d = Dx subject to Stochastic programming methods for

Size: px
Start display at page:

Download "d = Dx subject to Stochastic programming methods for"

Transcription

1 Inverse planning based on probability distributions 3 Figure 1. Prostate patient who had five CT scans before treatment. Bladder and rectum filling differs from day to day and hence the location and shape of the CTV. Stochastic programming methods for constant in time and that the geometry one fraction is uncorrelated tothe geometry handling the previous uncertainty fraction. This meens we do not consider time and trends during motion treatment, in e.g. weight loss or radiation effects on the tumor and healthy tissues. IMRT planning 2.2. The model To gain some basic understanding of inverse planning based on probability distributions of patient geometries we consider a model of idealised geometry that originates from rotation therapy with high Jan energyunelbach photons. We consider the planar irradiation of a circularly shaped CTV of radius RT with a rotating gantry. The CTV issurrounded by a healthy tissue of radius R (see Fig. 2). Organ movements are simulated by rigid translations of the entire body for simplicity. Industry collaborations: RaySearch, Philips Medical Systems This allows us to trac each point of the body during movement and to calculate the cumulative dose in each point. The geometry of the patient can then be parameterised by a single vector r = ( r, ϕ) denoting the position of the center of mass. In the following text we denote vectors in two spacial dimensions by bold italic characters and scalars by normal italic characters. For simplicity, we assume that the displacements ( r, ϕ) follow a Gaussian probability distribution Content A. Stochastic programming in IMRT planning B. What is the advantage over a PTV approach? 1. Systematic positioning errors Balancing target coverage and normal tissue sparing 2. Reducing normal tissue dose through horns 3. Range uncertainty in proton therapy Breadown of the static dose cloud approximation Fluence map optimization in IMRT Minimize dose-based objective function minimize subject to f ( d) d = Dx x ³ 0 1

2 Including motion and uncertainty Assume a discrete set of errors can occur Delivered dose depends on the error scenario d = D x Assign probabilities to errors: p Minimize expected value of objective function minimize ( ) åp f d Including motion and uncertainty Quadratic objective function ( ) = d i - d pres f d ( ) 2 iît å + å d i iîn ( ) 2 2 å p ( d i - d pres ) 2 æ = çå p d i - d pres è ø deviation of prescribed and expected dose ö æ ö + p d å ç i -å p d i è ø variance 2 Systematic errors Systematic errors (Setup errors or internal deformation) Inverse planning based on probability distributions 3 Figure 1. Prostate patient who had five CT scans before treatment. Bladder and rectum filling differs from day to day and hence the location and shape of the CTV. 2

3 dose [%] dose [%] Systematic errors Gaussian p σ = 10 cutoff at ± 2σ 40 scenarios Ref: Löf 1995, Inv Prob position Systematic errors reproduces a PTV-lie plan may yield a smooth falloff position See also: Sir 2006, PMB Systematic errors Benefit: Automation: no explicit PTV definition necessary Could optimally balance target coverage and OAR sparing Stochastic programming natural with TCP/NTCP minimize ( ) åp TCP d marginalization of a TCP model over the uncertain dose distribution subject to åp NTCP d ( )

4 Motion tumor size = 20 amplitude = 20 ITV plan exhale inhale Can normal tissue dose be reduced? Tumor accumulates dose in different breathing phases d = n å i=1 w i D i x n å w i =1 i=1 Idea: reduce dose to regions where the tumor is rarely deliver higher dose to regions always occupied by tumor 4

5 4D optimization Assume predictable breathing motion dose pea where there is tumor most of the time w i dose reduction at the edge of ITV Problem: dose will degrade if breathing pattern varies Stochastic programming: Allow different breathing patterns w with probability p d = n å w i D i x i=1 n å w i =1 i=1 exhale inhale Account for uncertainty in breathing pattern larger uncertainty in w gradually yields more ITV-lie plans special case w i = 1 models systematic error Ref: McQuaid 2011 AAPM summerschool 5

6 Dose delivered to moving tissue (nominal trajectory) Realistic cases Assume predictable motion (g) (h) (i) (j) Dose on exhale () Accumulated dose (l) 6

7 Respiratory 96 motion (g) (a)(h) (j) (b)(i) ()( (j) (d)() (e)(l) ( No uncertainty medium motion Motion modeled as uncertainty Figure 5.5: systematic 3D distributions error for tr (a-c) optimized for compensator b IMRT (g-i) optimizat ion of the exp optimized Ref: Heath for an 2009 infinitesimal Med Phys sho the static dose distribution, (b,e,h standard deviation for an infinites 5.8c,d apply. Benefit: 4D optimization yields dose horns Normal tissue dose reduction compared to PTV Stochastic programming can account for breathing variations Find the balance between robustness and normal tissue sparing through horns Proton therapy Range uncertainty in IMPT 7

8 Proton therapy Proton therapy Robustness analysis: 5 mm range overshoot nominal plan Proton therapy Stochastic programming: Assume 3 scenarios: nominal scenario p 1 = mm range overshoot p 2 = mm range undershoot p 3 =

9 Sensitivity analysis 5 mm range overshoot conventional plan generated using stochastic programming Motivation How is robustness achieved? conventional plan generated using stochastic programming Commercial implementations Proton therapy led to the first implementation of probabilistic / robust planning in commercial TPS Examples: Before that: IMPT Pinnacle (in development) (implements a probabilistic approach) RayStation v4.5 (implements a minimax approach) (Ref: Fredrisson 2011, Med Phys) Hyperion (in-house TPS in Tübingen, Germany) (coverage probability method to account for positioning errors in prostate treatments) (Ref: Baum 2006, R&O) 9

10 Raystation 4.5 User interface Setup uncertainty Range uncertainty Raystation 4.5 User can robustify important objectives Raystation 4.5 Plan evaluation define error scenario 10

11 Summary Stochastic programming for handling uncertainty: optimize expected value of the objective function general purpose method applicable to many uncertainties Advantage over a PTV depends on type of uncertainty: Automating target expansions (systematic positioning errors) Normal tissue dose reduction through horns (respiratory motion) Mitigate beam misalignments riss (IMPT) Status in practice Range and setup uncertainty in IMPT: Fundamental limitations of the PTV concept led to the first commercial implementations Dose accumulation relies on deformable registration Computationally intensive Setup errors, inter-fraction organ motion Qualitatively similar to PTV plans Magnitude of the error reduced through image guidance 11

arxiv: v2 [physics.med-ph] 29 May 2015

arxiv: v2 [physics.med-ph] 29 May 2015 The Proton Therapy Nozzles at Samsung Medical Center: A Monte Carlo Simulation Study using TOPAS Kwangzoo Chung, Jinsung Kim, Dae-Hyun Kim, Sunghwan Ahn, and Youngyih Han Department of Radiation Oncology,

More information

Towards efficient and accurate particle transport simulation in medical applications

Towards efficient and accurate particle transport simulation in medical applications Towards efficient and accurate particle transport simulation in medical applications L. Grzanka1,2, M. Kłodowska1, N. Mojżeszek1, N. Bassler3 1 Cyclotron Centre Bronowice, Institute of Nuclear Physics

More information

Optimization of hadron therapy proton beam using Monte Carlo code on GPU

Optimization of hadron therapy proton beam using Monte Carlo code on GPU Dottorato in Fisica degli Acceleratori, XXIX ciclo Optimization of hadron therapy proton beam using Monte Carlo code on GPU Candidata: Martina Senzacqua N matricola: 1163436 Supervisor: Prof. Vincenzo

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy

Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy OPERATIONS RESEARCH Vol. 56, No. 6, November December 2008, pp. 1461 1473 issn 0030-364X eissn 1526-5463 08 5606 1461 informs doi 10.1287/opre.1070.0484 2008 INFORMS Robust Management of Motion Uncertainty

More information

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego Physics of Novel Radiation Modalities Particles and Isotopes Todd Pawlicki, Ph.D. UC San Diego Disclosure I have no conflicts of interest to disclose. Learning Objectives Understand the physics of proton

More information

Laser-Accelerated protons for radiation therapy

Laser-Accelerated protons for radiation therapy Laser-Accelerated protons for radiation therapy E Fourkal, I Velchev,, J Fan, J Li, T Lin, C Ma Fox Chase Cancer Center, Philadelphia, PA Motivation Proton beams provide better conformity to the treatment

More information

Outline. Indrin J. Chetty, AAPM 2006 Monte Carlo CE course. Indrin J. Chetty Henry Ford Hospital. David W. O. Rogers Carleton University

Outline. Indrin J. Chetty, AAPM 2006 Monte Carlo CE course. Indrin J. Chetty Henry Ford Hospital. David W. O. Rogers Carleton University AAPM Task Group Report No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning Indrin J. Chetty Henry Ford Hospital David W. O.

More information

Development of beam delivery systems for proton (ion) therapy

Development of beam delivery systems for proton (ion) therapy 7th 28th of July 213, JINR Dubna, Russia Development of beam delivery systems for proton (ion) therapy S t u d e n t : J o z e f B o k o r S u p e r v i s o r : D r. A l e x a n d e r M o l o k a n o v

More information

Fast and compact proton radiography imaging system for proton radiotherapy

Fast and compact proton radiography imaging system for proton radiotherapy Fast and compact proton radiography imaging system for proton radiotherapy Aleksandra K. Biegun ATTRACT NL Kick-off event, 9 th February 2017, Amsterdam, The Netherlands Proton therapy work flow CT scan

More information

Dynamic robust optimization for fractionated IMRT treatment planning

Dynamic robust optimization for fractionated IMRT treatment planning Dynamic robust optimization for fractionated IMRT treatment planning Velibor V. Mišić Timothy C.Y. Chan Department of Mechanical and Industrial Engineering, University of Toronto June 20, 2011 INFORMS

More information

Effective Treatment Planning with Imperfect Models and Uncertain Biological Parameters

Effective Treatment Planning with Imperfect Models and Uncertain Biological Parameters Effective Treatment Planning with Imperfect Models and Uncertain Biological Parameters ob Stewart, Ph.. Associate Professor and Assistant Head of Health Sciences irector, adiological Health Science Program

More information

The volume effect of detectors in the dosimetry of small fields used in IMRT

The volume effect of detectors in the dosimetry of small fields used in IMRT The volume effect of detectors in the dosimetry of small fields used in IMRT Wolfram U. Laub a) Department of Medical Physics, University of Tübingen, Germany Tony Wong b) Department of Radiation Oncology,

More information

Basic Radiation Physics of Protons

Basic Radiation Physics of Protons Basic Radiation Physics of Protons Michael Goitein Harvard Medical School and Ankerstrasse 1,5210 Windisch, Switzerland michael@goitein.ch Michael Goitein, PSI teaching course January, 2010 1 OVERVIEW

More information

Objectives. Tolerance Limits and Action Levels for IMRT QA. The Overall Process of IMRT Planning and Delivery. Chain of IMRT Process

Objectives. Tolerance Limits and Action Levels for IMRT QA. The Overall Process of IMRT Planning and Delivery. Chain of IMRT Process Tolerance Limits and Action Levels for IMRT QA Jatinder R Palta, Ph.D Siyong Kim, Ph.D. Department of Radiation Oncology University of Florida Gainesville, Florida Objectives Describe the uncertainties

More information

Biological Dose Calculations for Particle Therapy in FLUKA

Biological Dose Calculations for Particle Therapy in FLUKA U N I V E R S I T Y O F B E R G E N Department of Physics and Technology Biological Dose Calculations for Particle Therapy in FLUKA Tordis J. Dahle May 2016 Introduction About half of all cancer patients

More information

The effect of dose calculation uncertainty on the evaluation of radiotherapy plans

The effect of dose calculation uncertainty on the evaluation of radiotherapy plans The effect of dose calculation uncertainty on the evaluation of radiotherapy plans P. J. Keall a) and J. V. Siebers Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth

More information

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz Overview and Status of the Austrian Particle Therapy Facility MedAustron Peter Urschütz MedAustron Centre for ion beam therapy and non-clinical research Treatment of 1200 patients/year in full operation

More information

Composite field dosimetry

Composite field dosimetry Composite field dosimetry Hugo Bouchard, PhD, MCCPM Senior Research Scientist Radiation dosimetry group National Physical Laboratory May 2014 Overview 1. Introduction Dosimetry protocols IAEA formalism

More information

ROC7080: RADIATION THERAPY PHYSICS LABORATORY LAB A : MECHANICAL MEASUREMENTS LINAC QA

ROC7080: RADIATION THERAPY PHYSICS LABORATORY LAB A : MECHANICAL MEASUREMENTS LINAC QA ROC7080: RADIATION THERAPY PHYSICS LABORATORY LAB A : MECHANICAL MEASUREMENTS LINAC QA GROUP I SPRING 2014 KEVIN JORDAN GRADUATE STUDENT, RADIOLOGICAL PHYSICS KARMANOS CANCER CENTER WAYNE STATE UNIVERSITY

More information

Outline. Physics of Charge Particle Motion. Physics of Charge Particle Motion 7/31/2014. Proton Therapy I: Basic Proton Therapy

Outline. Physics of Charge Particle Motion. Physics of Charge Particle Motion 7/31/2014. Proton Therapy I: Basic Proton Therapy Outline Proton Therapy I: Basic Proton Therapy Bijan Arjomandy, Ph.D. Narayan Sahoo, Ph.D. Mark Pankuch, Ph.D. Physics of charge particle motion Particle accelerators Proton interaction with matter Delivery

More information

LUNG CANCER. Velibor V. Mišić

LUNG CANCER. Velibor V. Mišić ADAPTIVE AND ROBUST RADIATION THERAPY OPTIMIZATION FOR LUNG CANCER by Velibor V. Mišić A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department

More information

8/3/2016. Chia-Ho, Hua St. Jude Children's Research Hospital. Kevin Teo The Hospital of the University of Pennsylvania

8/3/2016. Chia-Ho, Hua St. Jude Children's Research Hospital. Kevin Teo The Hospital of the University of Pennsylvania Bijan Arjomandy, Ph.D. Mclaren Proton Therapy Center Mark Pankuch, Ph.D. Cadence Health Proton Center Chia-Ho, Hua St. Jude Children's Research Hospital Kevin Teo The Hospital of the University of Pennsylvania

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy Original Article PROGRESS in MEDICAL PHYSICS 27(3), Sept. 2016 http://dx.doi.org/10.14316/pmp.2016.27.3.162 pissn 2508-4445, eissn 2508-4453 Secondary Neutron Dose Measurement for Proton Line Scanning

More information

Simulations in Radiation Therapy

Simulations in Radiation Therapy Simulations in Radiation Therapy D. Sarrut Directeur de recherche CNRS Université de Lyon, France CREATIS-CNRS ; IPNL-CNRS ; Centre Léon Bérard Numerical simulations and random processes treat cancer 2

More information

A Metaheuristic for IMRT Intensity Map Segmentation

A Metaheuristic for IMRT Intensity Map Segmentation A Metaheuristic for IMRT Intensity Map Segmentation Athula Gunawardena, Warren D Souza, Laura D. Goadrich, Kelly Sorenson, Robert Meyer, and Leyuan Shi University of Wisconsin-Madison October 15, 2004

More information

Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin

Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin NCCAAPM meeting April 17, 2015 Larry DeWerd has partial interest in Standard Imaging Inc. Determination of your uncertainty

More information

James Michael Patrick Stewart

James Michael Patrick Stewart Radiotherapy Cancer Treatment: Investigating Real-Time Position and Dose Control, the Sensor-Delayed Plant Output Estimation Problem, and the Nonovershooting Step Response Problem by James Michael Patrick

More information

Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy Case Study Pancreatic Cancers

Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy Case Study Pancreatic Cancers + Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy Case Study Pancreatic Cancers AAPM 2014 Undergraduate Fellow Lianna Di Maso DePaul University,

More information

Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder

Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder and Chairman of the Board or TomoTherapy Inc I have

More information

Indrin J. Chetty, AAPM 2006 Monte Carlo CE course

Indrin J. Chetty, AAPM 2006 Monte Carlo CE course Beam commissioning for clinical Monte Carlo dose calculation: AAPM TG-157 Indrin J. Chetty Henry Ford Hospital, Detroit MI AAPM Task Group Report No. 157: Source modeling and beam commissioning for Monte

More information

Impact of spot charge inaccuracies in IMPT treatments

Impact of spot charge inaccuracies in IMPT treatments Impact of spot charge inaccuracies in IMPT treatments Aafke C. Kraan a) Applications of Detectors and Accelerators to Medicine (ADAM SA), Geneva, Switzerland Nicolas Depauw and Ben Clasie Department of

More information

INTRODUCING CHANNELING EFFECT

INTRODUCING CHANNELING EFFECT INTRODUCING CHANNELING EFFECT Enrico Bagli on the behalf of G4CMP working group Motivation Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application include

More information

Radiation Shielding of a 230 MeV Proton Cyclotron For Cancer Therapy

Radiation Shielding of a 230 MeV Proton Cyclotron For Cancer Therapy Radiation Shielding of a 230 MeV Proton Cyclotron For Cancer Therapy BHASKAR MUKHERJEE Joint DESY and University of Hamburg Accelerator Physics Seminar 27 August 2009 WPE is located within the Campus of

More information

ACCELERATORS AND MEDICAL PHYSICS 3

ACCELERATORS AND MEDICAL PHYSICS 3 ACCELERATORS AND MEDICAL PHYSICS 3 Ugo Amaldi University of Milano Bicocca and TERA Foundation 1 People of hadrontherapy Other uses: hadron therapy BUT radiotherapy is a single word particlle therapy BUT

More information

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Physics of particles H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Introduction Dose The ideal dose distribution ideal Dose: Energy deposited Energy/Mass Depth [J/kg] [Gy] Introduction

More information

Point dose measurements in VMAT: an investigation of detector choice and plan complexity.

Point dose measurements in VMAT: an investigation of detector choice and plan complexity. Point dose measurements in VMAT: an investigation of detector choice and plan complexity. Daniel Phillip Goodwin Department of Physics and Astronomy University of Canterbury A thesis submitted in partial

More information

Online Supplement for Adaptive and robust radiation therapy optimization for lung cancer

Online Supplement for Adaptive and robust radiation therapy optimization for lung cancer Online Supplement for Adaptive and robust radiation therapy optimization for lung cancer Timothy C. Y. Chan Velibor V. Mišić May 21, 2013 Organization of Online Supplement Section A provides further background

More information

Pre-report on the dissertation Development of a treatment verification system for continuous scanning in proton therapy

Pre-report on the dissertation Development of a treatment verification system for continuous scanning in proton therapy Research Collection Report Pre-report on the dissertation Development of a treatment verification system for continuous scanning in proton therapy Author(s): Klimpki, Grischa Publication Date: 2015 Permanent

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS

APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS P. Date paresh.date@brunel.ac.uk Center for Analysis of Risk and Optimisation Modelling Applications, Department of Mathematical

More information

Simulation Modeling in Dosimetry

Simulation Modeling in Dosimetry Simulation Modeling in Dosimetry Aleksei Zhdanov Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russian Federation jjj1994@yandex.ru Leonid Dorosinskiy

More information

Using Prompt gamma ray emission to address uncertainties in proton therapy

Using Prompt gamma ray emission to address uncertainties in proton therapy Using Prompt gamma ray emission to address uncertainties in proton therapy Jerimy C. Polf, PhD, DABR Department of Radia9on Oncology University of Maryland School of Medicine AAPM 2013 Disclosures and

More information

Latest developments in PET verification of proton therapy

Latest developments in PET verification of proton therapy Latest developments in PET verification of proton therapy Katia Parodi, Ph.D. Heidelberg Ion Therapy Centre, Heidelberg, Germany Previously: Massachusetts General Hospital and Harvard Medical School, Boston,

More information

1 Introduction. A Monte Carlo study

1 Introduction. A Monte Carlo study Current Directions in Biomedical Engineering 2017; 3(2): 281 285 Sebastian Richter*, Stefan Pojtinger, David Mönnich, Oliver S. Dohm, and Daniela Thorwarth Influence of a transverse magnetic field on the

More information

A conjugate-gradient based approach for approximate solutions of quadratic programs

A conjugate-gradient based approach for approximate solutions of quadratic programs A conjugate-gradient based approach for approximate solutions of quadratic programs Fredrik CARLSSON and Anders FORSGREN Technical Report TRITA-MAT-2008-OS2 Department of Mathematics Royal Institute of

More information

Optimal fractionation in radiotherapy with multiple normal tissues

Optimal fractionation in radiotherapy with multiple normal tissues Optimal fractionation in radiotherapy with multiple normal tissues Fatemeh Saberian, Archis Ghate, and Minsun Kim May 16, 2015 Abstract The goal in radiotherapy is to maximize the biological effect of

More information

Reference Dosimetry for Megavoltage Therapy Beams: Electrons

Reference Dosimetry for Megavoltage Therapy Beams: Electrons Reference Dosimetry for Megavoltage Therapy Beams: Electrons David Followill Ph.D Radiological Physics Center UT M.D.Anderson Cancer Center Houston TX Protocol for Clinical Reference Dosimetry of High-Energy

More information

Safety Envelope for Load Tolerance and Its Application to Fatigue Reliability Design

Safety Envelope for Load Tolerance and Its Application to Fatigue Reliability Design Safety Envelope for Load Tolerance and Its Application to Fatigue Reliability Design Haoyu Wang * and Nam H. Kim University of Florida, Gainesville, FL 32611 Yoon-Jun Kim Caterpillar Inc., Peoria, IL 61656

More information

Estec final presentation days 2018

Estec final presentation days 2018 Estec final presentation days 2018 Background VESPER Facility Conclusion & Outlook Jovian environment Radiation Effects VESPER history VESPER status Overview Experimental Results External Campaign Summary

More information

Exploring breathing pattern irregularity with projection-based method

Exploring breathing pattern irregularity with projection-based method Exploring breathing pattern irregularity with projection-based method Dan Ruan a and Jeffrey A. Fessler b Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

Unconventional Acceleration Systems for Proton Radiotherapy

Unconventional Acceleration Systems for Proton Radiotherapy Unconventional Acceleration Systems for Proton Radiotherapy Thomas Rockwell Mackie Emeritus Professor University of Wisconsin Director of Medical Devices Morgridge Institute for Research Madison WI Conflict

More information

Comparison of two commercial detector arrays for IMRT quality assurance

Comparison of two commercial detector arrays for IMRT quality assurance JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 2, SPRING 2009 Comparison of two commercial detector arrays for IMRT quality assurance Jonathan G. Li, 1,a Guanghua Yan, 1,2 and Chihray Liu

More information

THE mono-energetic hadron beam such as heavy-ions or

THE mono-energetic hadron beam such as heavy-ions or Verification of the Dose Distributions with GEANT4 Simulation for Proton Therapy T.Aso, A.Kimura, S.Tanaka, H.Yoshida, N.Kanematsu, T.Sasaki, T.Akagi Abstract The GEANT4 based simulation of an irradiation

More information

VERIFICATION OF DOSE CALCULATION ACCURACY OF RTP SYSTEMS BY MONTE CARLO SIMULATION

VERIFICATION OF DOSE CALCULATION ACCURACY OF RTP SYSTEMS BY MONTE CARLO SIMULATION Proceedings of the Eleventh EGS4 Users' Meeting in Japan, KEK Proceedings 2003-15, p.74-80 VERIFICATION OF DOSE CALCULATION ACCURACY OF RTP SYSTEMS BY MONTE CARLO SIMULATION Y. Taahashi, A. Ito, M. Yoshioa

More information

Monte Carlo Simulation concerning Particle Therapy

Monte Carlo Simulation concerning Particle Therapy Monte Carlo Simulation concerning Particle Therapy Masaaki Takashina Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan INTRODUCTION It is well known that the particle therapy has some

More information

Utilizing IMRT Intensity Map Complexity Measures in Segmentation Algorithms. Multileaf Collimator (MLC) IMRT: Beamlet Intensity Matrices

Utilizing IMRT Intensity Map Complexity Measures in Segmentation Algorithms. Multileaf Collimator (MLC) IMRT: Beamlet Intensity Matrices Radiation Teletherapy Goals Utilizing IMRT Intensity Map Complexity Measures in Segmentation Algorithms Kelly Sorensen August 20, 2005 Supported with NSF Grant DMI-0400294 High Level Goals: Achieve prescribed

More information

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research Prompt gamma measurements for the verification of dose deposition in proton therapy Two Proton Beam Facilities for Therapy and Research Ion Beam Facilities in Korea 1. Proton therapy facility at National

More information

Fitting the Bragg peak for accurate proton range determination

Fitting the Bragg peak for accurate proton range determination Fitting the Bragg peak for accurate proton range determination Koen Lambrechts July 10, 2015 Abstract This paper focusses on the uncertainties in proton range determination in the framework of optimizing

More information

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School Physics of Particle Beams Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School PTCOG 53 Education Session, Shanghai, 2014 Dose External

More information

factors for NE2561 ionization chambers in 3 cm x 3 cm beams of 6 MV and 10 MV photons

factors for NE2561 ionization chambers in 3 cm x 3 cm beams of 6 MV and 10 MV photons Calorimetric determination of k Q factors for NE2561 ionization chambers in 3 cm x 3 cm beams of 6 MV and 10 MV photons PTB s water calorimeter in front of Elekta Precise medical linac Calorimetric determination

More information

Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center

Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center George Coutrakon, Jeff Hubbard, Peter Koss, Ed Sanders, Mona Panchal Loma Linda University Medical Center 11234 Anderson Street

More information

Geant4 studies of the CNAO facility system for hadrontherapy treatment of uveal melanomas

Geant4 studies of the CNAO facility system for hadrontherapy treatment of uveal melanomas th International Conference on Computing in High Energy and Nuclear Physics (CHEP13) IOP Publishing Journal of Physics: Conference Series 13 (1) 8 doi:1.188/17-9/13//8 Geant studies of the CNAO facility

More information

Quality-Assurance Check of Collimator and Phantom- Scatter Factors

Quality-Assurance Check of Collimator and Phantom- Scatter Factors Quality-Assurance Check of Collimator and Phantom- Scatter Factors Ramesh C. Tailor, David S. Followill, Nadia Hernandez, Timothy S. Zhu, and Geoffrey S. Ibbott. UT MD Anderson Cancer Center, Houston TX.

More information

Isotope Production for Nuclear Medicine

Isotope Production for Nuclear Medicine Isotope Production for Nuclear Medicine Eva Birnbaum Isotope Program Manager February 26 th, 2016 LA-UR-16-21119 Isotopes for Nuclear Medicine More than 20 million nuclear medicine procedures are performed

More information

Particle Beam Technology and Delivery

Particle Beam Technology and Delivery Particle Beam Technology and Delivery AAPM Particle Beam Therapy Symposium Types of Accelerator Systems Laser Linac Cyclotron Synchrotron Rf Linac CycFFAG FFAG CycLinac Isochronous Cyclotron Strong Focusing

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

Manipulation on charged particle beam for RT benefit.

Manipulation on charged particle beam for RT benefit. High Electron Beam Dose Modification using Transverse Magnetic Fields Ion Chamber Response Modification under Strong Magnetic Field Conditions Sion Koren, Radiation Oncology Preface Manipulation on charged

More information

Towards Proton Computed Tomography

Towards Proton Computed Tomography SCIPP Towards Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz, CA 95064 V.

More information

Study of the uncertainty in the determination of the absorbed dose to water during external beam radiotherapy calibration

Study of the uncertainty in the determination of the absorbed dose to water during external beam radiotherapy calibration JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 9, NUMBER 1, WINTER 2008 Study of the uncertainty in the determination of the absorbed dose to water during external beam radiotherapy calibration Pablo

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

8/1/2017. Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status

8/1/2017. Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status MC-ADC ADC TOPAS 8/1/2017 Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status Jan Schuemann Assistant Professor Head of the Multi-Scale Monte Carlo Modeling

More information

Small Field Dosimetric Measurements with TLD-100, Alanine, and Ionization Chambers

Small Field Dosimetric Measurements with TLD-100, Alanine, and Ionization Chambers Small Field Dosimetric Measurements with TLD-1, Alanine, and Ionization Chambers S. Junell a, L. DeWerd a, M. Saiful Huq b, J. Novotny Jr. b, M. uader b, M.F. Desrosiers c, G. Bednarz b a Department of

More information

Riccati difference equations to non linear extended Kalman filter constraints

Riccati difference equations to non linear extended Kalman filter constraints International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Riccati difference equations to non linear extended Kalman filter constraints Abstract Elizabeth.S 1 & Jothilakshmi.R

More information

Proton radiography with a range telescope and its use in proton therapy

Proton radiography with a range telescope and its use in proton therapy Proton radiography with a range telescope and its use in proton therapy Juan L. Romero Department of Physics, University of California, Davis, CA Invited talk at Massachusetts General Hospital, Boston,

More information

Estimating proton beam energy spread using Bragg peak measurement

Estimating proton beam energy spread using Bragg peak measurement Estimating proton beam energy spread using Bragg peak measurement V. Anferov 1, V. Derenchuk, R. Moore, A. Schreuder ProNova Solutions LLC, Knoxville, TN. 1. Introduction ProNova is installing and commissioning

More information

Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter

Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter Radiotherapy Standards Users Group meeting NPL, 5 th June 2007 Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter Mark Bailey, G A Bass, N D Lee, G A Mapp Contents 1. History

More information

Ion- and proton-beams: Experience with Monte Carlo Simulation

Ion- and proton-beams: Experience with Monte Carlo Simulation Ion- and proton-beams: Experience with Monte Carlo Simulation Katia Parodi, Ph.D. Heidelberg Ion Therapy Centre, Heidelberg, Germany (Previously: Massachusetts General Hospital, Boston, USA) Workshop on

More information

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier Modeling Creating 3D objects How to construct complicated surfaces? Goal Specify objects with few control points Resulting object should be visually

More information

Analysis of Carbon Ion Fragmentation and Angular Fragment Distributions using a flexible set-up

Analysis of Carbon Ion Fragmentation and Angular Fragment Distributions using a flexible set-up Analysis of Carbon Ion Fragmentation and Angular Fragment Distributions using a flexible set-up G. Arico1,2, B. Hartmann2, J. Jakubek3, S. Pospisil3, O. Jäkel1,2,4, M. Martisikova1,2 1 University Clinic

More information

Diffusion Tensor Imaging I: The basics. Jennifer Campbell

Diffusion Tensor Imaging I: The basics. Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Imaging MRI: many different sources of contrast T1W T2W PDW Perfusion BOLD DW

More information

Electromagnetic characterization of big aperture magnet used in particle beam cancer therapy

Electromagnetic characterization of big aperture magnet used in particle beam cancer therapy Electromagnetic characterization of big aperture magnet used in particle beam cancer therapy Jhonnatan Osorio Moreno M.Pullia, C.Priano Presented at Comsol conference 2012 Milan Milan 10 th October 2012

More information

Metrological traceability and specific needs in: - IR measurement for radiation protection (RP) - IR measurement for radiotherapy (RT)

Metrological traceability and specific needs in: - IR measurement for radiation protection (RP) - IR measurement for radiotherapy (RT) 1- Ionizing radiation metrology for radiation protection 2- Metrological requirements for ionizing radiation measurement in radiotherapy and radiodiagnostics R. F. Laitano Part 2 Metrological traceability

More information

Location Prediction of Moving Target

Location Prediction of Moving Target Location of Moving Target Department of Radiation Oncology Stanford University AAPM 2009 Outline of Topics 1 Outline of Topics 1 2 Outline of Topics 1 2 3 Estimation of Stochastic Process Stochastic Regression:

More information

Markus Roth TU Darmstadt

Markus Roth TU Darmstadt Laser-driven Production of Particle Beams and their application to medical treatment Markus Roth TU Darmstadt The Case Laser-driven electrons Potential for Applications in Therapy Use of secondary Radiation

More information

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1 The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1 1 Medical Radiation Physics Group, University of Oldenburg and Pius

More information

probability of k samples out of J fall in R.

probability of k samples out of J fall in R. Nonparametric Techniques for Density Estimation (DHS Ch. 4) n Introduction n Estimation Procedure n Parzen Window Estimation n Parzen Window Example n K n -Nearest Neighbor Estimation Introduction Suppose

More information

Beam Test for Proton Computed Tomography PCT

Beam Test for Proton Computed Tomography PCT Beam Test for Proton Computed Tomography PCT (aka Mapping out The Banana ) Hartmut F.-W. Sadrozinski Santa Cruz Inst. for Particle Physics SCIPP The pct Project Most likely Path MLP Beam Test Set-up Comparison

More information

More on Stochastics and the Phenomenon of Line-Edge Roughness

More on Stochastics and the Phenomenon of Line-Edge Roughness More on Stochastics and the Phenomenon of Line-Edge Roughness Chris A. Mack 34 th International Photopolymer Science and Technology Conference Chiba, Japan, June 28, Conclusions We need more than just

More information

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Particle Filters Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Motivation For continuous spaces: often no analytical formulas for Bayes filter updates

More information

Physics. Sunday, March 4, :30 a.m. 10:00 a.m.

Physics. Sunday, March 4, :30 a.m. 10:00 a.m. Physics Sunday, March 4, 2018 9:30 a.m. 10:00 a.m. Social Q&A Use your phone, tablet, or laptop to Submit questions to speakers and moderators Answer interactive questions / audience response polls astro.org/refreshersocialqa

More information

Uncertainty due to Finite Resolution Measurements

Uncertainty due to Finite Resolution Measurements Uncertainty due to Finite Resolution Measurements S.D. Phillips, B. Tolman, T.W. Estler National Institute of Standards and Technology Gaithersburg, MD 899 Steven.Phillips@NIST.gov Abstract We investigate

More information

Physics 101 Lecture 12 Equilibrium

Physics 101 Lecture 12 Equilibrium Physics 101 Lecture 12 Equilibrium Assist. Prof. Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net eternal

More information

Reduction in Majority-Carrier Concentration in N-Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation

Reduction in Majority-Carrier Concentration in N-Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation Reduction in Majority-Carrier Concentration in -Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation Hideharu Matsuura, Hideki Yanagisawa, Kozo ishino, Takunori ojiri Shinobu Onoda, Takeshi Ohshima

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Sensing Networking Leonidas Guibas Stanford University Computation CS428 Sensor systems are about sensing, after all... System State Continuous and Discrete Variables The quantities

More information

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy Journal of Magnetics 19(1), 15-19 (2014) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2014.19.1.015 A Study on Effective Source-Skin Distance using Phantom in Electron

More information

Plastic Scintillation Detectors: Principle and Application to Radiosurgery

Plastic Scintillation Detectors: Principle and Application to Radiosurgery Plastic Scintillation Detectors: Principle and Application to Radiosurgery Luc Beaulieu Professor, Department of Physics, Université Laval Medical Physicist and Head of Research, Department of Radiation

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information