaton of nput varable Great performance for large number of nput varable (about two hundred varable) Powerful and table by combnng many decon tree to make a majorty vote 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 8

9 Booted Decon Tree How to buld a decon tree? For each node, try to fnd the bet varable and plttng pont whch gve the bet eparaton baed on Gn ndex. Gn_node = Weght_total*P*(1-P), P weghted purty Crteron = Gn_father Gn_left_on Gn_rght_on Varable elected a pltter by maxmzng the crteron. How to boot the decon tree? Weght of mclafed event n current tree are ncreaed, the next tree bult ung the ame event but wth new weght, Typcally, one may buld few hundred to thouand tree. How to calculate the event core? For a gven event, f t land on the gnal leaf n one tree, t gven a core of 1, otherwe, -1. The um (probably weghted) of core from all tree the fnal core of the event. 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 9

10 Performance v Number of Tree The advantage of ung booted decon tree that t combne many decon tree, weak clafer, to make a powerful clafer. The performance of booted decon tree table after a few hundred tree teraton. Booted decon tree focu on the mclafed event whch uually have hgh weght after hundred of tree teraton. An ndvdual tree ha a very weak dcrmnatng power; the weghted mclafed event rate err m about Ref1: H.J.Yang,, B.P. Roe, J. Zhu, Stude of Booted Decon Tree for MnBooNE Partcle Identfcaton, Phyc/ , Nucl. Intum.. & Meth.. A 555(2005) Ref2: B.P. Roe, H.J. Yang, J. Zhu, Y. Lu, I. Stancu,, G. McGregor, Booted decon tree a an alternatve to artfcal neural network for partcle dentfcaton,, phyc/ , NIMA 543 (2005) /26/2006 DNP06, H.J.Yang, MnBooNE PID 10

11 Output of Booted Decon Tree Oc ν e CCQE v All Background MC v ν μ Data 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 11

12 Summary MnBooNE Event Recontructon Poton reoluton ~ 23 cm Drecton reoluton ~ 6 o Energy reoluton ~ 15% Recontructed π 0 ma reoluton ~ 20 MeV/c 2 MnBooNE Partcle Identfcaton For 0.1% μ eff., ~ 90% electron eff. For 1% π 0 eff., ~ 70% electron eff. For 0.5% all background eff., ~ 80% electron eff. MnBooNE Reult are comng oon 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 12

13 Backup Slde 10/26/2006 DNP06, H.J.Yang, MnBooNE PID 13

14 Lght Model Cerenkov lght - drectonal CER r λcer μ = ρε F(co ϑ, E) f (co η) exp( / ) 2 r Scntllaton lght - otopc SCI r λc = f (co ) exp( / ) 2 r Predcted charge μ ϕε η μ = μ + μ CER SCI 1. Cerenkov angular dtrbuton - F(coϑ) 2. PMT angular repone f(coη) 3. Cerenkov attenuaton length λcer 4. Scntllaton attenuaton length - λc 5. Relatve quantum effcency - ε 6. Cerenkov lght trength - ρ Iotropc Scntlaton lght φ Drectonal Cherenkov lght ρ θc (x y z t) (ux uy uz) r η Pont-lke lght ource model f(coη) Scntllaton lght trength - ϕ /26/2006 DNP06, H.J.Yang, MnBooNE PID 14 coη

15 1. Corrected tme () t = t t corr 2. Cerenkov lght t corr () dtrbuton Lght Model 0 r c n T cer ( t ) corr = 1 E E t t E corr c ( c, ) exp 1 ( c, ) [ 2 (, )] μ πσ μ σ μ 2 3. Scntllaton lght t corr () dtrbuton T c ( t ) corr 2 1 E tcorr t E (, E) exp σ ( μ, ) (, ) 0 μ = 2 2τμ 2τ ( μ, E) τμ (, E) σμ (, E) tcorr t (, E) 0 μ exp Erfc 2τμ (, E) 2τμ (, E) 4. Input: Cerenkov lght t 0 cer,σ cer Scntllaton lght t 0 c,σ c,τ c Ht/1 n 6 10 Monte Carlo mulaton Data 5. Total negatve log tme lkelhood μc μ Lt ( () corr ) = log( Tcer ( t () corr, μc ) + Tc ( t () corr, μ )) μ + μ μ + μ c c Corrected Tme (n)

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

Introduction to the Introduction to Artificial Neural Network

Introduction to the Introduction to Artificial Neural Network Introducton to the Introducton to Artfcal Neural Netork Vuong Le th Hao Tang s sldes Part of the content of the sldes are from the Internet (possbly th modfcatons). The lecturer does not clam any onershp

More information

Root Locus Techniques

Root Locus Techniques Root Locu Technque ELEC 32 Cloed-Loop Control The control nput u t ynthezed baed on the a pror knowledge of the ytem plant, the reference nput r t, and the error gnal, e t The control ytem meaure the output,

More information

Meshless Surfaces. presented by Niloy J. Mitra. An Nguyen

Meshless Surfaces. presented by Niloy J. Mitra. An Nguyen Meshless Surfaces presented by Nloy J. Mtra An Nguyen Outlne Mesh-Independent Surface Interpolaton D. Levn Outlne Mesh-Independent Surface Interpolaton D. Levn Pont Set Surfaces M. Alexa, J. Behr, D. Cohen-Or,

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

Scattering of two identical particles in the center-of. of-mass frame. (b)

Scattering of two identical particles in the center-of. of-mass frame. (b) Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Chapter 7 Four-Wave Mixing phenomena

Chapter 7 Four-Wave Mixing phenomena Chapter 7 Four-Wave Mx phenomena We wll dcu n th chapter the general nonlnear optcal procee wth four nteract electromagnetc wave n a NLO medum. Frt note that FWM procee are allowed n all meda (nveron or

More information

AP Statistics Ch 3 Examining Relationships

AP Statistics Ch 3 Examining Relationships Introducton To tud relatonhp between varable, we mut meaure the varable on the ame group of ndvdual. If we thnk a varable ma eplan or even caue change n another varable, then the eplanator varable and

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

Geometrical Optics Mirrors and Prisms

Geometrical Optics Mirrors and Prisms Phy 322 Lecture 4 Chapter 5 Geometrcal Optc Mrror and Prm Optcal bench http://webphyc.davdon.edu/applet/optc4/default.html Mrror Ancent bronze mrror Hubble telecope mrror Lqud mercury mrror Planar mrror

More information

Iterative Methods for Searching Optimal Classifier Combination Function

Iterative Methods for Searching Optimal Classifier Combination Function htt://www.cub.buffalo.edu Iteratve Method for Searchng Otmal Clafer Combnaton Functon Sergey Tulyakov Chaohong Wu Venu Govndaraju Unverty at Buffalo Identfcaton ytem: Alce Bob htt://www.cub.buffalo.edu

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Nice plotting of proteins II

Nice plotting of proteins II Nce plottng of protens II Fnal remark regardng effcency: It s possble to wrte the Newton representaton n a way that can be computed effcently, usng smlar bracketng that we made for the frst representaton

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008)

Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008) Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008) RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement

More information

Search for Z tt at LHC with the ATLAS Detector

Search for Z tt at LHC with the ATLAS Detector Search for Z tt at LHC with the ATLAS Detector Hai-Jun Yang University of Michigan, Ann Arbor US-ATLAS Jamboree September 9, 2008 Outline Physics motivation W / Top reconstruction from jets Event selections

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm Start Pont and Trajectory Analy for the Mnmal Tme Sytem Degn Algorthm ALEXANDER ZEMLIAK, PEDRO MIRANDA Department of Phyc and Mathematc Puebla Autonomou Unverty Av San Claudo /n, Puebla, 757 MEXICO Abtract:

More information

S-Domain Analysis. s-domain Circuit Analysis. EE695K VLSI Interconnect. Time domain (t domain) Complex frequency domain (s domain) Laplace Transform L

S-Domain Analysis. s-domain Circuit Analysis. EE695K VLSI Interconnect. Time domain (t domain) Complex frequency domain (s domain) Laplace Transform L EE695K S nterconnect S-Doman naly -Doman rcut naly Tme doman t doman near rcut aplace Tranform omplex frequency doman doman Tranformed rcut Dfferental equaton lacal technque epone waveform aplace Tranform

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

N.T.Phong Y.H.Ahn YongPhyong Yonsei Univ.

N.T.Phong Y.H.Ahn YongPhyong Yonsei Univ. Leptogeness n a seesaw model wth Frtzsch type lepton mass matrces N.T.Phong Y.H.hn 008. 0. 6 YongPhyong Yonse Unv. Introducton Present knowledge of Neutrno data (at 3 σ ) hep-ph/040517 Mxng ngles 0.3 Sn

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

B. T. Fleming SLAC Summer Institute August 9th, MiniBooNE First Oscillation Results

B. T. Fleming SLAC Summer Institute August 9th, MiniBooNE First Oscillation Results B. T. Fleming SLAC Summer Institute August 9th, 2007 MiniBooNE First Oscillation Results The beginnings of the neutrino: Desperate Remedies 1930: Pauli...I have predicted something which shall never be

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Joint Source Coding and Higher-Dimension Modulation

Joint Source Coding and Higher-Dimension Modulation Jont Codng and Hgher-Dmenon Modulaton Tze C. Wong and Huck M. Kwon Electrcal Engneerng and Computer Scence Wchta State Unvert, Wchta, Kana 676, USA {tcwong; huck.kwon}@wchta.edu Abtract Th paper propoe

More information

Oscillation Results from MiniBooNE. First ν μ. ν e. Morgan Wascko Imperial College London. Oxford Particle Physics Seminar May 8, 2007

Oscillation Results from MiniBooNE. First ν μ. ν e. Morgan Wascko Imperial College London. Oxford Particle Physics Seminar May 8, 2007 1 First ν μ ν e Oscillation Results from MiniBooNE Morgan Wascko Imperial College London Oxford Particle Physics Seminar May 8, 2007 2 Outline 1. Motivation & Introduction 2. Description of the Experiment

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Multilayer neural networks

Multilayer neural networks Lecture Multlayer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Mdterm exam Mdterm Monday, March 2, 205 In-class (75 mnutes) closed book materal covered by February 25, 205 Multlayer

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

Method Of Fundamental Solutions For Modeling Electromagnetic Wave Scattering Problems

Method Of Fundamental Solutions For Modeling Electromagnetic Wave Scattering Problems Internatonal Workhop on MehFree Method 003 1 Method Of Fundamental Soluton For Modelng lectromagnetc Wave Scatterng Problem Der-Lang Young (1) and Jhh-We Ruan (1) Abtract: In th paper we attempt to contruct

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

1 Binary Response Models

1 Binary Response Models Bnary and Ordered Multnomal Response Models Dscrete qualtatve response models deal wth dscrete dependent varables. bnary: yes/no, partcpaton/non-partcpaton lnear probablty model LPM, probt or logt models

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted Appendx Proof of heorem he multvarate Gauan probablty denty functon for random vector X (X,,X ) px exp / / x x mean and varance equal to the th dagonal term of, denoted he margnal dtrbuton of X Gauan wth

More information

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing CSC321 Tutoral 9: Revew of Boltzmann machnes and smulated annealng (Sldes based on Lecture 16-18 and selected readngs) Yue L Emal: yuel@cs.toronto.edu Wed 11-12 March 19 Fr 10-11 March 21 Outlne Boltzmann

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artfcal Intellgence Bayesan Networks Adapted from sldes by Tm Fnn and Mare desjardns. Some materal borrowed from Lse Getoor. 1 Outlne Bayesan networks Network structure Condtonal probablty tables Condtonal

More information

Body Models I-2. Gerard Pons-Moll and Bernt Schiele Max Planck Institute for Informatics

Body Models I-2. Gerard Pons-Moll and Bernt Schiele Max Planck Institute for Informatics Body Models I-2 Gerard Pons-Moll and Bernt Schele Max Planck Insttute for Informatcs December 18, 2017 What s mssng Gven correspondences, we can fnd the optmal rgd algnment wth Procrustes. PROBLEMS: How

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcut II (ECE33b) Applcaton of Laplace Tranform to Crcut Analy Anet Dounav The Unverty of Wetern Ontaro Faculty of Engneerng Scence Crcut Element Retance Tme Doman (t) v(t) R v(t) = R(t) Frequency

More information

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Neutrino mixing II. Can ν e ν µ ν τ? If this happens: Can ν e ν µ ν τ? If this happens: Neutrino mixing II neutrinos have mass (though there are some subtleties involving the MSW mechanism) physics beyond the (perturbative) Standard Model participates Outline:

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

Cascade Training Technique for Particle Identification arxiv:physics/ v1 [physics.data-an] 27 Nov 2006

Cascade Training Technique for Particle Identification arxiv:physics/ v1 [physics.data-an] 27 Nov 2006 Cascade Training Technique for Particle Identification arxiv:physics/611267v1 [physics.data-an] 27 Nov 26 Abstract Yong Liu, Ion Stancu Department of Physics and Astronomy University of Alabama, Tuscaloosa,

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE ame: THERMAL DISTRIBUTIO I THE HCL SPECTRUM OBJECTIVE To nvestgate a system s thermal dstrbuton n dscrete states; specfcally, determne HCl gas temperature from the relatve occupatons of ts rotatonal states.

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegian Business School 2011

A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegian Business School 2011 A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegan Busness School 2011 Functons featurng constant elastcty of substtuton CES are wdely used n appled economcs and fnance. In ths note, I do two thngs. Frst,

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics /7/7 CSE 73: Artfcal Intellgence Bayesan - Learnng Deter Fox Sldes adapted from Dan Weld, Jack Breese, Dan Klen, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer What s Beng Learned? Space

More information

Measurements using quantumcorrelated

Measurements using quantumcorrelated Meaurement ung quantumcorrelated charm meon Yangheng Zheng Unverty of Chnee Academy of Scence (CLEO-c & BESIII ) CHARM 013 @ Mancheter Sep. 3, 013 Outlne Introducton Expermental reult 0 K + - (CLEO-c &

More information

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009 Charged current single pion to quasi-elastic cross section ratio in MiniBooNE Steven Linden PAVI09 25 June 2009 Motivation Oscillation searches needed for leptonic CP violation. One approach: search for

More information

Variable Structure Control ~ Basics

Variable Structure Control ~ Basics Varable Structure Control ~ Bac Harry G. Kwatny Department of Mechancal Engneerng & Mechanc Drexel Unverty Outlne A prelmnary example VS ytem, ldng mode, reachng Bac of dcontnuou ytem Example: underea

More information

Multiline Overview. Karl Bois, PhD Lead SI Engineer Servers & Blades. December 5th, 2016

Multiline Overview. Karl Bois, PhD Lead SI Engineer Servers & Blades. December 5th, 2016 Multlne Overvew Karl Bos, PhD Lead SI Engneer Servers & Blades December 5th, 216 Why are we here? Orgnal Equpment Manufacturers (OEMs) and Orgnal Desgn Manufacturers (ODMs) have desgns that requre that

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

CLASSIFICATION OF HIGGS JETS AS DECAY PRODUCTS OF A RANDALL-SUNDRUM GRAVITON AT THE ATLAS EXPERIMENT

CLASSIFICATION OF HIGGS JETS AS DECAY PRODUCTS OF A RANDALL-SUNDRUM GRAVITON AT THE ATLAS EXPERIMENT CLASSIFICATION OF HIGGS JETS AS DECAY PRODUCTS OF A RANDALL-SUNDRUM GRAVITON AT THE ATLAS EXPERIMENT AVIV CUKIERMAN, ZIHAO JIANG. Introducton In 202, physcsts at the Large Hadron Collder announced the

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan Kernels n Support Vector Machnes Based on lectures of Martn Law, Unversty of Mchgan Non Lnear separable problems AND OR NOT() The XOR problem cannot be solved wth a perceptron. XOR Per Lug Martell - Systems

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #16 Scrbe: Yannan Wang Aprl 3, 014 1 Introducton The goal of our onlne learnng scenaro from last class s C comparng wth best expert and

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

AS-Level Maths: Statistics 1 for Edexcel

AS-Level Maths: Statistics 1 for Edexcel 1 of 6 AS-Level Maths: Statstcs 1 for Edecel S1. Calculatng means and standard devatons Ths con ndcates the slde contans actvtes created n Flash. These actvtes are not edtable. For more detaled nstructons,

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machne Learnng - Lectures Lecture 1-2: Concept Learnng (M. Pantc Lecture 3-4: Decson Trees & CC Intro (M. Pantc Lecture 5-6: Artfcal Neural Networks (S.Zaferou Lecture 7-8: Instance ased Learnng

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Resonant Slepton Production

Resonant Slepton Production Overvew III. Physkalsches Insttut A Resonant Slepton Producton Chrstan Autermann III. Phys. Inst. A, RWTH Aachen The Sgnal Processes Lmt Calculaton Model-Independent Lmts Combned Lmts Supported by Chrstan

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Modeling of Dynamic Systems

Modeling of Dynamic Systems Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how

More information

Quick Visit to Bernoulli Land

Quick Visit to Bernoulli Land Although we have een the Bernoull equaton and een t derved before, th next note how t dervaton for an uncopreble & nvcd flow. The dervaton follow that of Kuethe &Chow ot cloely (I lke t better than Anderon).

More information

Computational Astrophysics

Computational Astrophysics Computatonal Astrophyscs Solvng for Gravty Alexander Knebe, Unversdad Autonoma de Madrd Computatonal Astrophyscs Solvng for Gravty the equatons full set of equatons collsonless matter (e.g. dark matter

More information

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17 Neural Networks Perceptrons and Backpropagaton Slke Bussen-Heyen Unverstät Bremen Fachberech 3 5th of Novemeber 2012 Neural Networks 1 / 17 Contents 1 Introducton 2 Unts 3 Network structure 4 Snglelayer

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

Introduction to Antennas & Arrays

Introduction to Antennas & Arrays Introducton to Antennas & Arrays Antenna transton regon (structure) between guded eaves (.e. coaxal cable) and free space waves. On transmsson, antenna accepts energy from TL and radates t nto space. J.D.

More information

Factor models with many assets: strong factors, weak factors, and the two-pass procedure

Factor models with many assets: strong factors, weak factors, and the two-pass procedure Factor models wth many assets: strong factors, weak factors, and the two-pass procedure Stanslav Anatolyev 1 Anna Mkusheva 2 1 CERGE-EI and NES 2 MIT December 2017 Stanslav Anatolyev and Anna Mkusheva

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Multi-layer neural networks

Multi-layer neural networks Lecture 0 Mult-layer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Lnear regresson w Lnear unts f () Logstc regresson T T = w = p( y =, w) = g( w ) w z f () = p ( y = ) w d w d Gradent

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Electric and magnetic field sensor and integrator equations

Electric and magnetic field sensor and integrator equations Techncal Note - TN12 Electrc and magnetc feld enor and ntegrator uaton Bertrand Da, montena technology, 1728 oen, Swtzerland Table of content 1. Equaton of the derate electrc feld enor... 1 2. Integraton

More information