Body Models I-2. Gerard Pons-Moll and Bernt Schiele Max Planck Institute for Informatics

Size: px
Start display at page:

Download "Body Models I-2. Gerard Pons-Moll and Bernt Schiele Max Planck Institute for Informatics"

Transcription

1 Body Models I-2 Gerard Pons-Moll and Bernt Schele Max Planck Insttute for Informatcs December 18, 2017

2 What s mssng Gven correspondences, we can fnd the optmal rgd algnment wth Procrustes. PROBLEMS: How do we fnd the correspondences between shapes? How do we algn shapes non-rgdly?

3 Today Optmsng algnment and correspondences usng Iteratve Closest Pont (ICP). Algnment through gradent descent based optmsaton.

4 Ideas?

5 Ideas?

6 ? Ideas?

7 Ideas The dea was to mnmse the sum of dstances between the one set of ponts and the other set, transformed E X ksrx + t y k 2 X? kf(x ) y k 2 compact notaton: f contans translaton, rotaton and sotropc scale What f we make up some reasonable correspondences? x j+1 teraton = arg mn kf j (x) y k 2 x2x X f j+1 = arg mn f kf(x j+1 ) y k 2 Gven current best transformaton, whch are the closest correspondences? Gven current best correspondences, whch s the best transformaton?

8 Ideas The dea was to mnmse the sum of dstances between the one set of ponts and the other set, transformed E X ksrx + t y k 2 X? kf(x ) y k 2 compact notaton: f contans translaton, rotaton and sotropc scale What f we make up some reasonable correspondences? x j+1 teraton = arg mn kf j (x) y k 2 x2x X f j+1 = arg mn f kf(x j+1 ) y k 2 Gven current best transformaton, whch are the closest correspondences? Gven current best correspondences, whch s the best transformaton?

9 Ideas The dea was to mnmse the sum of dstances between the one set of ponts and the other set, transformed E X ksrx + t y k 2 X? kf(x ) y k 2 compact notaton: f contans translaton, rotaton and sotropc scale What f we fnd some reasonable correspondences? x j+1 teraton orgnal unsorted ponts = arg mn kf j (x) y k 2 x2x X f j+1 = arg mn f kf(x j+1 ) y k 2 Gven current best transformaton, whch are the closest correspondences? Gven current best correspondences, whch s the best transformaton?

10 Ideas The dea was to mnmse the sum of dstances between the one set of ponts and the other set, transformed E X ksrx + t y k 2 X? kf(x ) y k 2 compact notaton: f contans translaton, rotaton and sotropc scale What f we make up some reasonable correspondences? x j+1 teraton = arg mn kf j (x) y k 2 x2x X f j+1 = arg mn f kf(x j+1 ) y k 2 Gven current best transformaton, whch are the closest correspondences? Gven current best correspondences, whch s the best transformaton?

11 Make up reasonable correspondences X Y

12 Make up reasonable correspondences X f 0 (X) x 1 0 y 0 Neutral ntalsaton. Intalsng t to algn centrods should work better! f 0 = {R = I, t = 0,s=1} x 1 0 = arg mn x2x kf 0 (x) y 0 k 2

13 Make up reasonable correspondences x 1 0 x 1 1 y 0 y 1 f 0 = {R = I, t = 0,s=1} x 1 = arg mn x2x kf 0 (x) y k 2

14 Solve for the best transformaton solve wth procrustes x 1 = arg mn kf 0 (x) y k 2 x2x f 1 X = arg mn kf(x 1 ) y k 2 f

15 f 1 (X) Apply t

16 and terate! f 1 (X) f 1 = arg mn f X kf(x 1 ) y k 2 x 2 = arg mn x2x kf 1 (x) y k 2

17 and terate! f j (X) x j+1 f j = arg mn f X kf(x j ) y k 2 = arg mn x2x kf j (x) y k 2

18 and terate! f j (X) x j+1 f j = arg mn f X kf(x j ) y k 2 = arg mn x2x kf j (x) y k 2

19 and terate! f j (X) x j+1 f j = arg mn f X kf(x j ) y k 2 = arg mn x2x kf j (x) y k 2

20 and terate! f j (X) x j+1 f j = arg mn f X kf(x j ) y k 2 = arg mn x2x kf j (x) y k 2

21 and terate! f j (X) x j+1 f j = arg mn f X kf(x j ) y k 2 = arg mn x2x kf j (x) y k 2

22 Iteratve Closest Pont (ICP) typcally better than 0 1. ntalse 2. compute correspondences accordng to current best transform 3. compute optmal transformaton ( s, R, t )wth Procrustes 4. termnate f converged (error below a threshold), otherwse terate 5. converges to local mnma f 0 = {R = I, t = x j+1 f j+1 = arg mn f P y N P x N,s=1} = arg mn x2x kf j (x) y k 2 X kf(x j+1 ) y k 2

23 Iteratve Closest Pont (ICP) 1. ntalse 2. compute correspondences accordng to current best transform 3. compute optmal transformaton ( s, R, t )wth Procrustes 4. termnate f converged (error below a threshold), otherwse terate 5. converges to local mnma f 0 = {R = I, t = x j+1 f j+1 = arg mn f P y N P x N,s=1} = arg mn x2x kf j (x) y k 2 X kf(x j+1 ) y k 2

24 Iteratve Closest Pont (ICP) 1. ntalse 2. compute correspondences accordng to current best transform 3. compute optmal transformaton ( s, R, t ) wth Procrustes 4. termnate f converged (error below a threshold), otherwse terate 5. converges to local mnma f 0 = {R = I, t = x j+1 f j+1 = arg mn f P y N P x N,s=1} = arg mn x2x kf j (x) y k 2 X kf(x j+1 ) y k 2

25 Iteratve Closest Pont (ICP) 1. ntalse 2. compute correspondences accordng to current best transform 3. compute optmal transformaton ( s, R, t )wth Procrustes 4. termnate f converged (error below a threshold), otherwse terate 5. converges to local mnma f 0 = {R = I, t = x j+1 f j+1 = arg mn f P y N P x N,s=1} = arg mn x2x kf j (x) y k 2 X kf(x j+1 ) y k 2

26 Iteratve Closest Pont (ICP) 1. ntalse 2. compute correspondences accordng to current best transform 3. compute optmal transformaton ( s, R, t )wth Procrustes 4. termnate f converged (error below a threshold), otherwse terate (go to step 2) 5. converges to local mnma f 0 = {R = I, t = x j+1 f j+1 = arg mn f P y N P x N,s=1} = arg mn x2x kf j (x) y k 2 X kf(x j+1 ) y k 2

27 Is ICP the best we can do? teraton j compute closest ponts compute optmal transformaton wth Procrustes apply transformaton termnate f converged, otherwse terate

28 Brute force s n^2 Closest ponts

29 Closest ponts Tree based methods (e.g. kdtree) have avg. complexty log(n) Random pont samplng also reduces the runnng tme

30 Is ICP the best we can do? teraton j compute closest ponts compute optmal transformaton wth Procrustes apply transformaton termnate f converged, otherwse terate

31 Best transformaton? Procrustes gves us the optmal rgd transformaton and scale gven correspondences What f the deformaton model s not rgd? Can we generalse ICP to non-rgd deformaton?

32 Iteratve Closest Pont (ICP) teraton j compute closest ponts In whch drecton should I move? compute optmal transformaton wth Procrustes apply transformaton termnate f converged, otherwse terate

33 Iteratve Closest Pont (ICP) teraton j compute closest ponts In whch drecton should I move? compute optmal transformaton wth Procrustes apply transformaton compute a transform that reduces the error termnate f converged, otherwse terate

34 Gradent-based ICP teraton j compute closest ponts Jacoban of dstance-based energy compute optmal transformaton wth Procrustes apply transformaton compute descent step by lnearsng the energy termnate f converged, otherwse terate

35 Gradent-based ICP arg mn f E(f) = arg mn f X kf(x j+1 ) y k 2 If f s a rgd transformaton we can solve ths mnmsaton usng Procrustes If f s a general non-lnear functon? Gradent descent: f k+1 = f k r f E(f) For least squares, s there a better optmsaton method? yes: Gauss-Newton based methods.

36 Gradent-based ICP 1. Energy: E X k mn x f(x) y k 2 2. Consder the correspondences fxed n each teraton j+1 x j+1 = arg mn x2x kf j (x) y k 2 3. Compute gradent of the energy around current estmaton g j+1 = re(f j ) 4. Apply step (gradent descent, dogleg, LM, BFGS ) f j+1 = k step (g 0...j+1,f 0...j ) (for example f j+1 = f j g j+1 ) 5. termnate f converged, otherwse terate (go to step 2)

37 Try t!

38 Gradent-based ICP Energy: Consder the correspondences fxed n each teraton j+1 Compute gradent of the energy around current estmaton Apply step (gradent descent, dogleg, LM, BFGS ) termnate f converged, otherwse terate

39 Gradent-based ICP E X k mn x f(x) y k 2 gradent: dervatve of the sum of squared dstances between target ponts and scale, rotated and translated source ponts, wth respect to the the scale, rotaton and translaton Each dervatve s easy Who takes the chalk and wrtes t down? g j+1 = re(f j ) Chan rule and automatc dfferentaton!

40 Gradent-based ICP E X k mn x f(x) y k 2 gradent: dervatve of the sum of squared dstances between target ponts and scale, rotated and translated source ponts, wth respect to the the scale, rotaton and translaton Each dervatve s easy Who takes the chalk and wrtes t down? g j+1 = re(f j ) Chan rule and automatc dfferentaton!

41 Gradent-based ICP E X k mn x f(x) y k 2 gradent: dervatve of the sum of squared dstances between target ponts and scale, rotated and translated source ponts, wth respect to the the scale, rotaton and translaton Each dervatve s easy Who takes the chalk and wrtes t down? g j+1 = re(f j ) Chan rule and automatc dfferentaton!

42 Chumpy Automatc dfferentaton compatble wth numpy Jacoban: matrx encodng partal dervatve of outputs (rows) 2 b 1 b wth respect to nputs (columns) c c n The Jacobans of each operaton are encoded for you The composed Jacoban s computed wth the chan rule J a b (c) =J a (b(c))j b (c) J = db dc = 6 4. b m c b m cn 3 7 5

43 Chumpy E = X ksrx + t y k 2 wrte as f t was numpy code results n expresson tree wth jacobans avalable at each step

44 Gradent-based ICP Energy: Consder the correspondences fxed n each teraton j+1 Compute gradent of the energy around current estmaton Apply step (gradent descent, dogleg, LM, BFGS ) termnate f converged, otherwse terate f j+1 = k step (g 0...j+1,f 0...j )

45 Gradent-based ICP However, lots of standard ways are avalable n scentfc lbrares lke scpy And chumpy ntegrates well wth t Mnmsaton n a sngle lne: ch.mnmze(fun=energy, x0=[scale, rot, trans], method= dogleg')

46 Why Gradent-based ICP? Formulaton s much more generc: the energy can ncorporate other terms, more parameters, etc A lot of avalable software for solvng ths least squares problem (cvx, ceres, ) However, the resultng energy s non-convex for general deformaton models. Optmsaton can get trapped n local mnma.

47 Take-home message Procrustes s optmal gven optmal correspondences and for rgd algnment problems. For other problems: We can compute correspondences and solve for the best transformaton teratvely wth Iteratve Closest Pont (ICP)

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Geometric Registration for Deformable Shapes. 2.1 ICP + Tangent Space optimization for Rigid Motions

Geometric Registration for Deformable Shapes. 2.1 ICP + Tangent Space optimization for Rigid Motions Geometrc Regstraton for Deformable Shapes 2.1 ICP + Tangent Space optmzaton for Rgd Motons Regstraton Problem Gven Two pont cloud data sets P (model) and Q (data) sampled from surfaces Φ P and Φ Q respectvely.

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Structure from Motion. Forsyth&Ponce: Chap. 12 and 13 Szeliski: Chap. 7

Structure from Motion. Forsyth&Ponce: Chap. 12 and 13 Szeliski: Chap. 7 Structure from Moton Forsyth&once: Chap. 2 and 3 Szelsk: Chap. 7 Introducton to Structure from Moton Forsyth&once: Chap. 2 Szelsk: Chap. 7 Structure from Moton Intro he Reconstructon roblem p 3?? p p 2

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Meshless Surfaces. presented by Niloy J. Mitra. An Nguyen

Meshless Surfaces. presented by Niloy J. Mitra. An Nguyen Meshless Surfaces presented by Nloy J. Mtra An Nguyen Outlne Mesh-Independent Surface Interpolaton D. Levn Outlne Mesh-Independent Surface Interpolaton D. Levn Pont Set Surfaces M. Alexa, J. Behr, D. Cohen-Or,

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Efficient, General Point Cloud Registration with Kernel Feature Maps

Efficient, General Point Cloud Registration with Kernel Feature Maps Effcent, General Pont Cloud Regstraton wth Kernel Feature Maps Hanchen Xong, Sandor Szedmak, Justus Pater Insttute of Computer Scence Unversty of Innsbruck 30 May 2013 Hanchen Xong (Un.Innsbruck) 3D Regstraton

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Topic 5: Non-Linear Regression

Topic 5: Non-Linear Regression Topc 5: Non-Lnear Regresson The models we ve worked wth so far have been lnear n the parameters. They ve been of the form: y = Xβ + ε Many models based on economc theory are actually non-lnear n the parameters.

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator) Numercal Algorthms for Vsual Computng 008/09 Example Solutons for Assgnment 4 Problem (Shft nvarance of the Laplace operator The Laplace equaton s shft nvarant,.e., nvarant under translatons x x + a, y

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

Professor Terje Haukaas University of British Columbia, Vancouver The Q4 Element

Professor Terje Haukaas University of British Columbia, Vancouver  The Q4 Element Professor Terje Haukaas Unversty of Brtsh Columba, ancouver www.nrsk.ubc.ca The Q Element Ths document consders fnte elements that carry load only n ther plane. These elements are sometmes referred to

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

1 Derivation of Point-to-Plane Minimization

1 Derivation of Point-to-Plane Minimization 1 Dervaton of Pont-to-Plane Mnmzaton Consder the Chen-Medon (pont-to-plane) framework for ICP. Assume we have a collecton of ponts (p, q ) wth normals n. We want to determne the optmal rotaton and translaton

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification Instance-Based earnng (a.k.a. memory-based learnng) Part I: Nearest Neghbor Classfcaton Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n

More information

EXCE, steepest descent, conjugate gradient & BFGS

EXCE, steepest descent, conjugate gradient & BFGS Club Cast3M, 21th of November 2008 An amazng optmsaton problem P. Pegon & Ph. Capéran European Laboratory for Structural Assessment Jont Research Centre Ispra, Italy An amazng optmsaton problem OUTLINE:

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation An Experment/Some Intuton I have three cons n my pocket, 6.864 (Fall 2006): Lecture 18 The EM Algorthm Con 0 has probablty λ of heads; Con 1 has probablty p 1 of heads; Con 2 has probablty p 2 of heads

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

CHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR OF SEPARATION PRODUCTS OUTPUT DETERMINATION

CHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR OF SEPARATION PRODUCTS OUTPUT DETERMINATION Górnctwo Geonżynera Rok 0 Zeszyt / 006 Igor Konstantnovch Mladetskj * Petr Ivanovch Plov * Ekaterna Nkolaevna Kobets * Tasya Igorevna Markova * CHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far Supervsed machne learnng Lnear models Least squares regresson Fsher s dscrmnant, Perceptron, Logstc model Non-lnear

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Modeling curves. Graphs: y = ax+b, y = sin(x) Implicit ax + by + c = 0, x 2 +y 2 =r 2 Parametric:

Modeling curves. Graphs: y = ax+b, y = sin(x) Implicit ax + by + c = 0, x 2 +y 2 =r 2 Parametric: Modelng curves Types of Curves Graphs: y = ax+b, y = sn(x) Implct ax + by + c = 0, x 2 +y 2 =r 2 Parametrc: x = ax + bxt x = cos t y = ay + byt y = snt Parametrc are the most common mplct are also used,

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-015 Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and another set of ponts

More information

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients ECON 5 -- NOE 15 Margnal Effects n Probt Models: Interpretaton and estng hs note ntroduces you to the two types of margnal effects n probt models: margnal ndex effects, and margnal probablty effects. It

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far So far Supervsed machne learnng Lnear models Non-lnear models Unsupervsed machne learnng Generc scaffoldng So far

More information

An Interactive Optimisation Tool for Allocation Problems

An Interactive Optimisation Tool for Allocation Problems An Interactve Optmsaton ool for Allocaton Problems Fredr Bonäs, Joam Westerlund and apo Westerlund Process Desgn Laboratory, Faculty of echnology, Åbo Aadem Unversty, uru 20500, Fnland hs paper presents

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Nice plotting of proteins II

Nice plotting of proteins II Nce plottng of protens II Fnal remark regardng effcency: It s possble to wrte the Newton representaton n a way that can be computed effcently, usng smlar bracketng that we made for the frst representaton

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

IV. Performance Optimization

IV. Performance Optimization IV. Performance Optmzaton A. Steepest descent algorthm defnton how to set up bounds on learnng rate mnmzaton n a lne (varyng learnng rate) momentum learnng examples B. Newton s method defnton Gauss-Newton

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

Practical Newton s Method

Practical Newton s Method Practcal Newton s Method Lecture- n Newton s Method n Pure Newton s method converges radly once t s close to. It may not converge rom the remote startng ont he search drecton to be a descent drecton rue

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Hashing. Alexandra Stefan

Hashing. Alexandra Stefan Hashng Alexandra Stefan 1 Hash tables Tables Drect access table (or key-ndex table): key => ndex Hash table: key => hash value => ndex Man components Hash functon Collson resoluton Dfferent keys mapped

More information

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule: 15-745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15-745 2005-8 1 Common loop optmzatons Hostng of loop-nvarant computatons pre-compute before

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

LINEAR REGRESSION MODELS W4315

LINEAR REGRESSION MODELS W4315 LINEAR REGRESSION MODELS W4315 HOMEWORK ANSWERS February 15, 010 Instructor: Frank Wood 1. (0 ponts) In the fle problem1.txt (accessble on professor s webste), there are 500 pars of data, where the frst

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Error Bars in both X and Y

Error Bars in both X and Y Error Bars n both X and Y Wrong ways to ft a lne : 1. y(x) a x +b (σ x 0). x(y) c y + d (σ y 0) 3. splt dfference between 1 and. Example: Prmordal He abundance: Extrapolate ft lne to [ O / H ] 0. [ He

More information

A linear imaging system with white additive Gaussian noise on the observed data is modeled as follows:

A linear imaging system with white additive Gaussian noise on the observed data is modeled as follows: Supplementary Note Mathematcal bacground A lnear magng system wth whte addtve Gaussan nose on the observed data s modeled as follows: X = R ϕ V + G, () where X R are the expermental, two-dmensonal proecton

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

Iterative General Dynamic Model for Serial-Link Manipulators

Iterative General Dynamic Model for Serial-Link Manipulators EEL6667: Knematcs, Dynamcs and Control of Robot Manpulators 1. Introducton Iteratve General Dynamc Model for Seral-Lnk Manpulators In ths set of notes, we are gong to develop a method for computng a general

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

CS 229, Public Course Problem Set #3 Solutions: Learning Theory and Unsupervised Learning

CS 229, Public Course Problem Set #3 Solutions: Learning Theory and Unsupervised Learning CS9 Problem Set #3 Solutons CS 9, Publc Course Problem Set #3 Solutons: Learnng Theory and Unsupervsed Learnng. Unform convergence and Model Selecton In ths problem, we wll prove a bound on the error of

More information

Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

CS 523: Computer Graphics, Spring Shape Modeling. PCA Applications + SVD. Andrew Nealen, Rutgers, /15/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. PCA Applications + SVD. Andrew Nealen, Rutgers, /15/2011 1 CS 523: Computer Graphcs, Sprng 20 Shape Modelng PCA Applcatons + SVD Andrew Nealen, utgers, 20 2/5/20 emnder: PCA Fnd prncpal components of data ponts Orthogonal drectons that are domnant n the data (have

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

Chapter 2 Math Fundamentals

Chapter 2 Math Fundamentals Chapter 2 Math Fundamentals Part 4 2.7 Transform Graphs and Pose Networks 1 Moble Robotcs - Prof Alonzo Kelly, CMU RI Outlne 2.7.1 Transforms as Relatonshps 2.7.2 Solvng Pose Networks 2.7.3 Overconstraned

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

On the Hessian of Shape Matching Energy

On the Hessian of Shape Matching Energy On the Hessan of Shape Matchng Energy Yun Fe 1 Introducton In ths techncal report we derve the analytc form of the Hessan matrx for shape matchng energy. Shape matchng (Fg. 1) s a useful technque for meshless

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Equpotental Surfaces and Lnes Physcs for Scentsts & Engneers 2 Sprng Semester 2005 Lecture 9 January 25, 2005 Physcs for Scentsts&Engneers 2 1 When an electrc feld s present, the electrc potental has a

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms CSE 53 Lecture 4 Dynamc Programmng Junzhou Huang, Ph.D. Department of Computer Scence and Engneerng CSE53 Desgn and Analyss of Algorthms The General Dynamc Programmng Technque

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information