Six Examples of Fits Using the Poisson. Negative Binomial. and Poisson Inverse Gaussian Distributions

Size: px
Start display at page:

Download "Six Examples of Fits Using the Poisson. Negative Binomial. and Poisson Inverse Gaussian Distributions"

Transcription

1 APPENDIX A APPLICA TrONS IN OTHER DISCIPLINES Six Examples of Fits Using the Poisson. Negative Binomial. and Poisson Inverse Gaussian Distributions Poisson and mixed Poisson distributions have been extensively used in many other disciplines than actuarial science. The examples provided in this appendix, originating from sports, the military, and medicine, provide further comparisons of the Poisson, negative binomial (NB), and Poisson-inverse Gaussian (PIG) distributions. They provide a variety of illustrations of both true and apparent contagion and various degrees of clustering. X 2 values are provided using rule A.

2 44 APPLICATIONS IN OTHER DISCIPLINES Table A-I. Example 1 (Williams, 1954) Moments MLE Observed Poisson NB PIG NB PIG k nk npk npk npk Not possible X2=0.33 X2=1.24 X 2 =1.52 x = A 1..= =9.484 ~ = S2 = a=5.785 fl=0.127 y = y=i.280 y=1.445 y=1.530 In table A-I, k is the number of deaths due to horse kicks in the ten corps of the Prussian army between 1875 and This is a classical example of total randomness of accidents. The Poisson distribution provides a much better fit than both the NB and the PIG, with one parameter only. The moments methods cannot be applied, since S2<X.

3 APPENDIX A 45 Table A-2. Example 2 (Richardson, 1945, Ortiz, 1990) Moments MLE Observed Poisson NB PIG NB PIG k nk npk npk npk npk npk l l.05 14l l X 2 =2.74 X 2 =0.34 X 2 =0.33 X 2 =0.32 X 2 =0.32 x = '" 1-.=0.692 ~ = 1 1. ~ 0 = 't=10.66 ~ = S2 = a= =0.090 a= =0.092 y = l.295 y=l.202 y=1.359 y=i.368 y=i.365 y=1.371 In table A-2, k represents the number of major international wars during each of the 432 years between 1500 and The Poisson hypothesis is not rejected, indicating that the outbreak of war is mostly a random process. However, both the NB and the PIG models provide much better fits, probably due to a low degree of both true and apparent contagion. Apparent contagion may result from technological "advances" in warfare and structural changes that affect nations' ability to wage or defend against war. True contagion is a consequence of the long-lasting memories and bitter rivalries among participant nations elicited by wars: wars destabilize the international system.

4 46 APPLICA TIONS IN OTHER DISCIPLINES Table A-3. Example 3. (Reep, Pollard and Benjamin, 1971), Pollard, Benjamin and Reep, 1977) Moments MLE Observed Poisson NB PIG NB PIG k nk npk npk npk npk npk X2==735.2 X 2 ==2.16 X 2 ==11.02 X2== 1.67 X 2 ==6.65 x == '" A==0.482 ~ = = 0. 8~ 6= 2 = ~ = = ~ 1 = = S2 == a== ==1.160 a== == Y == y==1.440 y==3.253 y==3.863 y==3.322 y==4.436 In table A-3, k is the number of runs scored per half-inning in all the baseball World Series played between 1947 and The World Series, played annually between the best teams of the two Major Leagues, present our best case of a very low degree of apparent contagion and a very high degree of true contagion. Indeed World Series usually match teams with similar skills; their winning percentages during the regular season differ by very few percentage points. On the other hand, baseball is a game where runs are often scored in bunches. Run scoring is a rather rare event, since over 70 percent of all half-innings result in no score. But the scoring of a run greatly increases the probability of further runs in the same half-inning: home runs may score up to four runs; runs scored without the benefit of a

5 APPENDIX A 47 home run usually leave men on base, who can score on a single or a double; men on base create holes in the defense and increase strategic possibilities for the manager (sacrifice flies, hit-and-run, base steals, suicide squeezes). In this extreme case of true contagion, the Poisson model is totally unacceptable. Both the NB and the PIG result in satisfactory fits, but the NB clearly outperforms the PIG. The MLE method provides in both cases significantly better fits.

6 48 APPLICA nons IN OTHER DISCIPLINES Table A-4. Example 4. (Reep, Pollard and Benjamin, 1971, Pollard, Benjamin and Reep, 1977) Moments MLE Observed Poisson NB PIG NB PIG k nk npk npk npk npk npk X 2 =17.75 X 2 =3.87 X 2 =3.65 X 2 =3.88 X 2 =3.64 x = A,,= =6.721 ~ = ~ = ~ 8 = S2 = a=io.16 11=0.149 a= =0.148 y = y=0.813 y=0.985 y=0.999 y=0.981 y=0.999 In table A-4, k is the number of goals scored per game per team in the English First Division (soccer) Football League in the season. First Division teams being of more or less comparable standards, most of the contagion exhibited by the data probably comes from game strategy changes that follow a goal; the team that was scored against has to take more chances and attack more, increasing its vulnerability to counterattacks. Both the NB and the PIG provide good fits of the data, with a slight edge to the PIG. Note the rather high value of parameter a. The outcome of every sports competition results from a combination of skill and chance. The high value of a is an indicator that chance plays an important role in football, probably because it is a low-scoring game. Therefore football is likely to produce major upsets.

7 APPENDIX A 49 Table A-5. Example 5. (Reep, Pollard and Benjamin, 1971, Pollard, Benjamin and Reep, 1977) Moments MLE Observed Poisson NB PIG NB PIG k nk npk npk npk npk npk X 2 =9.21 X 2 =3.38 X 2 =3.57 X 2 =3.39 X 2 =3.55 x = " A=2.979 ~ = 5. 3~ 9= '1=5.296 ~ = S2 = a= =0.185 a= =0.186 y = y=0.579 y=0.729 y=0.745 y=0.732 y=0.746 In table A-5, k is the number of goals scored per game per team in the season of the National Hockey League. Ice hockey is a lowcontagion game in North America. Teams do not differ vastly in skills, and the scoring of a goal does not change strategies much (except at the very end of a game, when a team losing by one goal may pull its goalie during the last minute). Hence the Poisson assumption is not rejected. The NB and the PIG provide better fits, with a slight edge to the NB. Whether the improvement in the quality of the fit is worth an extra parameter is a judgment call.

8 50 APPLICA TIONS IN OTHER DISCIPLINES Table A-6. Example 6. (Gurland, 1959) Moments MLE Observed Poisson NB PIG NB PIG k nk npk npk npk npk npk l J II X 2 = X 2 =9.38 X 2 =27.26 X 2 =5.84 x 2 =17.34 A X = A=2.528 ~ = 0. 3~ 1= ~ = ~ 3 = S2 = a=0.787 ~ = a=0.588 ~ = y=i.450 y=0.629 y=2.275 y=3.303 y=2.62 I y=4.428 In table A-6, k is the number of dental cavities observed in 163 twelveyear-old school children. This example involves a very high degree of both apparent ("brush your teeth and eat less candy!") and true ("contiguity risk") contagion. Only the NB provides satisfactory fits here; the PIG model fails completely. Note that in both cases MLE estimators lead to much better fits than moments estimators.

9 APPENDIX A 51 Notes. 1. Exact Maximum Likelihood Estimators For examples 3 to 6, the sample mean and variance cannot be computed exactly with the data as provided. For instance, in example 3, the data indicate that a team scored seven or more runs in a half-inning three times but do not specify exactly how many runs. Consequently, the sample mean and variance cannot be computed exactly and all parameter estimations are approximations. In order to calculate exact maximum likelihood estimators, we have to use, for example 3, (P7+Pg+Pq+...? as the correct contribution to the likelihood function. The estimates in the tables above use (P7t Generally, we have to use the likelihood function where N k + 1 = n k + 1 +n k and k+1 is the class for which exact data are not available. We then have to substitute k 1 - L Pj j=o for the last term, and set the first derivative of the loglikelihood function equal to 0, as usual. For instance, in the Poisson case, we obtain

10 52 APPLICATIONS IN OTHER DISCIPLINES k II V!) i;o din k k ( k ). j) L(A) = _ n. ~ + ~ ~ J + ' N n. ~ l 1n - ~ ~ = 0, d ' L" L J k+1 d' L" JI. j;o II. j;o II. j=o J, As k A ~ I( 1-): n e- )." oj = da i=o j! k Ai k-i Ai) "_ e( - A ~ L" L" j;o J, j=o J,. k. l - e -~ A ~ L " j;o J, k -e - I -A): )." " j;o J,. ' we obtain the following equation to find Ie:

11 APPENDIX A 53 Similar calculations lead to exact maximum likelihood estimators for the negative binomial and Poisson-inverse Gaussian distributions. Tab[e A-7 presents the results for example 3. Table A-7. Example 3: Exact Maximum Like[ihood Estimators Observed Poisson NB PIG k nk npk npk npk [ [ [ X 2 =735.2 X 2 =1.57 X 2 =6.38 A=0.482 t=0.806 ~ = a=0.390 li= The differences between tables A-3 and A-7 are very small.

12 54 APPLICA nons IN OTHER DISCIPLINES 2. The Likelihood Ratio Test In addition to the X 2 distance, the likelihood ratio test can be used as a way of deciding between the NB/PIG and the Poisson distributions. For instance, to test the null hypothesis Ho: The random sample presented in example 2 comes from a Poisson distribution versus HI: The random sample comes from a negative binomial distribution, consider the parameter space Q= {a, 't} defining the NB, and the subset 0)= {a, 't I a--)ooo, 't--)oo,ai't=constant} defining the Poisson as a special or limiting case. Let L=L(a,'t) be the likelihood function, the joint probability of the sample L(a,'t) m II [pia,'t)tk O The generalized likelihood ratio K is defined to be K= max L(a;r:) w max L(a;r:) Q Maximizing L(a,'t) under Q is accomplished by substituting the maximum likelihood estimators for a and 't into L(a,'t). The numerator of K is obtained by using the Poisson probabilities. A low observed value of K indicates that the NB is superior to the Poisson. An observed value of K near I suggests that the hypothesis of an extra parameter is not justified. A generalized likelihood ratio test is a test that rejects Ho whenever 0 < K ::;; K*, where K* is chosen so that

13 APPENDIX A 55 P[O < K:s K 'H o is true] = a, where a is the level of significance of the test. Given the magnitude of the figures, it is usually more practical to use the loglikelihood -In L(a;t) instead ofl(a,'t). For example 2, -In L = for the Poisson, for the NB, and for the PIG. The observed value of the K statistic is for the comparison of the Poisson and the NB and for the comparison of the Poisson and the PIG. It is clearly not necessary to use the less parsimonious NB or PIG model. Table A-8 provides the values of -In L for all examples, and the observed K statistics. It shows that the Poisson distribution is to be used in examples 1 and 2 and the NB in examples 3 and 6. A two-parameter model should be used in example 4. Example 5 is a borderline case. Note that, with the exception of example 4, the NB outperforms the PIG in all cases. Table A-8. Loglikelihoods and K Statistics for All Examples Example -In L -In L -In L Poisson NB PIG K\ K E E E E-56 K 1 : PoissonlNB K2: Poisson/PIG

14 56 APPLICA nons IN OTHER DISCIPLINES Conclusions. The various examples analyzed in this appendix may be more useful to perform a valid comparison of the different models than auto accidents distributions, as they have more nonempty classes. Overall, it seems that * Maximum likelihood estimators clearly lead to better fits than moments estimators. * In a few cases the PIG provides a better fit than the NB - but only marginally better. * In cases showing a high degree of contagion, the PIG is decisively dominated by the NB (although the PIG exhibits a higher skewness than the NB). Overall, the negative binomial seems to provide the better fits, especially in the case of a very high degree of contagion.

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies The t-test: So Far: Sampling distribution benefit is that even if the original population is not normal, a sampling distribution based on this population will be normal (for sample size > 30). Benefit

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Discrete distribution. Fitting probability models to frequency data. Hypotheses for! 2 test. ! 2 Goodness-of-fit test

Discrete distribution. Fitting probability models to frequency data. Hypotheses for! 2 test. ! 2 Goodness-of-fit test Discrete distribution Fitting probability models to frequency data A probability distribution describing a discrete numerical random variable For example,! Number of heads from 10 flips of a coin! Number

More information

University of Maryland Spring Economics 422 Final Examination

University of Maryland Spring Economics 422 Final Examination Department of Economics John C. Chao University of Maryland Spring 2009 Economics 422 Final Examination This exam contains 4 regular questions and 1 bonus question. The total number of points for the regular

More information

(b). What is an expression for the exact value of P(X = 4)? 2. (a). Suppose that the moment generating function for X is M (t) = 2et +1 3

(b). What is an expression for the exact value of P(X = 4)? 2. (a). Suppose that the moment generating function for X is M (t) = 2et +1 3 Math 511 Exam #2 Show All Work 1. A package of 200 seeds contains 40 that are defective and will not grow (the rest are fine). Suppose that you choose a sample of 10 seeds from the box without replacement.

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COURSE: CBS 221 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the undergraduate

More information

Inferential statistics

Inferential statistics Inferential statistics Inference involves making a Generalization about a larger group of individuals on the basis of a subset or sample. Ahmed-Refat-ZU Null and alternative hypotheses In hypotheses testing,

More information

Section 9.1 (Part 2) (pp ) Type I and Type II Errors

Section 9.1 (Part 2) (pp ) Type I and Type II Errors Section 9.1 (Part 2) (pp. 547-551) Type I and Type II Errors Because we are basing our conclusion in a significance test on sample data, there is always a chance that our conclusions will be in error.

More information

Guidelines for comparing boxplots

Guidelines for comparing boxplots Comparing Data Sets Project IMP I Name When using boxplots to compare two or more batches of data, it is usually best to compare individual features in a methodical way. You may find the following guidelines

More information

QUESTION ONE Let 7C = Total Cost MC = Marginal Cost AC = Average Cost

QUESTION ONE Let 7C = Total Cost MC = Marginal Cost AC = Average Cost ANSWER QUESTION ONE Let 7C = Total Cost MC = Marginal Cost AC = Average Cost Q = Number of units AC = 7C MC = Q d7c d7c 7C Q Derivation of average cost with respect to quantity is different from marginal

More information

arxiv: v1 [physics.soc-ph] 24 Sep 2009

arxiv: v1 [physics.soc-ph] 24 Sep 2009 Final version is published in: Journal of Applied Statistics Vol. 36, No. 10, October 2009, 1087 1095 RESEARCH ARTICLE Are soccer matches badly designed experiments? G. K. Skinner a and G. H. Freeman b

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

ECON Semester 1 PASS Mock Mid-Semester Exam ANSWERS

ECON Semester 1 PASS Mock Mid-Semester Exam ANSWERS ECON1310 2006 Semester 1 PASS Mock Mid-Semester Exam ANSWERS MULTIPLE CHOICE QUESTIONS 1. Unemployment rates are an example of: a. Cross-sectional, quantitative, continuous data b. Time-series, quantitative,

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright 2013 by The McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO 6-1 Identify the characteristics of a probability

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters

Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters Math 3080 1. Treibergs Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters Name: Example April 4, 014 This R c program explores a goodness of fit test where the parameter is

More information

Predicting Sporting Events. Horary Interpretation. Methods of Interpertation. Horary Interpretation. Horary Interpretation. Horary Interpretation

Predicting Sporting Events. Horary Interpretation. Methods of Interpertation. Horary Interpretation. Horary Interpretation. Horary Interpretation Predicting Sporting Events Copyright 2015 J. Lee Lehman, PhD This method is perfectly fine, except for one small issue: whether it s really a horary moment. First, there s the question of whether the Querent

More information

AIM HIGH SCHOOL. Curriculum Map W. 12 Mile Road Farmington Hills, MI (248)

AIM HIGH SCHOOL. Curriculum Map W. 12 Mile Road Farmington Hills, MI (248) AIM HIGH SCHOOL Curriculum Map 2923 W. 12 Mile Road Farmington Hills, MI 48334 (248) 702-6922 www.aimhighschool.com COURSE TITLE: Statistics DESCRIPTION OF COURSE: PREREQUISITES: Algebra 2 Students will

More information

Generalized Linear Probability Models in HLM R. B. Taylor Department of Criminal Justice Temple University (c) 2000 by Ralph B.

Generalized Linear Probability Models in HLM R. B. Taylor Department of Criminal Justice Temple University (c) 2000 by Ralph B. Generalized Linear Probability Models in HLM R. B. Taylor Department of Criminal Justice Temple University (c) 2000 by Ralph B. Taylor fi=hlml15 The Problem Up to now we have been addressing multilevel

More information

PSY 305. Module 3. Page Title. Introduction to Hypothesis Testing Z-tests. Five steps in hypothesis testing

PSY 305. Module 3. Page Title. Introduction to Hypothesis Testing Z-tests. Five steps in hypothesis testing Page Title PSY 305 Module 3 Introduction to Hypothesis Testing Z-tests Five steps in hypothesis testing State the research and null hypothesis Determine characteristics of comparison distribution Five

More information

PASS Sample Size Software. Poisson Regression

PASS Sample Size Software. Poisson Regression Chapter 870 Introduction Poisson regression is used when the dependent variable is a count. Following the results of Signorini (99), this procedure calculates power and sample size for testing the hypothesis

More information

SESSION 5 Descriptive Statistics

SESSION 5 Descriptive Statistics SESSION 5 Descriptive Statistics Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures. Together with simple

More information

What s for today. More on Binomial distribution Poisson distribution. c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, / 16

What s for today. More on Binomial distribution Poisson distribution. c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, / 16 What s for today More on Binomial distribution Poisson distribution c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, 2011 1 / 16 Review: Binomial distribution Question: among the following, what

More information

Bayesian modelling of football outcomes. 1 Introduction. Synopsis. (using Skellam s Distribution)

Bayesian modelling of football outcomes. 1 Introduction. Synopsis. (using Skellam s Distribution) Karlis & Ntzoufras: Bayesian modelling of football outcomes 3 Bayesian modelling of football outcomes (using Skellam s Distribution) Dimitris Karlis & Ioannis Ntzoufras e-mails: {karlis, ntzoufras}@aueb.gr

More information

14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS

14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS 14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS In Section 14.1 the idea of a discrete probability model was introduced. In the examples of that section the probability of each basic outcome of the experiment

More information

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!! (preferred!)!!

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!!  (preferred!)!! Probability theory and inference statistics Dr. Paola Grosso SNE research group p.grosso@uva.nl paola.grosso@os3.nl (preferred) Roadmap Lecture 1: Monday Sep. 22nd Collecting data Presenting data Descriptive

More information

Win Probabilities. a tour through win probability models for hockey. Copyright Alan Ryder, 2004 Hockey Analytics

Win Probabilities. a tour through win probability models for hockey. Copyright Alan Ryder, 2004 Hockey Analytics Win Probabilities a tour through win probability models for hockey Copyright Alan Ryder, 2004 Hockey Analytics www.hockeyanalytics.com Win Probabilities Page 2 Introduction There are a large number of

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

Computations - Show all your work. (30 pts)

Computations - Show all your work. (30 pts) Math 1012 Final Name: Computations - Show all your work. (30 pts) 1. Fractions. a. 1 7 + 1 5 b. 12 5 5 9 c. 6 8 2 16 d. 1 6 + 2 5 + 3 4 2.a Powers of ten. i. 10 3 10 2 ii. 10 2 10 6 iii. 10 0 iv. (10 5

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

their contents. If the sample mean is 15.2 oz. and the sample standard deviation is 0.50 oz., find the 95% confidence interval of the true mean.

their contents. If the sample mean is 15.2 oz. and the sample standard deviation is 0.50 oz., find the 95% confidence interval of the true mean. Math 1342 Exam 3-Review Chapters 7-9 HCCS **************************************************************************************** Name Date **********************************************************************************************

More information

Homework Exercises. 1. You want to conduct a test of significance for p the population proportion.

Homework Exercises. 1. You want to conduct a test of significance for p the population proportion. Homework Exercises 1. You want to conduct a test of significance for p the population proportion. The test you will run is H 0 : p = 0.4 Ha: p > 0.4, n = 80. you decide that the critical value will be

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3

MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3 MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3 1. A four engine plane can fly if at least two engines work. a) If the engines operate independently and each malfunctions with probability q, what is the

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

1. A machine produces packets of sugar. The weights in grams of thirty packets chosen at random are shown below.

1. A machine produces packets of sugar. The weights in grams of thirty packets chosen at random are shown below. No Gdc 1. A machine produces packets of sugar. The weights in grams of thirty packets chosen at random are shown below. Weight (g) 9.6 9.7 9.8 9.9 30.0 30.1 30. 30.3 Frequency 3 4 5 7 5 3 1 Find unbiased

More information

Salt Lake Community College MATH 1040 Final Exam Fall Semester 2011 Form E

Salt Lake Community College MATH 1040 Final Exam Fall Semester 2011 Form E Salt Lake Community College MATH 1040 Final Exam Fall Semester 011 Form E Name Instructor Time Limit: 10 minutes Any hand-held calculator may be used. Computers, cell phones, or other communication devices

More information

Section 6.2 Hypothesis Testing

Section 6.2 Hypothesis Testing Section 6.2 Hypothesis Testing GIVEN: an unknown parameter, and two mutually exclusive statements H 0 and H 1 about. The Statistician must decide either to accept H 0 or to accept H 1. This kind of problem

More information

Unit II Quiz Question Sampler 2.086/2.090 Fall 2012

Unit II Quiz Question Sampler 2.086/2.090 Fall 2012 Unit II Quiz Question Sampler 2.86/2.9 Fall 212 You may refer to the text and other class materials as well as your own notes and scripts. For Quiz 2 (on Unit II) you will need a calculator (for arithmetic

More information

AP Statistics Semester I Examination Section I Questions 1-30 Spend approximately 60 minutes on this part of the exam.

AP Statistics Semester I Examination Section I Questions 1-30 Spend approximately 60 minutes on this part of the exam. AP Statistics Semester I Examination Section I Questions 1-30 Spend approximately 60 minutes on this part of the exam. Name: Directions: The questions or incomplete statements below are each followed by

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6684/01 Edexcel GCE Statistics S2 Gold Level G3 Time: 1 hour 30 minutes Materials required for examination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

ORF 245 Fundamentals of Engineering Statistics. Final Exam

ORF 245 Fundamentals of Engineering Statistics. Final Exam Princeton University Department of Operations Research and Financial Engineering ORF 245 Fundamentals of Engineering Statistics Final Exam May 22, 2008 7:30pm-10:30pm PLEASE DO NOT TURN THIS PAGE AND START

More information

Chapter # classifications of unlikely, likely, or very likely to describe possible buying of a product?

Chapter # classifications of unlikely, likely, or very likely to describe possible buying of a product? A. Attribute data B. Numerical data C. Quantitative data D. Sample data E. Qualitative data F. Statistic G. Parameter Chapter #1 Match the following descriptions with the best term or classification given

More information

MAE Probability and Statistical Methods for Engineers - Spring 2016 Final Exam, June 8

MAE Probability and Statistical Methods for Engineers - Spring 2016 Final Exam, June 8 MAE 18 - Probability and Statistical Methods for Engineers - Spring 16 Final Exam, June 8 Instructions (i) One (two-sided) cheat sheet, book tables, and a calculator with no communication capabilities

More information

RS γ γ. * Kevin D. Dayaratna is a graduate student in Mathematical Statistics at the

RS γ γ. * Kevin D. Dayaratna is a graduate student in Mathematical Statistics at the First Order Approximations of the Pythagorean Won-Loss Formula for Predicting MLB Teams Winning Percentages May 1, 01 By Kevin D Dayaratna and Steven J Miller * Abstract We mathematically prove that an

More information

Math 50: Final. 1. [13 points] It was found that 35 out of 300 famous people have the star sign Sagittarius.

Math 50: Final. 1. [13 points] It was found that 35 out of 300 famous people have the star sign Sagittarius. Math 50: Final 180 minutes, 140 points. No algebra-capable calculators. Try to use your calculator only at the end of your calculation, and show working/reasoning. Please do look up z, t, χ 2 values for

More information

4. List of program goals/learning outcomes to be met. Goal-1: Students will have the ability to analyze and graph polynomial functions.

4. List of program goals/learning outcomes to be met. Goal-1: Students will have the ability to analyze and graph polynomial functions. Course of Study Advanced Algebra 1. Introduction: Common Core Advanced Algebra, Mathematics Department, Grade 9-12, 2 semester course. 2. Course Description Common Core Advanced Algebra is a one year advanced

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

Name Class Date. Determine whether each number is a solution of the given inequality.

Name Class Date. Determine whether each number is a solution of the given inequality. 3-1 Practice Form G Inequalities and Their Graphs Write an inequality that represents each verbal expression. 1. v is greater 10. 2. b is less than or equal to 1. 3. the product of g and 2 is less than

More information

Math 562 Homework 1 August 29, 2006 Dr. Ron Sahoo

Math 562 Homework 1 August 29, 2006 Dr. Ron Sahoo Math 56 Homework August 9, 006 Dr. Ron Sahoo He who labors diligently need never despair; for all things are accomplished by diligence and labor. Menander of Athens Direction: This homework worths 60 points

More information

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 Statistics Boot Camp Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 March 21, 2018 Outline of boot camp Summarizing and simplifying data Point and interval estimation Foundations of statistical

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

T-TEST FOR HYPOTHESIS ABOUT

T-TEST FOR HYPOTHESIS ABOUT T-TEST FOR HYPOTHESIS ABOUT Previously we tested the hypothesis that a sample comes from a population with a specified using the normal distribution and a z-test. But the z-test required the population

More information

Econometrics -- Final Exam (Sample)

Econometrics -- Final Exam (Sample) Econometrics -- Final Exam (Sample) 1) The sample regression line estimated by OLS A) has an intercept that is equal to zero. B) is the same as the population regression line. C) cannot have negative and

More information

Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats

Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats Materials Needed: Bags of popcorn, watch with second hand or microwave with digital timer. Instructions: Follow the instructions on the

More information

Swarthmore Honors Exam 2012: Statistics

Swarthmore Honors Exam 2012: Statistics Swarthmore Honors Exam 2012: Statistics 1 Swarthmore Honors Exam 2012: Statistics John W. Emerson, Yale University NAME: Instructions: This is a closed-book three-hour exam having six questions. You may

More information

TMA947/MAN280 APPLIED OPTIMIZATION

TMA947/MAN280 APPLIED OPTIMIZATION Chalmers/GU Mathematics EXAM TMA947/MAN280 APPLIED OPTIMIZATION Date: 06 08 31 Time: House V, morning Aids: Text memory-less calculator Number of questions: 7; passed on one question requires 2 points

More information

Two Correlated Proportions Non- Inferiority, Superiority, and Equivalence Tests

Two Correlated Proportions Non- Inferiority, Superiority, and Equivalence Tests Chapter 59 Two Correlated Proportions on- Inferiority, Superiority, and Equivalence Tests Introduction This chapter documents three closely related procedures: non-inferiority tests, superiority (by a

More information

10.1. Comparing Two Proportions. Section 10.1

10.1. Comparing Two Proportions. Section 10.1 /6/04 0. Comparing Two Proportions Sectio0. Comparing Two Proportions After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~ST104B ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ST104B ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

Simple Counter-terrorism Decision

Simple Counter-terrorism Decision A Comparative Analysis of PRA and Intelligent Adversary Methods for Counterterrorism Risk Management Greg Parnell US Military Academy Jason R. W. Merrick Virginia Commonwealth University Simple Counter-terrorism

More information

Correlation and Regression

Correlation and Regression Correlation and Regression October 25, 2017 STAT 151 Class 9 Slide 1 Outline of Topics 1 Associations 2 Scatter plot 3 Correlation 4 Regression 5 Testing and estimation 6 Goodness-of-fit STAT 151 Class

More information

Inference About Means and Proportions with Two Populations. Chapter 10

Inference About Means and Proportions with Two Populations. Chapter 10 Inference About Means and Proportions with Two Populations Chapter 10 Two Populations? Chapter 8 we found interval estimates for the population mean and population proportion based on a random sample Chapter

More information

Statistical Properties of indices of competitive balance

Statistical Properties of indices of competitive balance Statistical Properties of indices of competitive balance Dimitris Karlis, Vasilis Manasis and Ioannis Ntzoufras Department of Statistics, Athens University of Economics & Business AUEB sports Analytics

More information

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers Diploma Part Quantitative Methods Examiner s Suggested Answers Question 1 (a) The standard normal distribution has a symmetrical and bell-shaped graph with a mean of zero and a standard deviation equal

More information

Mathematics Standards for High School Advanced Quantitative Reasoning

Mathematics Standards for High School Advanced Quantitative Reasoning Mathematics Standards for High School Advanced Quantitative Reasoning The Advanced Quantitative Reasoning (AQR) course is a fourth-year launch course designed to be an alternative to Precalculus that prepares

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

Discrete random structures whose limits are described by a PDE: 3 open problems

Discrete random structures whose limits are described by a PDE: 3 open problems Discrete random structures whose limits are described by a PDE: 3 open problems David Aldous April 3, 2014 Much of my research has involved study of n limits of size n random structures. There are many

More information

Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics.

Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics. Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics. Study Session 1 1. Random Variable A random variable is a variable that assumes numerical

More information

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 71. Decide in each case whether the hypothesis is simple

More information

Where would you rather live? (And why?)

Where would you rather live? (And why?) Where would you rather live? (And why?) CityA CityB Where would you rather live? (And why?) CityA CityB City A is San Diego, CA, and City B is Evansville, IN Measures of Dispersion Suppose you need a new

More information

Recall that in order to prove Theorem 8.8, we argued that under certain regularity conditions, the following facts are true under H 0 : 1 n

Recall that in order to prove Theorem 8.8, we argued that under certain regularity conditions, the following facts are true under H 0 : 1 n Chapter 9 Hypothesis Testing 9.1 Wald, Rao, and Likelihood Ratio Tests Suppose we wish to test H 0 : θ = θ 0 against H 1 : θ θ 0. The likelihood-based results of Chapter 8 give rise to several possible

More information

Multiple Choice Circle the letter corresponding to the best answer for each of the problems below (4 pts each)

Multiple Choice Circle the letter corresponding to the best answer for each of the problems below (4 pts each) Math 221 Hypothetical Exam 1, Wi2008, (Chapter 1-5 in Moore, 4th) April 3, 2063 S. K. Hyde, S. Barton, P. Hurst, K. Yan Name: Show all your work to receive credit. All answers must be justified to get

More information

Parameter Estimation and Statistical Test in Modeling Geographically Weighted Poisson Inverse Gaussian Regression

Parameter Estimation and Statistical Test in Modeling Geographically Weighted Poisson Inverse Gaussian Regression PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 2016 M 08 Parameter Estimation and Statistical Test in Modeling Geographically

More information

(a) The density histogram above right represents a particular sample of n = 40 practice shots. Answer each of the following. Show all work.

(a) The density histogram above right represents a particular sample of n = 40 practice shots. Answer each of the following. Show all work. . Target Practice. An archer is practicing hitting the bull s-eye of the target shown below left. For any point on the target, define the continuous random variable D = (signed) radial distance to the

More information

Chapter 5: Generalized Linear Models

Chapter 5: Generalized Linear Models w w w. I C A 0 1 4. o r g Chapter 5: Generalized Linear Models b Curtis Gar Dean, FCAS, MAAA, CFA Ball State Universit: Center for Actuarial Science and Risk Management M Interest in Predictive Modeling

More information

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs STATISTICS 4 Summary Notes. Geometric and Exponential Distributions GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs P(X = x) = ( p) x p x =,, 3,...

More information

Probability Distributions

Probability Distributions The ASTRO509-3 dark energy puzzle Probability Distributions I have had my results for a long time: but I do not yet know how I am to arrive at them. Johann Carl Friedrich Gauss 1777-1855 ASTR509 Jasper

More information

Approximate Inference in Practice Microsoft s Xbox TrueSkill TM

Approximate Inference in Practice Microsoft s Xbox TrueSkill TM 1 Approximate Inference in Practice Microsoft s Xbox TrueSkill TM Daniel Hernández-Lobato Universidad Autónoma de Madrid 2014 2 Outline 1 Introduction 2 The Probabilistic Model 3 Approximate Inference

More information

Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics

Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics A short review of the principles of mathematical statistics (or, what you should have learned in EC 151).

More information

Inverse Sampling for McNemar s Test

Inverse Sampling for McNemar s Test International Journal of Statistics and Probability; Vol. 6, No. 1; January 27 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Inverse Sampling for McNemar s Test

More information

BINF 702 SPRING Chapter 8 Hypothesis Testing: Two-Sample Inference. BINF702 SPRING 2014 Chapter 8 Hypothesis Testing: Two- Sample Inference 1

BINF 702 SPRING Chapter 8 Hypothesis Testing: Two-Sample Inference. BINF702 SPRING 2014 Chapter 8 Hypothesis Testing: Two- Sample Inference 1 BINF 702 SPRING 2014 Chapter 8 Hypothesis Testing: Two-Sample Inference Two- Sample Inference 1 A Poster Child for two-sample hypothesis testing Ex 8.1 Obstetrics In the birthweight data in Example 7.2,

More information

) The cumulative probability distribution shows the probability

) The cumulative probability distribution shows the probability Problem Set ECONOMETRICS Prof Òscar Jordà Due Date: Thursday, April 0 STUDENT S NAME: Multiple Choice Questions [0 pts] Please provide your answers to this section below: 3 4 5 6 7 8 9 0 ) The cumulative

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Statistical Distributions and Uncertainty Analysis. QMRA Institute Patrick Gurian

Statistical Distributions and Uncertainty Analysis. QMRA Institute Patrick Gurian Statistical Distributions and Uncertainty Analysis QMRA Institute Patrick Gurian Probability Define a function f(x) probability density distribution function (PDF) Prob [A

More information

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 27. April 2017 Dr. Michael O. Distler

More information

CONTINUOUS RANDOM VARIABLES

CONTINUOUS RANDOM VARIABLES the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET STATISTICS (AQA) CONTINUOUS RANDOM VARIABLES The main ideas are: Properties of Continuous Random Variables Mean, Median and Mode

More information

Midterm 2. Math 205 Spring 2015 Dr. Lily Yen

Midterm 2. Math 205 Spring 2015 Dr. Lily Yen Math 205 Spring 2015 Dr. Lily Yen Midterm 2 Show all your work Name: Score: /40 Problem 1: Lily s Restaurant serves three fixed-price dinners costing $12, $15, and $20. For a randomly selected couple dining

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

q3_3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

q3_3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. q3_3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) In 2007, the number of wins had a mean of 81.79 with a standard

More information

Chapter 2. Review of basic Statistical methods 1 Distribution, conditional distribution and moments

Chapter 2. Review of basic Statistical methods 1 Distribution, conditional distribution and moments Chapter 2. Review of basic Statistical methods 1 Distribution, conditional distribution and moments We consider two kinds of random variables: discrete and continuous random variables. For discrete random

More information

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING LECTURE 1 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING INTERVAL ESTIMATION Point estimation of : The inference is a guess of a single value as the value of. No accuracy associated with it. Interval estimation

More information

Module 7 Practice problem and Homework answers

Module 7 Practice problem and Homework answers Module 7 Practice problem and Homework answers Practice problem, page 1 Is the research hypothesis one-tailed or two-tailed? Answer: one tailed In the set up for the problem, we predicted a specific outcome

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Statistical Inference Theory Lesson 46 Non-parametric Statistics

Statistical Inference Theory Lesson 46 Non-parametric Statistics 46.1-The Sign Test Statistical Inference Theory Lesson 46 Non-parametric Statistics 46.1 - Problem 1: (a). Let p equal the proportion of supermarkets that charge less than $2.15 a pound. H o : p 0.50 H

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

GLMM workshop 7 July 2016 Instructors: David Schneider, with Louis Charron, Devin Flawd, Kyle Millar, Anne St. Pierre Provencher, Sam Trueman

GLMM workshop 7 July 2016 Instructors: David Schneider, with Louis Charron, Devin Flawd, Kyle Millar, Anne St. Pierre Provencher, Sam Trueman GLMM workshop 7 July 2016 Instructors: David Schneider, with Louis Charron, Devin Flawd, Kyle Millar, Anne St. Pierre Provencher, Sam Trueman First session 1 PM Room SN2109 Writing the model Break Second

More information

STAT 212: BUSINESS STATISTICS II Third Exam Tuesday Dec 12, 6:00 PM

STAT 212: BUSINESS STATISTICS II Third Exam Tuesday Dec 12, 6:00 PM STAT212_E3 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS Term 171 Page 1 of 9 STAT 212: BUSINESS STATISTICS II Third Exam Tuesday Dec 12, 2017 @ 6:00 PM Name: ID #:

More information