Quantum Annealing for Prime Factorization

Size: px
Start display at page:

Download "Quantum Annealing for Prime Factorization"

Transcription

1 Quantum Annealing for Prime Factorization Shuxian Jiang, Sabre Kais Department of Chemistry and Computer Science, Purdue University Keith A. Britt, Alexander J. McCaskey, Travis S. Humble Quantum Computing Institute, Oak Ridge National Laboratory Qubits 2018

2 Integer Factorization Problem Classical Factorization - Methods: 1. Trial Division(n 1 2 ): try 2,3,5,...,n 1 2 to divide n 2. Shanks, Pollard, Strassen (1970s)(n 1 4 ): complicated math 3. CFRAC(1970), QS(1980), NFS(1990) O(exp (ln(n))(ln(ln(n))) ): nonrigorous 4. Elliptic Curve Method(1985)O(exp (ln(n))(ln(ln(n))) ): probabilistic, nonrigorous - Limitations: EXP time if no randomness, no unproved hypotheses Quadratic Sieve Method(subexponential, not polynomial)

3 Integer Factorization Problem Quantum Factorization - Gate Model Shor s algo: order-finding Exponential speedup: polynomial time Hard to physically implement Largest Number: 21 - Adiabatic Computation Model Convert to optimization problem 1. NMR f = (N pq) 2 2. Ising Machine: D-wave,... Multiplication Table 3. Nitrogen-Vacancy (NV) center in diamond Multiplication Table

4 Integer Factorization Problem Quantum Factorization - Gate Model Shor s algo: order-finding Exponential speedup: polynomial time Hard to physically implement Largest Number: 21 - Adiabatic Computation Model Convert to optimization problem 1. NMR f = (N pq) 2 2. Ising Machine: D-wave,... Multiplication Table 3. Nitrogen-Vacancy (NV) center in diamond Multiplication Table

5 Quantum Adiabatic Computation Method 1 Define Hamiltonian: H(t) = (1 t/t )H 0 + (t/t )H P 2 Set system to ground state of initial H 0 (easy) 3* Define final H P s.t. its ground state encodes problem s solution 4 System slowly evolves to final state(eigenvector w.r.t. smallest eigenvalue),measure it to get soln

6 How to encode H p f p (s 1, s 2,..., s n ) = K n k=1 j 1,...,j k =1 J j1...j k s j1...s jk, s i = ±1 is the energy func.(eigenvalue func.) of Hamiltonian H p (σ z (1), σ z (2),..., σ z (n) ) = K n k=1 j 1,...,j k =1 J j1...j k σ (j 1) z...σ (j k) z i 1 n i Here σ z (i) {}}{{}}{ = I I... I σ z I... I with eigenvector x 1 x 2...x n, x i = {0, 1}, s i = ( 1) x i

7 Ising model Definition H p (σ z (1), σ z (2),..., σ z (n) ) = n i=1 h i σ (i) z + h i : external magnetic J ij : interaction between two adjacent sites i, j n i,j=1 Ising Model Quadratic Function J ij σ z (i) σ z (j)

8 Our Method for Factorization 1 Define Cost Function - Direct Method: f = (N pq) 2 - Modified Multiplication Table Method Order Reducing Method - x, y, z {0, 1} xy = z iff xy 2xz 2yz + 3z = 0, xy z iff xy 2xz 2yz + 3z > 0 x 1, x 2, x 3 {0, 1} min(x 1 x 2 x 3 ) = min (x 4 x 3 + 2(x 1 x 2 2x 1 x 4 2x 2 x 4 + 3x 4 )) x 4=x 1x 2 min( x 1 x 2 x 3 ) = min ( x 4 x 3 + 2(x 1 x 2 2x 1 x 4 2x 2 x 4 + 3x 4 )) x 4=x 1x 2 1 Shuxian Jiang et al. Quantum Annealing for Prime Factorization. In: arxiv preprint arxiv: (2018).

9 Cost Function: Direct Method For N = pq p = (p l 1 p l 2...p 1 1) 2, q = (q l 1q l 2...q 1 1) 2 Reduce Order: Define f = (N pq) 2 min(x 1 x 2 x 3 ) = l 1 l 1 = [N ( 2 i p i + 1)( 2 j q j + 1)] 2 i=1 i=1 j=1 l 1 l 1 = N 2 + ( 2 i p i + 1) 2 ( 2 j q j + 1) 2 i=1 j=1 l 1 l 1 2N( 2 i p i + 1)( 2 j q j + 1) j=1 min (x 4 x 3 + 2(x 1 x 2 2x 1 x 4 2x 2 x 4 + 3x 4 )) x 4 =x 1 x 2

10 Cost Function: Direct Method For N = 15 = 5 3 p = (x 1 1) 2 = x , q = (x 2 x 3 1) 2 = x x f (x 1, x 2, x 3 ) = (N pq) 2 = [15 (x )(x x )] 2 = (2x 1 + 1) 2 (4x 3 + 2x 2 + 1) 2 30(2x 1 + 1)(4x 3 + 2x 2 + 1) = 128x 1 x 2 x 3 56x 1 x 2 48x 1 x x 2 x 3 52x 1 52x 2 96x Reduce Order: f (x 1, x 2, x 3, x 4 ) = 128(x 4 x 3 + 2(x 1 x 2 2x 1 x 4 2x 2 x 4 + 3x 4 )) 56x 1 x 2 48x 1 x x 2 x 3 52x 1 52x 2 96x

11 Cost Function: Modified Multiplication Table Method Table: Multiplication table for = 143 in binary p 1 p 2 p 1 1 q 1 q 2 q p 2 p 1 1 q 1 p 2 q 1 p 1 q 1 q 1 q 2 p 2 q 2 p 1 q 2 q 2 1 p 2 p 1 1 carries c 4 c 3 c 2 c 1 p q = (p 2 + p 1 q 1 + q 2 ) + (p 1 + q 1 ) = 8c 2 + 4c

12 Cost Function: Modified Multiplication Table Methods From 2(p 2 + p 1 q 1 + q 2 ) + (p 1 + q 1 ) = 8c 2 + 4c We got f 1 = (2p 2 + 2p 1 q 1 + 2q 2 8c 2 4c 1 + p 1 + q 1 3) 2 Reduce order min(±x 1 x 2 x 3 ) = min x 4 =x 1 x 2 (±x 4 x 3 + 2(x 1 x 2 2x 1 x 4 2x 2 x 4 + 3x 4 ))

13 Embed to D-wave s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10 s 11 s 12 s 5 s 6 s 7 s 8 s 9 s 10 s 11 s 12 s 9 s 10 s 11 s 12 Figure: Embed problem graph of factoring 143 using method one to Chimera graph

14 Embed to D-wave (a) Result (b) Result Figure: Final ground state of factoring 143. Red nodes:+1, Blue nodes:-1. (a) s 1 = 1, s 2 = 1, s 3 = 1, s 4 = 1 (p = 1101, q = 1011). (b) s 1 = 1, s 2 = 1, s 3 = 1, s 4 = 1 (p = 1011, q = 1101).

15 Cost Function: Modified Multiplication Table Method Table: Multiplication table for = in binary p 8 p 7 p 6 p 5 p 4 p 3 p 2 p q 8 q 7 q 6 q 5 q 4 q 3 q 2 q p 8 p 7 p 6 p 5 p 4 p 3 p 2 p 1 1 q 1 p 8q 1 p 7q 1 p 6q 1 p 5q 1 p 4q 1 p 3q 1 p 2q 1 p 1q 1 q 1 q 2 p 8q 2 p 7q 2 p 6q 2 p 5q 2 p 4q 2 p 3q 2 p 2q 2 p 1q 2 q 2 q 3 p 8q 3 p 7q 3 p 6q 3 p 5q 3 p 4q 3 p 3q 3 p 2q 3 p 1q 3 q 3 q 4 p 8q 4 p 7q 4 p 6q 4 p 5q 4 p 4q 4 p 3q 4 p 2q 4 p 1q 4 q 4 q 5 p 8q 5 p 7q 5 p 6q 5 p 5q 5 p 4q 5 p 3q 5 p 2q 5 p 1q 5 q 5 q 6 p 8q 6 p 7q 6 p 6q 6 p 5q 6 p 4q 6 p 3q 6 p 2q 6 p 1q 6 q 6 q 7 p 8q 7 p 7q 7 p 6q 7 p 5q 7 p 4q 7 p 3q 7 p 2q 7 p 1q 7 q 7 q 8 p 8q 8 p 7q 8 p 6q 8 p 5q 8 p 4q 8 p 3q 8 p 2q 8 p 1q 8 q 8 1 p 8 p 7 p 6 p 5 p 4 p 3 p 2 p 1 1 c 14 c 13 c 9 c 8 c 7 c 6 c 5 c 4 c 3 c 2 c 1 c 12 c 11 c

16 Experimental Results (a) N = 15, T = 200ms (b) N = 21, T = 2000ms Figure: D-wave Results for Method One: rates of getting different solutions.

17 Experimental Results Table: D-wave Results for Method Two N factors logic#qb phy#qb embed sol

How can ideas from quantum computing improve or speed up neuromorphic models of computation?

How can ideas from quantum computing improve or speed up neuromorphic models of computation? Neuromorphic Computation: Architectures, Models, Applications Associative Memory Models with Adiabatic Quantum Optimization Kathleen Hamilton, Alexander McCaskey, Jonathan Schrock, Neena Imam and Travis

More information

Quantum computing and quantum information KAIS GROUP

Quantum computing and quantum information KAIS GROUP Quantum computing and quantum information KAIS GROUP Main themes Quantum algorithms. In particular for quantum chemistry arxiv:1004.2242 [cs.ne] arxiv:1009.5625 [quant-ph] arxiv:1307.7220 [quant-ph] arxiv:1302.1946

More information

ENHANCING THE PERFORMANCE OF FACTORING ALGORITHMS

ENHANCING THE PERFORMANCE OF FACTORING ALGORITHMS ENHANCING THE PERFORMANCE OF FACTORING ALGORITHMS GIVEN n FIND p 1,p 2,..,p k SUCH THAT n = p 1 d 1 p 2 d 2.. p k d k WHERE p i ARE PRIMES FACTORING IS CONSIDERED TO BE A VERY HARD. THE BEST KNOWN ALGORITHM

More information

Introduction to Adiabatic Quantum Computation

Introduction to Adiabatic Quantum Computation Introduction to Adiabatic Quantum Computation Vicky Choi Department of Computer Science Virginia Tech April 6, 2 Outline Motivation: Maximum Independent Set(MIS) Problem vs Ising Problem 2 Basics: Quantum

More information

Shor s Algorithm. Polynomial-time Prime Factorization with Quantum Computing. Sourabh Kulkarni October 13th, 2017

Shor s Algorithm. Polynomial-time Prime Factorization with Quantum Computing. Sourabh Kulkarni October 13th, 2017 Shor s Algorithm Polynomial-time Prime Factorization with Quantum Computing Sourabh Kulkarni October 13th, 2017 Content Church Thesis Prime Numbers and Cryptography Overview of Shor s Algorithm Implementation

More information

Numerical Studies of the Quantum Adiabatic Algorithm

Numerical Studies of the Quantum Adiabatic Algorithm Numerical Studies of the Quantum Adiabatic Algorithm A.P. Young Work supported by Colloquium at Universität Leipzig, November 4, 2014 Collaborators: I. Hen, M. Wittmann, E. Farhi, P. Shor, D. Gosset, A.

More information

Factoring Algorithms Pollard s p 1 Method. This method discovers a prime factor p of an integer n whenever p 1 has only small prime factors.

Factoring Algorithms Pollard s p 1 Method. This method discovers a prime factor p of an integer n whenever p 1 has only small prime factors. Factoring Algorithms Pollard s p 1 Method This method discovers a prime factor p of an integer n whenever p 1 has only small prime factors. Input: n (to factor) and a limit B Output: a proper factor of

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Adiabatic quantum computation a tutorial for computer scientists

Adiabatic quantum computation a tutorial for computer scientists Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012 Outline introduction I: what is a quantum computer?

More information

Solving the Travelling Salesman Problem Using Quantum Computing

Solving the Travelling Salesman Problem Using Quantum Computing Solving the Travelling Salesman Problem Using Quantum Computing Sebastian Feld, Christoph Roch, Thomas Gabor Ludwig-Maximilians-Universität München OpenMunich 01.12.2017, Munich Agenda I. Quantum Computing

More information

Minor-Embedding in Adiabatic Quantum Optimization

Minor-Embedding in Adiabatic Quantum Optimization Minor-Embedding in Adiabatic Quantum Optimization Vicky Choi Department of Computer Science Virginia Tech Nov, 009 Outline Adiabatic Quantum Algorithm -SAT QUBO Minor-embedding Parameter Setting Problem

More information

Complexity of the quantum adiabatic algorithm

Complexity of the quantum adiabatic algorithm Complexity of the quantum adiabatic algorithm Peter Young e-mail:peter@physics.ucsc.edu Collaborators: S. Knysh and V. N. Smelyanskiy Colloquium at Princeton, September 24, 2009 p.1 Introduction What is

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

COMP4109 : Applied Cryptography

COMP4109 : Applied Cryptography COMP409 : Applied Cryptography Fall 203 M. Jason Hinek Carleton University Applied Cryptography Day 3 public-key encryption schemes some attacks on RSA factoring small private exponent 2 RSA cryptosystem

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at Saarbrücken University, November 5, 2012 Collaborators: I. Hen, E.

More information

Gates for Adiabatic Quantum Computing

Gates for Adiabatic Quantum Computing Gates for Adiabatic Quantum Computing Richard H. Warren Abstract. The goal of this paper is to introduce building blocks for adiabatic quantum algorithms. Adiabatic quantum computing uses the principle

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at the London Centre for Nanotechnology, October 17, 2012 Collaborators:

More information

Overview of adiabatic quantum computation. Andrew Childs

Overview of adiabatic quantum computation. Andrew Childs Overview of adiabatic quantum computation Andrew Childs Adiabatic optimization Quantum adiabatic optimization is a class of procedures for solving optimization problems using a quantum computer. Basic

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT Quantum algorithms (CO 78, Winter 008) Prof. Andrew Childs, University of Waterloo LECTURE : Quantum circuits and the abelian QFT This is a course on quantum algorithms. It is intended for graduate students

More information

Quantum Computers. Peter Shor MIT

Quantum Computers. Peter Shor MIT Quantum Computers Peter Shor MIT 1 What is the difference between a computer and a physics experiment? 2 One answer: A computer answers mathematical questions. A physics experiment answers physical questions.

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 16: Adiabatic Quantum Optimization Intro http://www.scottaaronson.com/blog/?p=1400 Testing a quantum

More information

Financial Portfolio Management using D-Wave s Quantum Optimizer: The Case of Abu Dhabi Securities Exchange

Financial Portfolio Management using D-Wave s Quantum Optimizer: The Case of Abu Dhabi Securities Exchange Financial Portfolio Management using D-Wave s Quantum Optimizer: The Case of Abu Dhabi Securities Exchange Nada Elsokkary and Faisal Shah Khan Quantum Computing Research Group Department of Applied Mathematics

More information

Simon s algorithm (1994)

Simon s algorithm (1994) Simon s algorithm (1994) Given a classical circuit C f (of polynomial size, in n) for an f : {0, 1} n {0, 1} n, such that for a certain s {0, 1} n \{0 n }: x, y {0, 1} n (x y) : f (x) = f (y) x y = s with

More information

Spin glasses and Adiabatic Quantum Computing

Spin glasses and Adiabatic Quantum Computing Spin glasses and Adiabatic Quantum Computing A.P. Young alk at the Workshop on heory and Practice of Adiabatic Quantum Computers and Quantum Simulation, ICP, rieste, August 22-26, 2016 Spin Glasses he

More information

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft)

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Quantum annealing (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Troels Rønnow (ETH) Sergei Isakov (ETH Google) Lei Wang (ETH) Sergio Boixo (USC Google) Daniel Lidar (USC) Zhihui Wang (USC)

More information

Factorization & Primality Testing

Factorization & Primality Testing Factorization & Primality Testing C etin Kaya Koc http://cs.ucsb.edu/~koc koc@cs.ucsb.edu Koc (http://cs.ucsb.edu/~ koc) ucsb ccs 130h explore crypto fall 2014 1/1 Primes Natural (counting) numbers: N

More information

Power of Adiabatic Quantum Computation

Power of Adiabatic Quantum Computation Power of Adiabatic Quantum Computation Itay Hen Information Sciences Institute, USC Physics Colloquium, USC February 10, 2014 arxiv preprints: 1207.1712, 1301.4956, 1307.6538, 1401.5172 Motivation in what

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Stephen Casey NASA Slide template creator Krysta Svore Bloch Sphere Hadamard basis θ φ Quantum Hardware Technologies Quantum dots Superconductors Ion traps Nitrogen

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 14: Quantum Complexity Theory Limits of quantum computers Quantum speedups for NP-Complete Problems?

More information

Integer factorization, part 1: the Q sieve. part 2: detecting smoothness. D. J. Bernstein

Integer factorization, part 1: the Q sieve. part 2: detecting smoothness. D. J. Bernstein Integer factorization, part 1: the Q sieve Integer factorization, part 2: detecting smoothness D. J. Bernstein The Q sieve factors by combining enough -smooth congruences ( + ). Enough log. Plausible conjecture:

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

Additional Practice Lessons 2.02 and 2.03

Additional Practice Lessons 2.02 and 2.03 Additional Practice Lessons 2.02 and 2.03 1. There are two numbers n that satisfy the following equations. Find both numbers. a. n(n 1) 306 b. n(n 1) 462 c. (n 1)(n) 182 2. The following function is defined

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing The lecture notes were prepared according to Peter Shor s papers Quantum Computing and Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

More information

arxiv: v1 [quant-ph] 16 Aug 2017

arxiv: v1 [quant-ph] 16 Aug 2017 Noname manuscript No. (will be inserted by the editor) Combinatorial Optimization on Gate Model Quantum Computers: A Survey Ehsan Zahedinejad Arman Zaribafiyan arxiv:1708.05294v1 [quant-ph] 16 Aug 2017

More information

Pollard s Rho Algorithm for Elliptic Curves

Pollard s Rho Algorithm for Elliptic Curves November 30, 2015 Consider the elliptic curve E over F 2 k, where E = n. Assume we want to solve the elliptic curve discrete logarithm problem: find k in Q = kp. Partition E into S 1 S 2 S 3, where the

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/24 Lecture 5b Markov random field (MRF) November 13, 2015 2/24 Table of contents 1 1. Objectives of Lecture

More information

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers.

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers. LEAVING CERT Honours Maths notes on Algebra. A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers. The degree is the highest power of x. 3x 2 + 2x

More information

Introduction to Quantum Information Processing

Introduction to Quantum Information Processing Introduction to Quantum Information Processing Lecture 6 Richard Cleve Overview of Lecture 6 Continuation of teleportation Computation and some basic complexity classes Simple quantum algorithms in the

More information

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace Quantum Computing Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September 2010 10:00am PST, Teleplace The Hope All computing is constrained by the laws of Physics and

More information

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors . Find the minimum value of the function f (x) x 2 + (A) 6 (B) 3 6 (C) 4 Solution. We have f (x) x 2 + + x 2 + (D) 3 4, which is equivalent to x 0. x 2 + (E) x 2 +, x R. x 2 + 2 (x 2 + ) 2. How many solutions

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part II Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 13, 2011 Overview Outline Grover s Algorithm Quantum search A worked example Simon s algorithm

More information

Continuous Time Quantum Walk on finite dimensions. Shanshan Li Joint work with Stefan Boettcher Emory University QMath13, 10/11/2016

Continuous Time Quantum Walk on finite dimensions. Shanshan Li Joint work with Stefan Boettcher Emory University QMath13, 10/11/2016 Continuous Time Quantum Walk on finite dimensions Shanshan Li Joint work with Stefan Boettcher Emory University QMath3, 0//206 Grover Algorithm: Unstructured Search! #$%&' Oracle $()*%$ f(x) f (x) = (

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

Quantum Computing. 6. Quantum Computer Architecture 7. Quantum Computers and Complexity

Quantum Computing. 6. Quantum Computer Architecture 7. Quantum Computers and Complexity Quantum Computing 1. Quantum States and Quantum Gates 2. Multiple Qubits and Entangled States 3. Quantum Gate Arrays 4. Quantum Parallelism 5. Examples of Quantum Algorithms 1. Grover s Unstructured Search

More information

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Computers. Todd A. Brun Communication Sciences Institute USC Quantum Computers Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose components are individual

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory The class NP Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Section 7.3. Question Why are we unsuccessful

More information

Verification of quantum computation

Verification of quantum computation Verification of quantum computation THOMAS VIDICK, CALIFORNIA INSTITUTE OF TECHNOLOGY Presentation based on the paper: Classical verification of quantum computation by U. Mahadev (IEEE symp. on Foundations

More information

Mathematics of Public Key Cryptography

Mathematics of Public Key Cryptography Mathematics of Public Key Cryptography Eric Baxter April 12, 2014 Overview Brief review of public-key cryptography Mathematics behind public-key cryptography algorithms What is Public-Key Cryptography?

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

Cryptography CS 555. Topic 18: RSA Implementation and Security. CS555 Topic 18 1

Cryptography CS 555. Topic 18: RSA Implementation and Security. CS555 Topic 18 1 Cryptography CS 555 Topic 18: RSA Implementation and Security Topic 18 1 Outline and Readings Outline RSA implementation issues Factoring large numbers Knowing (e,d) enables factoring Prime testing Readings:

More information

Quantum Complexity Theory and Adiabatic Computation

Quantum Complexity Theory and Adiabatic Computation Chapter 9 Quantum Complexity Theory and Adiabatic Computation 9.1 Defining Quantum Complexity We are familiar with complexity theory in classical computer science: how quickly can a computer (or Turing

More information

AMTH140 Trimester Question 1. [8 marks] Answer

AMTH140 Trimester Question 1. [8 marks] Answer Question 1 Let A B = {(1, 1), (2, 2), (3, 1), (3, 2), (1, 2), (1, 4), (2, 1), (2, 4), (3, 4)}. Find the power set of B, P(B). The set B = {1, 2, 4}. Then P(B) = {, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4},

More information

D-Wave: real quantum computer?

D-Wave: real quantum computer? D-Wave: real quantum computer? M. Johnson et al., "Quantum annealing with manufactured spins", Nature 473, 194-198 (2011) S. Boixo et al., "Evidence for quantum annealing wiht more than one hundred qubits",

More information

ANALYZING THE QUADRATIC SIEVE ALGORITHM

ANALYZING THE QUADRATIC SIEVE ALGORITHM ANALYZING THE QUADRATIC SIEVE ALGORITHM KIM BOWMAN, NEIL CALKIN, ZACH COCHRAN, AND KEVIN JAMES Abstract. We will discuss random vector models related to the quadratic sieve. We will introduce a new model

More information

Secrets of Quantum Information Science

Secrets of Quantum Information Science Secrets of Quantum Information Science Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose

More information

Experiments with and Applications of the D-Wave Machine

Experiments with and Applications of the D-Wave Machine Experiments with and Applications of the D-Wave Machine Paul Warburton, University College London p.warburton@ucl.ac.uk 1. Brief introduction to the D-Wave machine 2. Black box experiments to test quantumness

More information

More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006.

More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006. More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006. Outline A last complete problem for NP conp, conp NP Function problems MAX-CUT A cut in a graph G=(V,E) is a set of nodes S used to partition

More information

C/CS/Phys 191 Shor s order (period) finding algorithm and factoring 11/01/05 Fall 2005 Lecture 19

C/CS/Phys 191 Shor s order (period) finding algorithm and factoring 11/01/05 Fall 2005 Lecture 19 C/CS/Phys 9 Shor s order (period) finding algorithm and factoring /0/05 Fall 2005 Lecture 9 Readings Benenti et al., Ch. 3.2-3.4 Stolze and Suter, uantum Computing, Ch. 8.3 Nielsen and Chuang, uantum Computation

More information

Axioms for the Real Number System

Axioms for the Real Number System Axioms for the Real Number System Math 361 Fall 2003 Page 1 of 9 The Real Number System The real number system consists of four parts: 1. A set (R). We will call the elements of this set real numbers,

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 10 More examples of problems in P Closure properties of the class P The class NP given by Jiri Srba Lecture 10 Computability and Complexity 1/12 Example: Relatively

More information

1 The Fundamental Theorem of Arithmetic. A positive integer N has a unique prime power decomposition. Primality Testing. and. Integer Factorisation

1 The Fundamental Theorem of Arithmetic. A positive integer N has a unique prime power decomposition. Primality Testing. and. Integer Factorisation 1 The Fundamental Theorem of Arithmetic A positive integer N has a unique prime power decomposition 2 Primality Testing Integer Factorisation (Gauss 1801, but probably known to Euclid) The Computational

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018 System Roadmap Qubits 2018 D-Wave Users Conference Knoxville Jed Whittaker D-Wave Systems Inc. September 25, 2018 Overview Where are we today? annealing options reverse annealing quantum materials simulation

More information

Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2

Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2 Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2 April 11, 2016 Chapter 10 Section 1: Addition and Subtraction of Polynomials A monomial is

More information

arxiv: v1 [quant-ph] 19 Jan 2019

arxiv: v1 [quant-ph] 19 Jan 2019 The quantum algorithm for graph isomorphism problem Xi Li School of Cyber Science and Engineering, Southeast University, Nanjing 296, China Hanwu Chen School of Computer Science and Engineering, Southeast

More information

Quantum search by local adiabatic evolution

Quantum search by local adiabatic evolution PHYSICAL REVIEW A, VOLUME 65, 042308 Quantum search by local adiabatic evolution Jérémie Roland 1 and Nicolas J. Cerf 1,2 1 Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Brussels, Belgium

More information

Factoring on a Quantum Computer

Factoring on a Quantum Computer Factoring on a Quantum Computer The Essence Shor s Algorithm Wolfgang Polak wp@pocs.com Thanks to: Eleanor Rieffel Fuji Xerox Palo Alto Laboratory Wolfgang Polak San Jose State University, 4-14-010 - p.

More information

Physics ; CS 4812 Problem Set 4

Physics ; CS 4812 Problem Set 4 Physics 4481-7681; CS 4812 Problem Set 4 Six problems (six pages), all short, covers lectures 11 15, due in class 25 Oct 2018 Problem 1: 1-qubit state tomography Consider a 1-qubit state ψ cos θ 2 0 +

More information

Analyzing Quantum Circuits Via Polynomials

Analyzing Quantum Circuits Via Polynomials Analyzing Quantum Circuits Via Polynomials Kenneth W. Regan 1 University at Buffalo (SUNY) 23 January, 2014 1 Includes joint work with Amlan Chakrabarti and Robert Surówka Quantum Circuits Quantum circuits

More information

Lecture 6: Cryptanalysis of public-key algorithms.,

Lecture 6: Cryptanalysis of public-key algorithms., T-79.159 Cryptography and Data Security Lecture 6: Cryptanalysis of public-key algorithms. Helsinki University of Technology mjos@tcs.hut.fi 1 Outline Computational complexity Reminder about basic number

More information

Algorithms. Shanks square forms algorithm Williams p+1 Quadratic Sieve Dixon s Random Squares Algorithm

Algorithms. Shanks square forms algorithm Williams p+1 Quadratic Sieve Dixon s Random Squares Algorithm Alex Sundling Algorithms Shanks square forms algorithm Williams p+1 Quadratic Sieve Dixon s Random Squares Algorithm Shanks Square Forms Created by Daniel Shanks as an improvement on Fermat s factorization

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 24 Last time Relationship between models: deterministic/nondeterministic Class P Today Class NP Sofya Raskhodnikova Homework 9 due Homework 0 out 4/5/206 L24. I-clicker

More information

Exponential algorithmic speedup by quantum walk

Exponential algorithmic speedup by quantum walk Exponential algorithmic speedup by quantum walk Andrew Childs MIT Center for Theoretical Physics joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman quant-ph/0209131 Motivation

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i )

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i ) Symmetric Networks Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). How can we model an associative memory? Let M = {v 1,..., v m } be a

More information

Adiabatic times for Markov chains and applications

Adiabatic times for Markov chains and applications Adiabatic times for Markov chains and applications Kyle Bradford and Yevgeniy Kovchegov Department of Mathematics Oregon State University Corvallis, OR 97331-4605, USA bradfork, kovchegy @math.oregonstate.edu

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

A heuristic quasi-polynomial algorithm for discrete logarithm in small characteristic

A heuristic quasi-polynomial algorithm for discrete logarithm in small characteristic ECC, Chennai October 8, 2014 A heuristic quasi-polynomial algorithm for discrete logarithm in small characteristic Razvan Barbulescu 1 Pierrick Gaudry 2 Antoine Joux 3 Emmanuel Thomé 2 IMJ-PRG, Paris Loria,

More information

Quantum Algorithms Lecture #2. Stephen Jordan

Quantum Algorithms Lecture #2. Stephen Jordan Quantum Algorithms Lecture #2 Stephen Jordan Last Time Defined quantum circuit model. Argued it captures all of quantum computation. Developed some building blocks: Gate universality Controlled-unitaries

More information

Polynomial-time classical simulation of quantum ferromagnets

Polynomial-time classical simulation of quantum ferromagnets Polynomial-time classical simulation of quantum ferromagnets Sergey Bravyi David Gosset IBM PRL 119, 100503 (2017) arxiv:1612.05602 Quantum Monte Carlo: a powerful suite of probabilistic classical simulation

More information

Simulated Quantum Annealing For General Ising Models

Simulated Quantum Annealing For General Ising Models Simulated Quantum Annealing For General Ising Models Thomas Neuhaus Jülich Supercomputing Centre, JSC Forschungszentrum Jülich Jülich, Germany e-mail : t.neuhaus@fz-juelich.de November 23 On the Talk Quantum

More information

Lecture 5: The Landscape of Complexity Classes

Lecture 5: The Landscape of Complexity Classes IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 5: The Landscape of Complexity Classes David Mix Barrington and Alexis Maciel July 21,

More information

Shor s Algorithm. Elisa Bäumer, Jan-Grimo Sobez, Stefan Tessarini May 15, 2015

Shor s Algorithm. Elisa Bäumer, Jan-Grimo Sobez, Stefan Tessarini May 15, 2015 Shor s Algorithm Elisa Bäumer, Jan-Grimo Sobez, Stefan Tessarini May 15, 2015 Integer factorization n = p q (where p, q are prime numbers) is a cryptographic one-way function Classical algorithm with best

More information

Quantum speedup of backtracking and Monte Carlo algorithms

Quantum speedup of backtracking and Monte Carlo algorithms Quantum speedup of backtracking and Monte Carlo algorithms Ashley Montanaro School of Mathematics, University of Bristol 19 February 2016 arxiv:1504.06987 and arxiv:1509.02374 Proc. R. Soc. A 2015 471

More information

CS5371 Theory of Computation. Lecture 18: Complexity III (Two Classes: P and NP)

CS5371 Theory of Computation. Lecture 18: Complexity III (Two Classes: P and NP) CS5371 Theory of Computation Lecture 18: Complexity III (Two Classes: P and NP) Objectives Define what is the class P Examples of languages in P Define what is the class NP Examples of languages in NP

More information

Unitary Dynamics and Quantum Circuits

Unitary Dynamics and Quantum Circuits qitd323 Unitary Dynamics and Quantum Circuits Robert B. Griffiths Version of 20 January 2014 Contents 1 Unitary Dynamics 1 1.1 Time development operator T.................................... 1 1.2 Particular

More information

Quantum Phase Estimation using Multivalued Logic

Quantum Phase Estimation using Multivalued Logic Quantum Phase Estimation using Multivalued Logic Agenda Importance of Quantum Phase Estimation (QPE) QPE using binary logic QPE using MVL Performance Requirements Salient features Conclusion Introduction

More information

LESSON 7.2 FACTORING POLYNOMIALS II

LESSON 7.2 FACTORING POLYNOMIALS II LESSON 7.2 FACTORING POLYNOMIALS II LESSON 7.2 FACTORING POLYNOMIALS II 305 OVERVIEW Here s what you ll learn in this lesson: Trinomials I a. Factoring trinomials of the form x 2 + bx + c; x 2 + bxy +

More information

Simulating classical circuits with quantum circuits. The complexity class Reversible-P. Universal gate set for reversible circuits P = Reversible-P

Simulating classical circuits with quantum circuits. The complexity class Reversible-P. Universal gate set for reversible circuits P = Reversible-P Quantum Circuits Based on notes by John Watrous and also Sco8 Aaronson: www.sco8aaronson.com/democritus/ John Preskill: www.theory.caltech.edu/people/preskill/ph229 Outline Simulating classical circuits

More information

Shor s Prime Factorization Algorithm

Shor s Prime Factorization Algorithm Shor s Prime Factorization Algorithm Bay Area Quantum Computing Meetup - 08/17/2017 Harley Patton Outline Why is factorization important? Shor s Algorithm Reduction to Order Finding Order Finding Algorithm

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

1 Bernstein-Vazirani Algorithm

1 Bernstein-Vazirani Algorithm CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Yongshan Ding, Pranav Gokhale Scribe: Shankar G. Menon Lecture 08: More on Algorithms November 1, 018 1 Bernstein-Vazirani Algorithm

More information

Hamiltonian simulation with nearly optimal dependence on all parameters

Hamiltonian simulation with nearly optimal dependence on all parameters Hamiltonian simulation with nearly optimal dependence on all parameters Dominic Berry + Andrew Childs obin Kothari ichard Cleve olando Somma Quantum simulation by quantum walks Dominic Berry + Andrew Childs

More information

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Workshop on Quantum Computing and its Application March 16, 2017 Qubits Unitary transformations Quantum Circuits Quantum Measurements Quantum

More information

Quantum Algorithms for Quantum Field Theories

Quantum Algorithms for Quantum Field Theories Quantum Algorithms for Quantum Field Theories Stephen Jordan Joint work with Keith Lee John Preskill Science, 336:1130 (2012) Jan 24, 2012 The full description of quantum mechanics for a large system with

More information

TEPZZ Z84A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06N 99/00 ( )

TEPZZ Z84A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06N 99/00 ( ) (19) TEPZZ Z84A_T (11) EP 3 113 084 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 04.01.17 Bulletin 17/01 (1) Int Cl.: G06N 99/00 (.01) (21) Application number: 1174362.2 (22) Date of filing:

More information

Predicting Graph Labels using Perceptron. Shuang Song

Predicting Graph Labels using Perceptron. Shuang Song Predicting Graph Labels using Perceptron Shuang Song shs037@eng.ucsd.edu Online learning over graphs M. Herbster, M. Pontil, and L. Wainer, Proc. 22nd Int. Conf. Machine Learning (ICML'05), 2005 Prediction

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Elliptic Curves An elliptic curve is a cubic equation of the form: y + axy + by = x 3 + cx + dx + e where a, b, c, d and e are real numbers. A special addition operation is

More information

A quasi polynomial algorithm for discrete logarithm in small characteristic

A quasi polynomial algorithm for discrete logarithm in small characteristic CCA seminary January 10, 2014 A quasi polynomial algorithm for discrete logarithm in small characteristic Razvan Barbulescu 1 Pierrick Gaudry 2 Antoine Joux 3 Emmanuel Thomé 2 LIX, École Polytechnique

More information