What to do with a small quantum computer? Aram Harrow (MIT Physics)

Size: px
Start display at page:

Download "What to do with a small quantum computer? Aram Harrow (MIT Physics)"

Transcription

1 What to do with a small quantum computer? Aram Harrow (MIT Physics) IPAM Dec 6, 2016

2 simulating quantum mechanics is hard! DOE (INCITE) supercomputer time by category 15% 14% 14% 14% 12% 10% 10% 9% 2% Implications: 1. Quantum mechanics is hard to simulate classically. 2. Quantum computers can do this simulation exponentially more efficiently. 3. Maybe they can do other things more efficiently too?

3 Motivation Practical Social/economic value of computing End of Moore s Law Foundational Nature of information and computing

4 classical computers n bits = 2 n states gates x y x NAND y

5 quantum computers qubit = two-level system nuclear spin photon polarization ion e - states 1 qubit = 2 dimensions i 2C 2 superconducting charge or flux... n qubits = 2 n dimensions Schrödinger s eq: d i dt = ih(t) i i 2C 2n quantum gates I I U I I one- or two-qubit

6 randomized computation p0000 Bp0001 C B C 2n B.. C 2 A p1111 ZApplication: ZZ Z high-dimensional integrals dx1... dxn f (x1,..., xn ) FERMIAC

7 unstructured search x f(x) N 0 Given the ability to compute f, find x such that f(x)=1. classical: O(N) time needed Grover s algorithm: (1996) O( p N) on quantum computer similar speedups for maximizing, approximate counting, collisions, triangle finding, game-tree evaluation, backtracking algorithms

8 factoring = n digits?? Best classical algorithm: time O(exp(n 1/3 )) Shor s algorithm: (1994) time O(n 2 ) on a quantum computer (similar for discrete log, elliptic curves, )

9 linear systems of equations dimension N condition number κ Classical: O(Nsκ) x A B B C A = = b 0 1 B A up to s nonzero entries per row/column Quantum: O(log(N)sκ) A computable on the fly input bi and output xi Applications: ODEs PDEs regression machine learning

10 experimental QC 1-2 clean qubits 1000 noisy qubits IBM, Google, Microsoft, Intel, Alibaba, BBN, Rigetti, psitech, ionq, Quantum Circuits Inc, proposals for 50-qubit universal QCs in 2-10 years using superconductors and ion traps D-Wave (1qbit, QxBranch, Lockheed Martin)

11 combinatorial optimization Problem: minimize f(x 1,...,x n ) = (terms involving a few variables) Applications: minimum energy of classical systems best way for a protein to fold best model in a family explaining observed data math proof with fewest errors Difficulties: exponentially many local minima NP-complete even for good approximations

12 rest of the talk classical optimization algorithms adiabatic optimization variational algorithms and quantum supremacy

13 classical local search Local search Start at point x Choose a neighbor y Move to y if f(x) > f(y) Repeat n=3 problem: local minima

14 classical simulated annealing goal: sample from Gibbs distribution Pr[x] = e f(x) T annealing Z Metropolis algorithm x R x!y R y!x y R x!y R y!x = e f(x) f(y) T gradually lower T T= : unbiased random walk T=0: local search

15 Walks on the hypercube {0,1} n = n-dimensional hypercube adjacency matrix A A xy = 1 if (x,y) connected, 0 if not B C A n=3 Graph Laplacian: L = n I A continuous-time random walk: dp/dt = -Lp è uniform distribution Simulated annealing: dp dt = diag(e f 2T ) L diag(e f 2T )p

16 overview classical optimization algorithms adiabatic optimization variational algorithms and quantum supremacy

17 quantum mechanics to the rescue Diffusion equation: d p(~r, t) = dt Lp(~r, t) ~2 L=r Schrödinger equation: d (~r, t) = il (~r, t) dt

18 math-physics dictionary eigenvectors of H quantum states eigenvalues of H eigenvector with lowest eigenvalue energies ground state Schrödinger s eq: d i dt = ih(t) i energy = frequency

19 t adiabatic algorithm Schrödinger s eq: d i dt = ih(t) i H initial H(t) H final ground state (t=0) ground state (t=t final ) easy to prepare desired output Adiabatic theorem: Slowly changing H(t) à stay in ground state H initial H final

20 adiabatic optimization H initial = L H final = diag(f) ground state (t=0) ground state (t=t final ) easy to prepare 1 p 2 n H(t) = C. A 1 1 t T final L + Schrödinger s eq: d i dt t T final diag(f) desired output B A 0 = ih(t) i arg min x f(x)

21 0 n/4 n/2 n z tunneling and optimization Analogue for adiabatic optimization f( z ) z = # 1 s in string z

22 adiabatic tunneling beats simulated annealing Adiabatic optimization fast if barrier area n 1/2 Simulated Annealing exponential slowdown

23 quantum advantage in tunneling? classical algorithms can only walk over this landscape. Quantum computers can tunnel through the landscape making it faster to find the lowest point. The D-Wave processor considers all the possibilities simultaneously to determine the lowest energy from

24 ground states of stoquastic Hamiltonians = H(t) = 0 apple0 apple0. 1 t T final 1 apple0 apple0... apple0 apple0 C A... L + t T final diag(f) sign-problem free stoquastic ground state ψ has only nonnegative entries non-universal form of quantum computing Quantum Enhanced Optimization

25 quantum Monte Carlo (QMC) (actually a classical algorithm) stoquastic classical n n H = f + Γ L m Vertical bonds: ferromagnetic energy log(m/γ) i.e.disagree prob O(Γ/m) Horizontal bonds: = f / m

26 n QMC vs barriers Thm: For barrier sizes/shapes where the adiabatic algorithm tunnels through rapidly then quantum Monte Carlo does too. Elizabeth Crosson Proof idea: Only a few rows on the barrier at once. m

27 simulated annealing vs quantum adiabatic optimization vs quantum Monte Carlo

28 implications Evidence against tunneling as a route to quantum speedup. Routes to quantum advantage? Non-stoquastic adiabatic optimization Tasks where quantum Monte Carlo fails

29 overview classical optimization algorithms adiabatic optimization variational algorithms and quantum supremacy

30 variational quantum algorithms t 1 t 2 t 3 t 4... H = L diag(f) L diag(f) p(z) Theorem: Quantum Supremacy Outputs of quantum algorithm are hard to simulate classically.

31 things I don t know Why are there quantum speedups? Exponentially large dimension not enough. Interference needed too. What good is a 100-qubit quantum computer? Stoquastic adiabatic evolution: quantum supremacy or efficient classical simulation?

32 deleted scenes

33 standard part of QMC 1. Use local moves (Glauber or Metropolis) to generate samples from π(z 1,..., z L ). Run-time/accuracy tradeoff unknown in general. 2. Use sampling-to-counting equivalence to estimate Z or O =tr[o e -βh ]/Z. Problem reduces to bounding mixing time (equiv. gap) of a classical Markov chain.

34 n The Markov chain m jump z 2 z weight(z) = exp(-β(f(z 1 ) f(z L )) / m) (βγ/m)# vertical jumps rapidly mixing?

35 the path measure random walk z 1,...,z m on hypercube {0,1} n conditioned to return (z m+1 = z 1 ) alternatively can use open boundary conditions. typically βγn total jumps [see also JSIBMTN ] Suppose that f(z) depends only on Hamming weight z. look only at Hamming weight: {0,1} n -> {0,1,,n}. take n-> and {0,1,,n} à [0,1]. Brownian motion, or with closed B.C., Brownian bridge with local Z fields -> Brownian motion with drift Ornstein-Uhlenbeck bridge dx(t) = θ(μ-x(t)) dt + σ db(t) θ = drift, μ = mean, σ = diffusion imaginary time Hamming weight

36 local times of Brownian motion Local time: L x (t) = amount of time Brownian motion B(t) spends at point x. Lévy s theorem: {L 0 (t): t 0} and {S(t): t 0} have the same distribution, where S(t) = sup 0 s t B(s). In fact, (S-B, S) = d ( B, L 0 ) Additionally, S = d B.

37 local times of Brownian motion Local time: L x (t) = amount of time Brownian motion B([0,t]) spends at point x. Lévy s theorem: (S-B, S) = d ( B, L 0 ) Proof: consider discrete r walk: W(k) = X(1) X(k) with X(t) = ±1. Let M(k) = max(w(0),..., W(k)) W (t) M(t) Y(t) = M(t)-W(t) d W(t) t Y (t) =M(t) M = # of times M-W remains at 0 d L 0 W (t) t figure adapted from Brownian Motion by Mörters and Peres.

38 Hamming weight + spike f( z ) FGG 02 R 04 KC 15 BvD 16 JSIBMTN 16 width n a 1 exp(-n a+(b-1)/2 ) height n b height b 0.5 n 1/2-a-b 0 n n n 4 2 z 0 Ω(1) 0 width a 0.5

39 QMC and tunnelling spike (width n a, height nb ) imaginary time ST = normalized spike time d N(0, n a-1/2 ) proof using either Lévy s thm or quantum-classical correspondence Hamming weight Feynman-Kac thm: Pr[path spike] = exp(-βst n b ) Pr[path no spike] à if a+b<1/2 then typical paths don t notice the spike.

40 instantons on the cheap spike (width n a, height nb ) a<1/2 2a+b<1 cf JSIBMTN 16 1 imaginary time Hamming weight steps to traverse spike n 2a min ST = n 2a / βγn Feynman-Kac à prob reduced by exp(-n 2a+b-1 ) 2a+b 1 is the theshold to cross the spike once.

41 canonical paths Given Markov chain P(x,y) with stationary distribution π(x) and Q(x,y) = P(x,y) π(y) = Q(y,x). TFAE: P has a 1/poly(n) gap between the top two eigenvalues The conductance Φ is 1/poly(n). Φ = min S Q(S, S c ) / π(s) π(s c ) conductance For any x,y there exists a path γ xy from x -> y routing π(x) π(y) units of flow such that each edge e has load poly(n) Q(e). ( canonical paths/flows ) Heuristics analyze some plausible cut. Proofs analyze all cuts or construct paths. canonical paths

42 1-d canonical path x 1,1 x 2.1 x 3,1 x 4,1 x 1,2 x 2,2 x 3,2 x 4,2 x 1,3 x 2,3 x 3,3 x 4,3 x 1,4 x 2,4 x 3,4 x 4,4 x 1,5 x 2,5 x 3,5 x 4,5... y 1,1 y 2.1 x 3,1 x 4,1 y 1,2 y 2,2 x 3,2 x 4,2 y 1,3 y 2,3 x 3,3 x 4,3 y 1,4 y 2,4 x 3,4 x 4,4 y 1,5 x 2,5 x 3,5 x 4,5 energy penalty: 2 new jumps 1 term from H D (L bonds each with weight 1/L.) x 1,6 x 2,6 x 3,6 x 4,6 y 1,6 x 2,6 x 3,6 x 4,6 y 1,1 x 2.1 x 3,1 x 4,1 x 1,2 x 2,2 x 3,2 x 4,2 x 1,3 x 2,3 x 3,3 x 4,3 x 1,4 x 2,4 x 3,4 x 4,4 x 1,5 x 2,5 x 3,5 x 4,5 x 1,6 x 2,6 x 3,6 x 4,6... y 1,1 y 2.1 y 3,1 y 4,1 y 1,2 y 2,2 y 3,2 y 4,2 y 1,3 y 2,3 y 3,3 y 4,3 y 1,4 y 2,4 y 3,4 y 4,4 y 1,5 y 2,5 y 3,5 y 4,5 y 1,6 y 2,6 y 3,6 y 4,6

Adiabatic quantum computation a tutorial for computer scientists

Adiabatic quantum computation a tutorial for computer scientists Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012 Outline introduction I: what is a quantum computer?

More information

Hamiltonian simulation and solving linear systems

Hamiltonian simulation and solving linear systems Hamiltonian simulation and solving linear systems Robin Kothari Center for Theoretical Physics MIT Quantum Optimization Workshop Fields Institute October 28, 2014 Ask not what you can do for quantum computing

More information

Complexity of the quantum adiabatic algorithm

Complexity of the quantum adiabatic algorithm Complexity of the quantum adiabatic algorithm Peter Young e-mail:peter@physics.ucsc.edu Collaborators: S. Knysh and V. N. Smelyanskiy Colloquium at Princeton, September 24, 2009 p.1 Introduction What is

More information

Quantum walk algorithms

Quantum walk algorithms Quantum walk algorithms Andrew Childs Institute for Quantum Computing University of Waterloo 28 September 2011 Randomized algorithms Randomness is an important tool in computer science Black-box problems

More information

On Markov Chain Monte Carlo

On Markov Chain Monte Carlo MCMC 0 On Markov Chain Monte Carlo Yevgeniy Kovchegov Oregon State University MCMC 1 Metropolis-Hastings algorithm. Goal: simulating an Ω-valued random variable distributed according to a given probability

More information

Quantum speedup of backtracking and Monte Carlo algorithms

Quantum speedup of backtracking and Monte Carlo algorithms Quantum speedup of backtracking and Monte Carlo algorithms Ashley Montanaro School of Mathematics, University of Bristol 19 February 2016 arxiv:1504.06987 and arxiv:1509.02374 Proc. R. Soc. A 2015 471

More information

The Impact of Quantum Computing

The Impact of Quantum Computing Fujitsu Laboratories Advanced Technology Symposium 2017 The Impact of Quantum Computing Daniel Lidar University of Southern California Quantum Computing - Origins Credit goes to Feynman: Quantum Physics:

More information

arxiv: v2 [quant-ph] 23 Jun 2016

arxiv: v2 [quant-ph] 23 Jun 2016 Simulated Quantum Annealing Can Be Exponentially Faster than Classical Simulated Annealing Elizabeth Crosson Aram W. Harrow arxiv:1601.03030v2 [quant-ph] 23 Jun 2016 June 24, 2016 Abstract Can quantum

More information

Statistics and Quantum Computing

Statistics and Quantum Computing Statistics and Quantum Computing Yazhen Wang Department of Statistics University of Wisconsin-Madison http://www.stat.wisc.edu/ yzwang Workshop on Quantum Computing and Its Application George Washington

More information

Overview of adiabatic quantum computation. Andrew Childs

Overview of adiabatic quantum computation. Andrew Childs Overview of adiabatic quantum computation Andrew Childs Adiabatic optimization Quantum adiabatic optimization is a class of procedures for solving optimization problems using a quantum computer. Basic

More information

Quantum algorithms based on quantum walks. Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre / 39

Quantum algorithms based on quantum walks. Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre / 39 Quantum algorithms based on quantum walks Jérémie Roland Université Libre de Bruxelles Quantum Information & Communication Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 1 / 39 Outline

More information

Numerical Studies of the Quantum Adiabatic Algorithm

Numerical Studies of the Quantum Adiabatic Algorithm Numerical Studies of the Quantum Adiabatic Algorithm A.P. Young Work supported by Colloquium at Universität Leipzig, November 4, 2014 Collaborators: I. Hen, M. Wittmann, E. Farhi, P. Shor, D. Gosset, A.

More information

Lecture 26, Tues April 25: Performance of the Adiabatic Algorithm

Lecture 26, Tues April 25: Performance of the Adiabatic Algorithm Lecture 26, Tues April 25: Performance of the Adiabatic Algorithm At the end of the last lecture, we saw that the following problem is NP -hard: Given as input an n -qubit Hamiltonian H of the special

More information

Polynomial-time classical simulation of quantum ferromagnets

Polynomial-time classical simulation of quantum ferromagnets Polynomial-time classical simulation of quantum ferromagnets Sergey Bravyi David Gosset IBM PRL 119, 100503 (2017) arxiv:1612.05602 Quantum Monte Carlo: a powerful suite of probabilistic classical simulation

More information

High-precision quantum algorithms. Andrew Childs

High-precision quantum algorithms. Andrew Childs High-precision quantum algorithms Andrew hilds What can we do with a quantum computer? Factoring Many problems with polynomial speedup (combinatorial search, collision finding, graph properties, oolean

More information

Algorithmic challenges in quantum simulation. Andrew Childs University of Maryland

Algorithmic challenges in quantum simulation. Andrew Childs University of Maryland Algorithmic challenges in quantum simulation Andrew Childs University of Maryland nature isn t classical, dammit, and if you want to make a simulation of nature, you d better make it quantum mechanical,

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 16: Adiabatic Quantum Optimization Intro http://www.scottaaronson.com/blog/?p=1400 Testing a quantum

More information

Quantum algorithms. Andrew Childs. Institute for Quantum Computing University of Waterloo

Quantum algorithms. Andrew Childs. Institute for Quantum Computing University of Waterloo Quantum algorithms Andrew Childs Institute for Quantum Computing University of Waterloo 11th Canadian Summer School on Quantum Information 8 9 June 2011 Based in part on slides prepared with Pawel Wocjan

More information

Algorithmic challenges in quantum simulation. Andrew Childs University of Maryland

Algorithmic challenges in quantum simulation. Andrew Childs University of Maryland Algorithmic challenges in quantum simulation Andrew Childs University of Maryland nature isn t classical, dammit, and if you want to make a simulation of nature, you d better make it quantum mechanical,

More information

Discrete quantum random walks

Discrete quantum random walks Quantum Information and Computation: Report Edin Husić edin.husic@ens-lyon.fr Discrete quantum random walks Abstract In this report, we present the ideas behind the notion of quantum random walks. We further

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at Saarbrücken University, November 5, 2012 Collaborators: I. Hen, E.

More information

Introduction to Adiabatic Quantum Computation

Introduction to Adiabatic Quantum Computation Introduction to Adiabatic Quantum Computation Vicky Choi Department of Computer Science Virginia Tech April 6, 2 Outline Motivation: Maximum Independent Set(MIS) Problem vs Ising Problem 2 Basics: Quantum

More information

WORKSHOP ON QUANTUM ALGORITHMS AND DEVICES FRIDAY JULY 15, 2016 MICROSOFT RESEARCH

WORKSHOP ON QUANTUM ALGORITHMS AND DEVICES FRIDAY JULY 15, 2016 MICROSOFT RESEARCH Workshop on Quantum Algorithms and Devices Friday, July 15, 2016 - Microsoft Research Building 33 In 1981, Richard Feynman proposed a device called a quantum computer that would take advantage of methods

More information

The Quantum Landscape

The Quantum Landscape The Quantum Landscape Computational drug discovery employing machine learning and quantum computing Contact us! lucas@proteinqure.com Or visit our blog to learn more @ www.proteinqure.com 2 Applications

More information

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace Quantum Computing Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September 2010 10:00am PST, Teleplace The Hope All computing is constrained by the laws of Physics and

More information

A Glimpse of Quantum Computation

A Glimpse of Quantum Computation A Glimpse of Quantum Computation Zhengfeng Ji (UTS:QSI) QCSS 2018, UTS 1. 1 Introduction What is quantum computation? Where does the power come from? Superposition Incompatible states can coexist Transformation

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

The power of quantum sampling. Aram Harrow Bristol/UW Feb 3, 2011

The power of quantum sampling. Aram Harrow Bristol/UW Feb 3, 2011 The power of quantum sampling Aram Harrow Bristol/UW Feb 3, 2011 computer science physics computer science physics building computers: -mechanical -electronic -quantum computer science physics building

More information

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016 Quantum Effect or HPC without FLOPS Lugano March 23, 2016 Electronics April 19, 1965 2016 D-Wave Systems Inc. All Rights Reserved 2 Moore s Law 2016 D-Wave Systems Inc. All Rights Reserved 3 www.economist.com/technology-quarterly/2016-03-12/aftermoores-law

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT Quantum algorithms (CO 78, Winter 008) Prof. Andrew Childs, University of Waterloo LECTURE : Quantum circuits and the abelian QFT This is a course on quantum algorithms. It is intended for graduate students

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 4 December 2013

Ph 219b/CS 219b. Exercises Due: Wednesday 4 December 2013 1 Ph 219b/CS 219b Exercises Due: Wednesday 4 December 2013 4.1 The peak in the Fourier transform In the period finding algorithm we prepared the periodic state A 1 1 x 0 + jr, (1) A j=0 where A is the

More information

On the complexity of stoquastic Hamiltonians

On the complexity of stoquastic Hamiltonians On the complexity of stoquastic Hamiltonians Ian Kivlichan December 11, 2015 Abstract Stoquastic Hamiltonians, those for which all off-diagonal matrix elements in the standard basis are real and non-positive,

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

arxiv: v1 [quant-ph] 28 Jan 2014

arxiv: v1 [quant-ph] 28 Jan 2014 Different Strategies for Optimization Using the Quantum Adiabatic Algorithm Elizabeth Crosson,, 2 Edward Farhi, Cedric Yen-Yu Lin, Han-Hsuan Lin, and Peter Shor, 3 Center for Theoretical Physics, Massachusetts

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk We now turn to a second major topic in quantum algorithms, the concept

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at the London Centre for Nanotechnology, October 17, 2012 Collaborators:

More information

Quantum Computing An Overview

Quantum Computing An Overview Quantum Computing An Overview NAS Division NASA Ames Research Center TR Govindan Program Manager, QIS U.S. Army Research Office Outline Motivation Essentials of the Quantum Computing (QC) model Challenges

More information

A note on adiabatic theorem for Markov chains

A note on adiabatic theorem for Markov chains Yevgeniy Kovchegov Abstract We state and prove a version of an adiabatic theorem for Markov chains using well known facts about mixing times. We extend the result to the case of continuous time Markov

More information

Exploring reverse annealing as a tool for hybrid quantum/classical computing

Exploring reverse annealing as a tool for hybrid quantum/classical computing Exploring reverse annealing as a tool for hybrid quantum/classical computing University of Zagreb QuantiXLie Seminar Nicholas Chancellor October 12, 2018 Talk structure 1. Background Quantum computing:

More information

Quantum Computers Is the Future Here?

Quantum Computers Is the Future Here? Quantum Computers Is the Future Here? Tal Mor CS.Technion ISCQI Feb. 2016 128?? [ 2011 ; sold to LM ] D-Wave Two :512?? [ 2013 ; sold to NASA + Google ] D-Wave Three: 1024?? [ 2015 ; also installed at

More information

Adiabatic Quantum Computation An alternative approach to a quantum computer

Adiabatic Quantum Computation An alternative approach to a quantum computer An alternative approach to a quantum computer ETH Zürich May 2. 2014 Table of Contents 1 Introduction 2 3 4 Literature: Introduction E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda

More information

Hamiltonian simulation with nearly optimal dependence on all parameters

Hamiltonian simulation with nearly optimal dependence on all parameters Hamiltonian simulation with nearly optimal dependence on all parameters Dominic Berry + Andrew Childs obin Kothari ichard Cleve olando Somma Quantum simulation by quantum walks Dominic Berry + Andrew Childs

More information

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm Part I: Quantum Gates and Simon s Algorithm Martin Rötteler NEC Laboratories America, Inc. 4 Independence Way, Suite 00 Princeton, NJ 08540, U.S.A. International Summer School on Quantum Information, Max-Planck-Institut

More information

Approximate Counting and Markov Chain Monte Carlo

Approximate Counting and Markov Chain Monte Carlo Approximate Counting and Markov Chain Monte Carlo A Randomized Approach Arindam Pal Department of Computer Science and Engineering Indian Institute of Technology Delhi March 18, 2011 April 8, 2011 Arindam

More information

Exponential algorithmic speedup by quantum walk

Exponential algorithmic speedup by quantum walk Exponential algorithmic speedup by quantum walk Andrew Childs MIT Center for Theoretical Physics joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman quant-ph/0209131 Motivation

More information

arxiv: v1 [quant-ph] 16 Aug 2017

arxiv: v1 [quant-ph] 16 Aug 2017 Noname manuscript No. (will be inserted by the editor) Combinatorial Optimization on Gate Model Quantum Computers: A Survey Ehsan Zahedinejad Arman Zaribafiyan arxiv:1708.05294v1 [quant-ph] 16 Aug 2017

More information

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft)

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Quantum annealing (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Troels Rønnow (ETH) Sergei Isakov (ETH Google) Lei Wang (ETH) Sergio Boixo (USC Google) Daniel Lidar (USC) Zhihui Wang (USC)

More information

D-Wave: real quantum computer?

D-Wave: real quantum computer? D-Wave: real quantum computer? M. Johnson et al., "Quantum annealing with manufactured spins", Nature 473, 194-198 (2011) S. Boixo et al., "Evidence for quantum annealing wiht more than one hundred qubits",

More information

Finding is as easy as detecting for quantum walks

Finding is as easy as detecting for quantum walks Finding is as easy as detecting for quantum walks Jérémie Roland Hari Krovi Frédéric Magniez Maris Ozols LIAFA [ICALP 2010, arxiv:1002.2419] Jérémie Roland (NEC Labs) QIP 2011 1 / 14 Spatial search on

More information

A quantum walk based search algorithm, and its optical realisation

A quantum walk based search algorithm, and its optical realisation A quantum walk based search algorithm, and its optical realisation Aurél Gábris FJFI, Czech Technical University in Prague with Tamás Kiss and Igor Jex Prague, Budapest Student Colloquium and School on

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018 The Future of Advanced (Secure) Computing Quantum Computing This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering and the Office of the Director

More information

Quantum Annealing and the Schrödinger-Langevin-Kostin equation

Quantum Annealing and the Schrödinger-Langevin-Kostin equation Quantum Annealing and the Schrödinger-Langevin-Kostin equation Diego de Falco Dario Tamascelli Dipartimento di Scienze dell Informazione Università degli Studi di Milano IQIS Camerino, October 28th 2008

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Chapter 7. The worm algorithm

Chapter 7. The worm algorithm 64 Chapter 7 The worm algorithm This chapter, like chapter 5, presents a Markov chain for MCMC sampling of the model of random spatial permutations (chapter 2) within the framework of chapter 4. The worm

More information

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky Monte Carlo Lecture 15 4/9/18 1 Sampling with dynamics In Molecular Dynamics we simulate evolution of a system over time according to Newton s equations, conserving energy Averages (thermodynamic properties)

More information

Summary of Hyperion Research's First QC Expert Panel Survey Questions/Answers. Bob Sorensen, Earl Joseph, Steve Conway, and Alex Norton

Summary of Hyperion Research's First QC Expert Panel Survey Questions/Answers. Bob Sorensen, Earl Joseph, Steve Conway, and Alex Norton Summary of Hyperion Research's First QC Expert Panel Survey Questions/Answers Bob Sorensen, Earl Joseph, Steve Conway, and Alex Norton Hyperion s Quantum Computing Program Global Coverage of R&D Efforts

More information

Quantum Annealing for Prime Factorization

Quantum Annealing for Prime Factorization Quantum Annealing for Prime Factorization Shuxian Jiang, Sabre Kais Department of Chemistry and Computer Science, Purdue University Keith A. Britt, Alexander J. McCaskey, Travis S. Humble Quantum Computing

More information

From Adversaries to Algorithms. Troy Lee Rutgers University

From Adversaries to Algorithms. Troy Lee Rutgers University From Adversaries to Algorithms Troy Lee Rutgers University Quantum Query Complexity As in classical complexity, it is difficult to show lower bounds on the time or number of gates required to solve a problem

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Random Walks A&T and F&S 3.1.2

Random Walks A&T and F&S 3.1.2 Random Walks A&T 110-123 and F&S 3.1.2 As we explained last time, it is very difficult to sample directly a general probability distribution. - If we sample from another distribution, the overlap will

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Stephen Casey NASA Slide template creator Krysta Svore Bloch Sphere Hadamard basis θ φ Quantum Hardware Technologies Quantum dots Superconductors Ion traps Nitrogen

More information

Canary Foundation at Stanford. D-Wave Systems Murray Thom February 27 th, 2017

Canary Foundation at Stanford. D-Wave Systems Murray Thom February 27 th, 2017 Canary Foundation at Stanford D-Wave Systems Murray Thom February 27 th, 2017 Introduction to Quantum Computing Copyright D-Wave Systems Inc. 3 Richard Feynman 1960 1970 1980 1990 2000 2010 2020 Copyright

More information

Where Probability Meets Combinatorics and Statistical Mechanics

Where Probability Meets Combinatorics and Statistical Mechanics Where Probability Meets Combinatorics and Statistical Mechanics Daniel Ueltschi Department of Mathematics, University of Warwick MASDOC, 15 March 2011 Collaboration with V. Betz, N.M. Ercolani, C. Goldschmidt,

More information

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at AQC 2013, March 8, 2013 Collaborators:

More information

Math 456: Mathematical Modeling. Tuesday, April 9th, 2018

Math 456: Mathematical Modeling. Tuesday, April 9th, 2018 Math 456: Mathematical Modeling Tuesday, April 9th, 2018 The Ergodic theorem Tuesday, April 9th, 2018 Today 1. Asymptotic frequency (or: How to use the stationary distribution to estimate the average amount

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 7

MATH 56A: STOCHASTIC PROCESSES CHAPTER 7 MATH 56A: STOCHASTIC PROCESSES CHAPTER 7 7. Reversal This chapter talks about time reversal. A Markov process is a state X t which changes with time. If we run time backwards what does it look like? 7.1.

More information

Decomposition Methods and Sampling Circuits in the Cartesian Lattice

Decomposition Methods and Sampling Circuits in the Cartesian Lattice Decomposition Methods and Sampling Circuits in the Cartesian Lattice Dana Randall College of Computing and School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0280 randall@math.gatech.edu

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

!"#$%"&'(#)*+',$'-,+./0%0'#$1' 23$4$"3"+'5,&0'

!#$%&'(#)*+',$'-,+./0%0'#$1' 23$4$3+'5,&0' !"#$%"&'(#)*+',$'-,+./0%0'#$1' 23$4$"3"+'5,&0' 6/010/,.*'(7'8%/#".9' -0:#/%&0$%'3;'0' Valencia 2011! Outline! Quantum Walks! DTQW & CTQW! Quantum Algorithms! Searching, Mixing,

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018 System Roadmap Qubits 2018 D-Wave Users Conference Knoxville Jed Whittaker D-Wave Systems Inc. September 25, 2018 Overview Where are we today? annealing options reverse annealing quantum materials simulation

More information

Session 1: Probability and Markov chains

Session 1: Probability and Markov chains Session 1: Probability and Markov chains 1. Probability distributions and densities. 2. Relevant distributions. 3. Change of variable. 4. Stochastic processes. 5. The Markov property. 6. Markov finite

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

The Lovasz-Vempala algorithm for computing the volume of a convex body in O*(n^4) - Theory and Implementation

The Lovasz-Vempala algorithm for computing the volume of a convex body in O*(n^4) - Theory and Implementation The Lovasz-Vempala algorithm for computing the volume of a convex body in O*(n^4) - Theory and Implementation Mittagsseminar, 20. Dec. 2011 Christian L. Müller, MOSAIC group, Institute of Theoretical Computer

More information

Quantum algorithms based on span programs

Quantum algorithms based on span programs Quantum algorithms based on span programs Ben Reichardt IQC, U Waterloo [arxiv:0904.2759] Model: Complexity measure: Quantum algorithms Black-box query complexity Span programs Witness size [KW 93] [RŠ

More information

Adiabatic times for Markov chains and applications

Adiabatic times for Markov chains and applications Adiabatic times for Markov chains and applications Kyle Bradford and Yevgeniy Kovchegov Department of Mathematics Oregon State University Corvallis, OR 97331-4605, USA bradfork, kovchegy @math.oregonstate.edu

More information

The Quantum Supremacy Experiment

The Quantum Supremacy Experiment The Quantum Supremacy Experiment John Martinis, Google & UCSB New tests of QM: Does QM work for 10 15 Hilbert space? Does digitized error model also work? Demonstrate exponential computing power: Check

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part II Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 13, 2011 Overview Outline Grover s Algorithm Quantum search A worked example Simon s algorithm

More information

Continuous Time Quantum Walk on finite dimensions. Shanshan Li Joint work with Stefan Boettcher Emory University QMath13, 10/11/2016

Continuous Time Quantum Walk on finite dimensions. Shanshan Li Joint work with Stefan Boettcher Emory University QMath13, 10/11/2016 Continuous Time Quantum Walk on finite dimensions Shanshan Li Joint work with Stefan Boettcher Emory University QMath3, 0//206 Grover Algorithm: Unstructured Search! #$%&' Oracle $()*%$ f(x) f (x) = (

More information

MARKOV CHAINS AND HIDDEN MARKOV MODELS

MARKOV CHAINS AND HIDDEN MARKOV MODELS MARKOV CHAINS AND HIDDEN MARKOV MODELS MERYL SEAH Abstract. This is an expository paper outlining the basics of Markov chains. We start the paper by explaining what a finite Markov chain is. Then we describe

More information

TMS165/MSA350 Stochastic Calculus, Lecture on Applications

TMS165/MSA350 Stochastic Calculus, Lecture on Applications TMS165/MSA35 Stochastic Calculus, Lecture on Applications In this lecture we demonstrate how statistical methods such as the maximum likelihood method likelihood ratio estimation can be applied to the

More information

Physics 127c: Statistical Mechanics. Application of Path Integrals to Superfluidity in He 4

Physics 127c: Statistical Mechanics. Application of Path Integrals to Superfluidity in He 4 Physics 17c: Statistical Mechanics Application of Path Integrals to Superfluidity in He 4 The path integral method, and its recent implementation using quantum Monte Carlo methods, provides both an intuitive

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Quantum computing with superconducting qubits Towards useful applications

Quantum computing with superconducting qubits Towards useful applications Quantum computing with superconducting qubits Towards useful applications Stefan Filipp IBM Research Zurich Switzerland Forum Teratec 2018 June 20, 2018 Palaiseau, France Why Quantum Computing? Why now?

More information

Characterizing Quantum Supremacy in Near-Term Devices

Characterizing Quantum Supremacy in Near-Term Devices Characterizing Quantum Supremacy in Near-Term Devices S. Boixo S. Isakov, V. Smelyanskiy, R. Babbush, M. Smelyanskiy, N. Ding, Z. Jiang, M. J. Bremner, J. Martinis, H. Neven Google January 19th Beyond-classical

More information

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Wang-Landau sampling for Quantum Monte Carlo Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Overview Classical Monte Carlo First order phase transitions Classical Wang-Landau

More information

Applications of Hidden Markov Models

Applications of Hidden Markov Models 18.417 Introduction to Computational Molecular Biology Lecture 18: November 9, 2004 Scribe: Chris Peikert Lecturer: Ross Lippert Editor: Chris Peikert Applications of Hidden Markov Models Review of Notation

More information

Experimental Realization of Shor s Quantum Factoring Algorithm

Experimental Realization of Shor s Quantum Factoring Algorithm Experimental Realization of Shor s Quantum Factoring Algorithm M. Steffen1,2,3, L.M.K. Vandersypen1,2, G. Breyta1, C.S. Yannoni1, M. Sherwood1, I.L.Chuang1,3 1 IBM Almaden Research Center, San Jose, CA

More information

Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session

Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session Scribes: Antonio Blanca, Sarah Cannon, Yumeng Zhang February 4th, 06 Yuval Peres: Simple Random Walk on

More information

The quantum threat to cryptography

The quantum threat to cryptography The quantum threat to cryptography Ashley Montanaro School of Mathematics, University of Bristol 20 October 2016 Quantum computers University of Bristol IBM UCSB / Google University of Oxford Experimental

More information

Promise of Quantum Computation

Promise of Quantum Computation Quantum Computation, and Epilog: The Future of Computing 1 Promise of Quantum Computation Classical computers have their limitations: Factoring large numbers takes exponential time. No faster algorithm

More information

Lecture 2: September 8

Lecture 2: September 8 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 2: September 8 Lecturer: Prof. Alistair Sinclair Scribes: Anand Bhaskar and Anindya De Disclaimer: These notes have not been

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

Gates for Adiabatic Quantum Computing

Gates for Adiabatic Quantum Computing Gates for Adiabatic Quantum Computing Richard H. Warren Abstract. The goal of this paper is to introduce building blocks for adiabatic quantum algorithms. Adiabatic quantum computing uses the principle

More information

Accelerating QMC on quantum computers. Matthias Troyer

Accelerating QMC on quantum computers. Matthias Troyer Accelerating QMC on quantum computers Matthias Troyer International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California

More information