Supporting Information for: Precipitating Polyelectrolyte-Surfactant. Systems by Admixing a Nonionic Surfactant. a Case of Cononsurfactancy

Size: px
Start display at page:

Download "Supporting Information for: Precipitating Polyelectrolyte-Surfactant. Systems by Admixing a Nonionic Surfactant. a Case of Cononsurfactancy"

Transcription

1 Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Precipitating Polyelectrolyte-Surfactant Systems by Admixing a Nonionic Surfactant a Case of Cononsurfactancy Leonardo Chiappisi,,, Stephen David Leach, and Michael Gradzielski, Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Strasse des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D Berlin, Germany, and Institut Max von Laue - Paul Langevin, Large Scale Structures Group, 71 avenue des Martyrs Grenoble Cedex 9 leonardo.chiappisi@tu-berlin.de; michael.gradzielski@tu-berlin.de Contents 1 Experimental details S2 2 Additional results S7 2.1 Pictures of Samples S7 2.2 Additional phase diagrams S8 2.3 Molecular weight of complexes S10 To whom correspondence should be addressed Technische Universität Berlin Institut Laue - Langevin S1

2 2.4 Additional ITC titrations S Neutron small-angle scattering (SANS) results S Analysis of SANS patterns from chitosan - C 18:1 E 9 Ac and C 18:1 E 9 complexes S Analytical expression for SANS Data analysis S Characterization of pure surfactant mixtures S Ionization degree of pure components S28 1 Experimental details Table S1: Densities, scattering length densities (SLD), and volumes (v used in for the description of the SANS experimental results. SLDs and densities are obtained considering solvent-exchangeable protons. Compound Density / g cm 3 SLD / 10 4 nm 2 v / nm 3 Acetic acid buffer Chitosan C 18: (OCH 2 CH 2 ) 9 OCH 2 COOH (OCH 2 CH 2 ) 9 OH Light scattering Static (SLS) and dynamic (DLS) light scattering measurements were performed simultaneously on the mixed micelle solutions on the same compact ALV/CGS- 3 instrument, equipped with a He-Ne laser with a wavelength of λ = nm. The results are reported in section 2.6 of the supporting information. Experiments were performed at scattering angles θ ranging from 20 to 130 set with an ALV-SP 125 goniometer. Pseudocross correlation functions were recorded using an ALV 5000/E multiple-τ correlator. All measurements were carried out at 25.0(1) C in a thermostatted toluene bath. Absolute scattering intensities were obtained using toluene as a standard, where a Rayleigh ratio of cm 1 for 25 C and nm was used. 1 Isotropic scattering S2

3 is observed from the mixed micelle solutions investigated, and the forward scattering intensity I(0) is obtained from the average of the intensities recorded between 20 to 130. The apparent molecular weight of the micelles of a solution of concentration c, is obtained by means of the following relation: M app w = I(0) K L c (S1) with K L being the optical constant: K L = 4π2 λ 4 N A n 2 0 ( ) 2 dn (S2) dc where N A is the Avogadro constant, n 0 is the refractive index of the solvent and dn/dc cm 3 g 1 is the refractive index increment. Due the high concentration of acetic acid/sodium acetate in the buffer, there is no need to take into account the scattering structure factor for the surfactant micelle solution. 2 The micelle aggregation numbers were obtained neglecting the free surfactant concentration, as justified by the very low cmc of moll 1 for C 18:1 E 9 CH 2 COOH. The mean decay rate Γ(q) was obtained from the field autocorrelation function: 3 g (1) (τ, q) = exp ( Γ(q)τ ) ( 1 + µ 2 2 τ 2 ) (S3) where τ and µ 2 are the delay time and the second moment around the mean, respectively. The apparent diffusion coefficient is obtained as D app = Γ(q)/q 2, from which the hydrodynamic radius (R h ) was obtained, applying the Stokes-Einstein relation: R h = k b T 6πη 0 D app (S4) with η 0 being the solvent viscosity. S3

4 Zeta-potential determination The electrophoretic mobility µ e of the mixed micelles was determined on a Malvern Zetasizer Nano Z, equipped with a He-Ne laser (633 nm). The ζ-potential of the mixed micelles was calculated as: ζ = 3µ e η 2ε 0 ε r f(κa) (S5) with η being the fluid viscosity, ε 0 the vacuum permittivity, ε r the relative permittivity, and f(κa) is the Henry function approximated by: 4 f(κa) = κa + 3(κa) κa + 2(κa) 2 (S6) where κ is the inverse Debye length while a is the particle size approximated by its hydrodynamic radius. 1 H-NMR of surfactants The 1 H-NMR spectrum of C 18:1 E 9 CH 2 COOH and C 18:1 E 9 solubilized in CDCl 3 was recorded on a Brucker Avance II spectrometer operating at 400 MHz. The spectra are reported in Figs. S1 and S2. From the integral of the different peaks, we deduced that the alkyl chain is a 3:1 mixture of oleyl and palmitic alcohol, while on average 8.8 EO units per surfactant chains are present. The degree of carboxymethylation is of 0.9, in agreement with previous results from ph titrations. 2 In Table S2 the predicted and experimentally determined integrals of the 1 H-NMR peaks. In each spectrum one unidentified peak is present: for C 18:1 E 9 CH 2 COOH a very broad peak is observed at δ = 5.6 ppm, representing 3.5 % of the hydrogens in the sample; for C 18:1 E 9 a singlet at 3.3 ppm, representing 2 % of the hydrogens in the sample, is present. S4

5 75 mol% 25 mol% h CH 3 -(CH 2 ) 13 -CH 2 -CH 2 -O-(CH 2 CH 2 O) 8.8 -CH 2 -COOH g f d c b CH 3 -(CH 2 ) 6 -CH 2 -CH=CH-CH 2 -(CH 2 ) 5 -CH 2 -CH 2 -O-(CH 2 CH 2 O) 8.8 -CH 2 -COOH h g e a e b c g h d solvent CDCl 3 a e f ppm Figure S1: 1 H-NMR spectrum (400 MHz, CDCl 3 ) of C 18:1 E 9 CH 2 COOH. 75 mol% 25 mol% g CH 3 -(CH 2 ) 13 -CH 2 -CH 2 -O-(CH 2 CH 2 O) 8.8 -H f e c b b CH 3 -(CH 2 ) 6 -CH 2 -CH=CH-CH 2 -(CH 2 ) 5 -CH 2 -CH 2 -O-(CH 2 CH 2 O) 8.8 -H g f d a d b f g c a d e ppm Figure S2: 1 H-NMR spectrum (400 MHz, CDCl 3 ) of C 18:1 E 9. S5

6 Table S2: Characterization of 1 H-NMR spectra from C 18:1 E 9 CH 2 COOH (left) and C 18:1 E 9 (right). Chemical shift δ is given in ppm, in parentheses the letter used for their identification in Figs. S1 and S2 is provided. Experimentally I exp and calculated I cal integrals are normalized with respect to the three hydrogen of the terminal CH 3 group. δ I exp I cal 0.9 (h) (g) (f) (e) (d) (c) (b) (a) δ I exp I cal 0.9 (g) (f) (e) (d) (c) (b) (a) S6

7 2 2.1 Additional results Pictures of Samples Clear solution Translucent solution Cloudy Precipitate Solid-like precipitate Figure S3: Picture of two samples in within the two-phase region, with a total chitosan content of 0.3 wt%, Z = 0.2, χ = 0.4, and ph 5.0 on the left and ca. 10 on the right. Picture evidence a homogenous, cloudy precipitate with a clear surnatant at high ph, while the formation of a solid-like precipitate in equilibrium with a translucent solution. The sample on the left, at ph 5 was gently shaken before taking the picture in order to disperse the precipitate. S7

8 2.2 Additional phase diagrams ph Mw / g mol [C 18:1 E 9 CH 2 COOH]/C max Figure S4: Phase behavior of chitosan - C 18:1 E 9 CH 2 COOH mixtures, with a chitosan content of 0.3 wt% as a function of ph and C 18:1 E 9 CH 2 COOH concentration. The atypical x-axis, with C max = mol kg 1, corresponding to a mixing ratio Z = 0.2 was chosen in order to have a direct relation with Fig. 2 of the main text, with x = 0.0 representing mixtures chitosan - C 18:1 E 9 CH 2 COOH while x = 1.0 represents pure chitosan solutions. The M w obtained via turbidimetry are expressed with the colour gradient reported on the right. Full black circles represent samples showing phase separation, squares with variable colour represent monophasic samples. S8

9 Z = ([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH])/[CH-NH 3 ] Φ Φ χ = [C 18:1 E 9 ]/([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH]) Mw / g mol -1 Z = ([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH])/[CH-NH 3 ] Φ Φ χ = [C 18:1 E 9 ]/([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH]) Mw / g mol -1 Figure S5: Phase behavior of chitosan - C 18:1 E 9 CH 2 COOH and C 18:1 E 9 mixtures, with a chitosan content of 0.3 wt%, ph = 4.0 on the top and 4.75 on the bottom, as a function of Z and χ. The M w obtained via turbidimetry are expressed with the colour gradient reported on the right. Full black circles represent samples showing phase separation, squares with variable colour represent monophasic samples. Dashed lines represent composition values with constant C 18:1 E 9 CH 2 COOH content, i.e. constant charge ratio. S9

10 2.3 Molecular weight of complexes In table S3 the molecular weight of the complexes reported in Fig. 1 of the main text are reported. The molecular weights were obtained via turbidimetric measurements, as described in the experimental section of the main text. Table S3: Molecular weights determined by turbidity measurements for the aggregates of chitosan (0.3 wt%), at variable ph and χ as reported in Fig. 1 of the main text. χ ph Mw / g mol 1 χ ph Mw / g mol 1 χ ph Mw / g mol S10

11 2.4 Additional ITC titrations In Fig. S6 the excess mixing heats and according fits for experiments performed at ph 3.75, 4.00, 4.25, 4.50, 4.75, and 5.00 are reported. The obtained parameters are given in Table S4. Fits were performed using Eqs. 4 and 5 reported in the main text. S11

12 h E (χ) q obs (χ) q obs (χ) h E (χ) q obs (χ) q obs (χ) h E (χ) q obs (χ) q obs (χ) Z=0.2 - ph no chitosan - ph 3.75 no chitosan - ph Z=0.2 - ph Z=0.2 - ph no chitosan - ph no chitosan - ph 4.00 Z=0.2 - ph 4.00 no chitosan - ph 4.50 Z=0.2 - ph 4.50 no chitosan - ph 5.00 Z=0.2 - ph 5.00 χ = [C 18:1 E 9 ]/([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH] Figure S6: ITC results obtained for titrations performed between ph 3.75 to ph 5.0. q obs are the integrated heats given in kj mol 1 ; empty circles are titrations of C 18:1 E 9 into C 18:1 E 9 CH 2 COOH (q 1 ), empty squares are titrations of C 18:1 E 9 CH 2 COOH into C 18:1 E 9 (q 2 ). Dotted and broken lines are best fits with a common set of parameters for q 1 and q 2 via Eqs. 4 and 5 in the main text. The excess mixing enthalpies are also reported in kj mol 1 from titration without (h Z= E (χ), dotted line) and with chitosan (h Z=0.2 E (χ), broken line); the excess chitosan-surfactant interaction (H E (χ)) is represented as thick full line. S12

13 Table S4: Fit parameters obtained from ITC. For each investigated ph, the coefficients of the polynomial used in Eq. 2 of the main text with the uncertainties arising from the fitting procedure is reported. The coefficients used for calculating the excess chitosan-surfactant interaction (H E (χ)) are obtained as the difference between the coefficients for the excess mixing enthalpy obtained in the presence of chitosan h Z=0.2 E (χ) and without chitosan h Z= (χ). E ph = 3.75 ph = 4.0 ph = 4.25 h Z= E (χ) ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ 5 ρ ρ 6 ρ 6 h Z=0.2 E (χ) ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ H E (χ) ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ph = 4.5 ph = 4.75 ph = 5.0 h Z= E (χ) ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ 5 ρ 5 ρ ρ 6 ρ 6 ρ h Z=0.2 E (χ) ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ H E (χ) ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ S13

14 2.5 Neutron small-angle scattering (SANS) results Analysis of SANS patterns from chitosan - C 18:1 E 9 Ac and C 18:1 E 9 complexes I(q) / cm χ = 0.0, ph = ph = 4.0, χ = q / nm -1 Figure S7: Neutron small-angle scattering (SANS) patterns recorded on V4 at the Helmholtz Zentrum Berlin arising from chitosan chitosan - C 18:1 E 9 Ac and C 18:1 E 9 mixtures, with a chitosan content of 0.3 wt%, χ = 0.0, Z = 0.2, and variable ph (on the left) and at ph = 4.0, Z = 0.2, and variable χ (on the right). Curves scaled for an improved readability are given in the main text. SANS patterns arising from chitosan - C 18:1 E 9 Ac and C 18:1 E 9 mixtures are reported in Fig. S9. The data can be quantitatively described using the scattering models described in detail elsewhere. 2 Briefly, three structural models are employed (all analytical expressions are also given in the next section of the supporting information): (i) when no or only weak interactions between chitosan and the surfactant micelle are present, no evidence for supramolecular aggregation is found. The scattering patterns of a randomly decorated polymer network or independently distributed surfactant S14

15 micelles and polymer chains in the solution, i.e., no interaction present, are identical. Accordingly, the scattering curves obtained at low ph for χ = 0.0 and at high χ for ph = 4.0 were described as a linear superposition of the scattering pattern arising from the chitosan chains, treated as gaussian coils (Eq. S17), and the surfactant micelles, treated as elongated core-shell micelles (Eq. S7). 2,5 The different contributions and the resulting calculated scattering curve are shown in Fig. S8. (ii) when moderate interactions between chitosan and the surfactant micelle are present. The formation of aggregates with aligned micelles embedded in a chitosan network is found. 2,6 The scattering patterns were described using a model of N aligned core-shell ellipsoids (the micelles) contained in an homogeneous cylinder (the complexed chitosan). 2,7 The scattering form factor is given in Eq. S18. A mass-fractal structure factor with a dimensionality of three is used to take into account the aggregation of the cylindrical subunits (Eq. S23). The model was applied to described the scattering curves from samples with χ = 0 and 3.7 < ph < 4.3, and for ph = 4.0 and 0.5 < χ < 1. (iii) when strong interactions between chitosan and the surfactant micelle are present the aggregates are found to be collapsed into a core-corona structure, with a core formed by densely packed surfactant micelles surrounded by a stabilizing polymer corona, 2,6 a model initially developed by Berret et al. 8 As the size of the micelle and that of the supramolecular aggregate differ by two orders of magnitude (3.5 vs. 150 nm), the scattering form factor can be expressed as the sum of a term arising from dense packed micelles (core-shell ellipsoids with an hard sphere structure factor) and a term from the formed supramolecular structure (a homogeneous core-shell sphere). 2,6 Analytical expressions used for the calculations are given in the next section. The model was applied to described the scattering curves from samples with χ = 0 and ph > 4.05, and for ph = 4.0 and χ = 1. Note that samples found at the border line between the structural picture ii (one- S15

16 10 1 χ = 0.0, ph = ph = 4.3, χ = Micelle 10 3 Model iii I(q) / cm Gauss chain I(q) / cm Model ii Bkg q / nm Bkg q / nm -1 Figure S8: Representative calculations of the SANS patterns. On the left, the scattering curve of a mixture representative for case (i), when no no or weak interaction is present, and the SANS pattern is given by the sum of the contribution of the chitosan gaussian chain (red), the surfactant micelles (blue), and the incoherent background (gray). On the right, the scattering pattern representative for chitosan - surfactant mixtures where the structures described case (ii) and case (iii) coexists. All models are explained in the previous page of the text. dimensional complex) and iii (core-corona suprastrucure) were described using both models (a representative calculation is given in Fig. S8). Calculated curves and experimental data are reported in Fig. 5 of the main text and in Fig. S9. The parameters used for the calculation of the scattering curves are reported in Table S5. S16

17 Table S5: Parameters used for the description of the scattering curves reported in Fig. 5 of the main text and in Fig. S9, determined at different ph and χ values. A, B, and T are the micelle rotational axis, equatorial axis, and shell thickness, respectively and are given in nm; N is the number of micelles per one-dimensional aggregate; ξ is the size of the fractal object whereas r 0 represents the size of the units forming the fractal aggregate and are given in nm; R HS and φ HS are the hard sphere radius given in nm and volume fraction of micelles within the dense core of the supramolecular aggregate; R core is the radius of the aggregate and T shell is the thickness of chitosan corona and are given in nm. The values reported in italic were optimized during the fit procedure. ph χ Model vol% of iii A B T N r 0 ξ R HS φ HS R core T shell i ii ii ii ii + iii ii + iii ii + iii iii iii iii ph χ Model % of iii A B T N r 0 ξ R HS φ HS R core T shell i i i i i ii ii ii ii ii ii + iii ph χ Model % of iii A B T N r 0 ξ R HS φ HS R core T shell iii ii+iii ii+iii ii ii ii ii ii ii S17

18 ph = 5.0, χ = ph = 6.0, χ = ph = 7.0, χ = I(q) / cm χ = 0.4, ph = χ = 0.5, ph = χ = 0.6, ph = ph = 5.0, χ = q / nm -1 ph = 6.0, χ = ph = 7.0, χ = I(q) / cm χ = 0.4, ph = χ = 0.5, ph = χ = 0.6, ph = q / nm Figure S9: Neutron small-angle scattering (SANS) patterns arising from chitosan - C 18:1 E 9 Ac and C 18:1 E 9 mixtures in the two-phase area, with a chitosan content of 0.3 wt%, Z = 0.2, variable ph and variable χ. On the bottom, the same curves are scaled by a factor of three. Full lines are calculated scattering curves with parameters given in Table S5. Data were recorded on D11 at the Institut Laue-Langevin. 9 S18

19 2.5.2 Analytical expression for SANS Data analysis All expression are also reported in the supporting information of Ref. 2 and are reported here for the sake of completeness. Surfactant Micelle The scattering arising from the surfactant micelles is described using a core-shell ellipsoidal model. 10 The scattering form factor is given by: P CS (q) = 1 0 F (q, cos α) 2 d cos α (S7) with α being the angle formed by the scattering vector and the rotational axis of the ellipsoid. F (q, cos α) is the scattering amplitude and is given by [ ] 3j1 (x c ) F (q, cos α) = (SLD c SLD sh ) V c + ( SLD sh SLD ) [ ] 3j1 (x t ) V t x c x t (S8) with SLD sh and SLD being the scattering length densities of the micellar shell and of the medium, respectively. The scattering length density of the shell was obtained as the volume average of the SLDs of the hydrophylic part of the surfactant and the solvent. j 1 (x) is the first order spherical Bessel function: j 1 (x) = sin(x) x cos(x) x 2 (S9) x c and x t are given by: x c = q A 2 cos α 2 + B 2 (1 cos α 2 ) x t = q (A + T ) 2 cos α 2 + (B + T ) 2 (1 cos α 2 ) (S10) (S11) S19

20 and the volumes of the core and of the particle are V c = 4 3 πab2 V t = 4 π(a + T )(B + T )2 (S13) 3 (S12) The particle number density was calculated from the micellar core as 1 N = 3φ c 4πAB 2 (S14) with phi c being the volume fraction of the C 18:1 units. φ c was obtained from the volume fractions of the ionic and nonionic surfactant and the volumes of hydrophilic and hydrophobic part of the surfactant reported in Table S1. The aggregation number from the volume of the hydrophobic tail of the surfactant (v c ) N agg = 4πAB2 3v c (S15) The water content of the shell was calculated as φ shell w = V sh N agg v s V sh (S16) with V sh = V t V c being the volume of the hydrated shell and v s the average volume of the surfactant headgroup. Chitosan chains The scattering arising from chitosan is described with a gaussian chain model: 11 e q2 Rg 2 + q 2 Rg 2 1 I(q) = 2 I(0)chi q 4 Rg 4 (S17) S20

21 with I(0) chi and Rg being the forward scattering intensity and the radius of gyration of the polymer chain, respectively. In the calculations, the values of I(0) chi of cm 1 and Rg 250 nm, determined for pure chitosan solutions in Ref. 2 were used. N aligned core-shell ellipsoids contained in an homogeneous cylinder The scattering form factor for N-aligned globular objects contained in a homogeneous cylinder, as represented in Fig. S10, results from three contributions: the N aligned ellipsoids (P (q) Nob Nob ), the cylinder (P (q) Cyl Cyl ), and the cross-term (P (q) Nob Cyl ): 7 P (q) agg = P (q) Nob Nob + P (q) Cyl Cyl + P (q) Nob Cyl (S18) with P (q) Nob Nob = cos zn mic 1 cos z [ ( ) 3j1 (x c ) (SLD c SLD sh ) V c + x c (SLD sh SLD cyl ) V t ( 3j1 (x t ) x t )] 2 d cos α (S19) P (q) Cyl Cyl = 1 0 [ (SLDcyl SLD ) πrl 2 j 0 ( ql cos α 2 ) ] 2 J1 (qr sin α) d cos α (S20) qr sin α P (q) Nob Cyl = cos ( z N mic 2 (SLD sh SLD cyl ) V t ( 3j1 (x t ) x t ) ( sin z Nmic ) ( +z 2 sin z [ ( 2) sin ( 3j1 (x ) c ) (SLD z c SLD sh ) V c x 2 c [ (SLDcyl SLD ) ( ) 2 ql cos α πrl 2 J1 (qr sin α) j 0 2 qr sin α )] ) + ] d cos α (S21) with z = qd cos α, j 0 (x) = sin(x)/x and J 1 (x) the first-order cylindrical Bessel function of the first kind. x c and x t are defined in Eqs. S10 and S11. N mic is the number of ellipsoids S21

22 L Figure S10: Schematic representation of the structure formed by stiff polyelectrolytes and weakly charged macroions. Such a structure can be approximated with a particles in a cylinder model, characterized by an overall extension L, a radius R and a spacing between the centers of the objects of D. D 2R per cylinder and D the spacing between their centers. The scattering length densities were calculated assuming an anhydrous micellar core, a micellar core composed of water and the hydrophilic part of the surfactant, and the cylinder being made of chitosan and solvent. The amount of chitosan in the cylinder is calculated in such a way that charge neutrality is reached within the cylinder. The number density of the cylinders is obtained assuming all surfactant being involved in the complex: 1 N cyl = 1 N N mic = 3φ c 4πN mic AB 2 (S22) A mass-fractal structure factor is used to describe the supramolecular aggregation of the cylindrical building blocks: 2 3 sin (3 arctan(qξ)) S(q) agg = 1 + [ ] (qr 0 ) q 2 ξ 2 (S23) Densely packed micelles in a supramolecular core-shell structure The scattering pattern arising from a supramolecular core-shell structure formed by a core of densely S22

23 packed micelles glued together by chitosan and stabilized by a chitosan shell was obtained as: 2 I(q) = 1 NSAPSA(q) + 1 NPCS(q)SHS(q) (S24) with P SA (q) being the scattering form factor of a homogeneous core-shell sphere, S HS (q) is the hard-sphere structure factor: 12 S HS (q) = ( 1 1 NC 0 (q) ) 1 (S25) with 1 NC 0 (q) = Λ x (sin x x cos x) + Υ (( ) 2 3 x 3 x 1 x cos x + 2 sin x 2 ) 2 x Λφ [ HS 24 (1 2x 3 x + 4 6x ) ( sin x x + 24 ) ] x cos x 2 x 4 (S26) with x = 2R S q, Λ = 24φ HS ( ) 2 ( 1+2φ HS (1 φ HS ) and Υ = 36 φ 2 HS ) 2+φ 2. HS (1 φ HS ) 2 Given the large difference in size between the surfactant micelle and the supramolecular aggregate, the micelle-aggregate cross-term was neglected. The scattering form factor of the supramolecular aggregate is obtained as: [ P SA (q) = V SA c ( SLD SA c ) SLD SA 3 sin ω c 3ω c cos ω c sh + ω 3 c ( Vt SA SLD SA sh SLD ) 3 sin ω sh 3ω sh cos ω sh ωsh 3 ] 2 (S27) with SLD SA c, SLD SA sh, Vc SA and Vt SA being the scattering length densities of the core and the shell of the supraaggregate, and the volume of the core and the total volume of the SA, respectively. ω c = qr SA c and ω sh = qr SA sh with RSA c and R SA s being the radii of the core and the shell of the supraaggregate, respectively. For the calculation a normal distribution of R SA c with a relative standard deviation 0.3 was assumed. S23

24 The number of micelles in the supraaggregate core was obtained combining the radius of the supraaggregate and the hard-sphere radius and volume fraction: N mic = R SA c R 3 HS 3 φ HS (S28) Accordingly, the supraaggregate number density is given by: 1 N SA = 1 N N mic = 3φ c 4πN mic AB 2 (S29) The scattering length density of the core of the supraaggregate was calculated as the volume weighted average of the components (surfactants, chitosan, and solvent): SLD SA c = N micn agg (v c + v s ) 4/3πRc SA 3 SLD surf + φ chχ chi corev ch 4/3πRc SA 3 SLD chi+ ( ) 4/3πRc SA3 N mic N agg (v c + v s ) φ ch χ chi corev ch 4/3πRc SA 3 SLD solv (S30) and the scattering length density of the shell of the supraaggregate as SLD SA sh = 4/3πR SA s φ ch χ chi sh v ch 3 4/3πR SA 3 SLD chi + c ( 4/3πR SA s 3 4/3πR SA3 φ ch χ chi 4/3πR SA s c 3 4/3πR SA c sh v ch ) 3 SLD solv (S31) 2.6 Characterization of pure surfactant mixtures The mixing behavior of the ionic C 18:1 E 9 CH 2 COOH and the nonionic C 18:1 E 9 was investigated both from a thermodynamic and structural perspective. The excess mixing enthalpy were determined via calorimetric titrations (Eqs. 3 and 4 of the main text) and are reported in Fig. S11. Given the chemical similarity of the surfactant, we made use of the regular solution theory for the description of the thermodynamics of the mixing S24

25 ph = 3.75 ph = 4.00 ph = 4.25 ph = 4.50 ph = 4.75 ph = 5.00 ΔH mix / kj mol χ = [C 18:1 E 9 ]/([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH] Figure S11: Mixing enthalpies determined at a total surfactant concentration of 10 3 moll 1 and at variable ph, as a function of non-ionic surfactant content χ. Full lines are fits according to Eq. S34. Arrow indicates effect of increasing ph. 0.0 ΔG mix / kj mol ph = 3.75 ph = 4.00 ph = 4.25 ph = 4.50 ph = 4.75 ph = χ = [C 18:1 E 9 ]/([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH] Figure S12: Gibbs free energy of mixing determined at a total surfactant concentration of 10 3 moll 1 and at variable ph, as a function of non-ionic surfactant content χ. S25

26 process. Accordingly, the molar mixing entropy for ideal mixing is given by: 13 T S m = RT [χ ln χ + (1 χ) ln(1 χ)] (S32) with R being the ideal gas constant and T the absolute temperature. The combination of experimentally determined mixing enthalpy (Fig. S11) and calculated mixing entropy leads to the mixing free energy (Fig. S12). The mixing enthalpy can be expressed as a polynomial expansion: H m = χ(1 χ) i=1 A i (2χ 1) i 1 (S33) Developing the series only to its first term leads to the simple expression H m = Aχ(1 χ), also known as the Porter equation. 14 Given the slight asymetric shape of the excess mixing enthalpy curves, with the maximum around 0.6, Eq. S33 was developed up to the second term, leading to H m = χ(1 χ) [A + B(2χ 1)] (S34) The free energy of mixing was described as: 15 G m /RT = βχ(1 χ) (S35) The mixing enthalpy and the free energy of mixing were fitted with Eqs. S34 and S35, respectively. The obtained values are reported in Table S6. All mixing processes are slightly endothermic, as also found in several surfactant/lipid mixtures. 16 However, the enthalpic contribution is compensated by the mixing entropy, resulting in an exergonic process, i.e. fully miscible micelles are formed, as expected from the chemical similarity of both headgroup and tail (see Fig. S12). Although the simple, first order development S26

27 Table S6: Parameters used for the description of the mixing enthalpy and mixing free energy of the ionic C 18:1 E 9 CH 2 COOH and the nonionic C 18:1 E 9 surfactant. ph A / J mol 1 B / J mol 1 β ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.04 of the free energy reported in Eq. S35 does not capture the whole complexity of the system, it offers a useful approach for comparing the β parameter with values found in similar systems. In fact, the values for this system of 2 < β < 1.5 fall within the usual range of anionic-nonionic ethoxylated surfactant mixtures. 15 With increasing ph, i.e. with increasing charge density of the ionic species, the process becomes more endothermic and more asymmetric, as evidenced also by the increasing values of A and B of Eq. S34. This observation can be explained by the fact that with increasing degree of ionization of the surfactants, a larger difference between the headgroups is observed: the area per molecule at the core-shell interface of the surfactant micelle for C 18:1 E 9 CH 2 COOH increases from 59 to 69 Å 2 when ph is varied between 2.7 and As a comparison, the headgroup area of C 16 E 9 at the air-water interface is 53 Å The headgroup size difference is also clearly visible in the micelle aggregation numbers and hydrodynamic radii, as determined by static and dynamic light scattering, respectively (see Fig. S13). With increasing nonionic surfactant content the micelles grow in size, with an hydrodynamic radius increasing from ca. 5 to almost 25 nm, and the aggregation number increasing from ca. 200 to above 3000 molecules per micelle. This is a consequence of an effective decrease of headgroup area requirement, resulting in a larger packing parameter. Almost no differences are observed between mixtures at ph 4.5 and 5.0, while the growth process takes place at lower χ for the more weakly charged system at ph 4.0. The results are in good agreement with previous SANS experiments per- S27

28 formed on C 18:1 E 9 CH 2 COOH between ph 2.5 and 10, showing a transition from rodlike to globular micelles upon acidification ph = 4.00 ph = 4.50 ph = ph = 4.00 ph = 4.50 ph = 5.00 Rh / nm N agg χ = [C 18:1 E 9 ]/([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH] χ = [C 18:1 E 9 ]/([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH] Figure S13: Hydrodynamic radius (left) and aggregation number (right) determined via light scattering experiments at a total surfactant concentration of 1 wt% and at variable ph, as a function of non-ionic surfactant content χ. To probe the ionization condition of the micellar aggregate ζ-potential experiments were carried out and are reported in Fig. S14. The different ph has no effect on the determined ζ-potential values, as the additional charges arising from the increased degree of ionization of C 18:1 E 9 CH 2 COOH are compensated by condensed counterions. Moreover, two regions can be identified in the evolution of the ζ-potential with χ: below χ = 0.4, where a ζ-potential value of ca. -25 mv is determined; and for χ > 0.4, where the potential approaches zero, till a neutral surface is obtained for χ = 1, i.e., the pure nonionic surfactant. Similar values are found in other ionic/nonionic mixed micellar systems determined at salt content 0.2 M, as it was in our case. 18, Ionization degree of pure components In Fig. S15 the degree of ionization of chitosan and C 18:1 E 9 CH 2 COOH as a function of ph is reported. Titration were performed adding a 0.1 mol L 1 standard NaOH solution to a 1 wt% solution of chitosan or C 18:1 E 9 CH 2 COOH in the presence of 1 mol L 1 HCl. S28

29 Zeta Potential / mv ph = 4.00 ph = 4.50 ph = χ = [C 18:1 E 9 ]/([C 18:1 E 9 ] + [C 18:1 E 9 CH 2 COOH] Figure S14: ζ-potential determined at a total surfactant concentration of 1 wt% and at different ph, as a function of non-ionic surfactant content χ Degree of ionization C 18:1 E 9 CH 2 COOH Chitosan ph Figure S15: Degree of ionization of Chitosan and C 18:1 E 9 CH 2 COOH in H 2 O as a function of ph obtained from potentiometric titration. S29

30 References (1) Itakura, M.; Shimada, K.; Matsuyama, S.; Saito, T.; Kinugasa, S. A convenient method to determine the Rayleigh ratio with uniform polystyrene oligomers. J. Appl. Polym. Sci. 2006, 99, (2) Chiappisi, L.; Prévost, S.; Grillo, I.; Gradzielski, M. Chitosan/alkylethoxy carboxylates: A surprising variety of structures. Langmuir 2014, 30, (3) Frisken, B. J. Revisiting the Method of Cumulants for the Analysis of Dynamic Light-Scattering Data. Appl. Opt. 2001, 40, (4) Swan, J. W.; Furst, E. M. A simpler expression for Henry s function describing the electrophoretic mobility of spherical colloids. J. Colloid Interface Sci. 2012, 388, (5) Schwarze, M.; Chiappisi, L.; Prévost, S.; Gradzielski, M. Oleylethoxycarboxylate An efficient surfactant for copper extraction and surfactant recycling via micellar enhanced ultrafiltration. J. Colloid Interface Sci. 2014, 421, (6) Chiappisi, L.; Prévost, S.; Grillo, I.; Gradzielski, M. From Crab Shells to Smart Systems: ChitosanAlkylethoxy Carboxylate Complexes. Langmuir 2014, 30, (7) Chiappisi, L.; Prévost, S.; Gradzielski, M. Form factor of cylindrical superstructures composed of globular particles. J. Appl. Crystallogr. 2014, 47, (8) Berret, J.-F.; Hervé, P.; Aguerre-Chariol, O.; Oberdisse, J. Colloidal Complexes Obtained from Charged Block Copolymers and Surfactants: A Comparison between Small-Angle Neutron Scattering, Cryo-TEM, and Simulations. J. Phys. Chem. B 2003, 107, S30

31 (9) Gradzielski, M.; Chiappisi, L.; Hoffmann, I.; Schweins, R.; Simon, M.; Yalcinkaya, H. Interconnecting charged microemulsion droplets via oppositely charged polyelectrolyte - effect of polyelectrolyte structure (10) Bendedouch, D.; Chen, S. H. Effect of an attractive potential on the interparticle structure of ionic micelles at high salt concentration. J. Phys. Chem. 1984, 88, (11) Debye, P. Molecular-weight Determination by Light Scattering. J. Phys. Colloid Chem. 1947, 51, (12) Baba-Ahmed, L.; Benmouna, M.; Grimson, M. J. Elastic Scattering from Charged Colloidal Dispersions. Phys. Chem. Liq. 1987, 16, (13) Hoffmann, H.; Poessnecker, G.; Possnecker, G. The Mixing Behavior of Surfactants. Langmuir 1994, 10, (14) Porter, A. W. On the vapour-pressures of mixtures. Trans. Faraday Soc. 1920, 16, 336. (15) Rosen, M. J. Surfactants and interfacial phenomena surfactants and interfacial phenomena, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey., 2004; p 455. (16) Heerklotz, H.; Seelig, J. Titration calorimetry of surfactantmembrane partitioning and membrane solubilization. Biochim. Biophys. Acta - Biomembr. 2000, 1508, (17) Elworthy, P. H.; Macfarlane, C. B. Surface activity of a series of synthetic non-ionic detergents. J. Pharm. Pharmacol. 1962, 14, 100T 102T. (18) Tokiwa, F. Solubilization behavior of mixed surfactant micelles in connection with their zeta potentials. J. Colloid Interface Sci. 1968, 28, S31

32 (19) Micheau, C.; Schneider, A.; Girard, L.; Bauduin, P. Evaluation of ion separation coefficients by foam flotation using a carboxylate surfactant. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 470, S32

Introduction to the calculators in the Zetasizer software

Introduction to the calculators in the Zetasizer software Introduction to the calculators in the Zetasizer software PARTICLE SIZE ZETA POTENTIAL MOLECULAR WEIGHT MOLECULAR SIZE Introduction The calculators are a series of tools in the Zetasizer software that

More information

Surfactant adsorption and aggregate structure at silica nanoparticles: Effect of particle size and surface modification. Supplementary Information

Surfactant adsorption and aggregate structure at silica nanoparticles: Effect of particle size and surface modification. Supplementary Information Surfactant adsorption and aggregate structure at silica nanoparticles: Effect of particle size and surface modification Bhuvnesh Bharti, Jens Meissner, Urs Gasser and Gerhard H. Findenegg* * e-mail: findenegg@chem.tu-berlin.de

More information

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004 arxiv:physics/0407001v2 [physics.chem-ph] 8 Dec 2004 Size Information Obtained Using Static Light Scattering Technique Yong Sun February 2, 2008 Abstract Detailed investigation of static light scattering

More information

Electrophoretic Light Scattering Overview

Electrophoretic Light Scattering Overview Electrophoretic Light Scattering Overview When an electric field is applied across an electrolytic solution, charged particles suspended in the electrolyte are attracted towards the electrode of opposite

More information

Electrostatic Self-assembly : A New Route Towards Nanostructures

Electrostatic Self-assembly : A New Route Towards Nanostructures 1 Electrostatic Self-assembly : A New Route Towards Nanostructures J.-F. Berret, P. Hervé, M. Morvan Complex Fluids Laboratory, UMR CNRS - Rhodia n 166, Cranbury Research Center Rhodia 259 Prospect Plains

More information

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Gold-poly(N-isopropylacrylamide) core-shell colloids with

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information

A systematic study of the influence of mesoscale structuring on the kinetics of a chemical reaction

A systematic study of the influence of mesoscale structuring on the kinetics of a chemical reaction Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supplementary Information A systematic study of the influence of mesoscale

More information

Supporting Information

Supporting Information upporting Information ynthesis and elf-assembly of Amphiphilic emi-brush and Dual rush lock Copolymers. Daniel Zehm, a André Laschewsky,* a Peggy Heunemann b,c, Michael Gradzielski,* b ylvain Prévost,

More information

Supplemental Material Fluidity and water in nanoscale domains define coacervate hydrogels

Supplemental Material Fluidity and water in nanoscale domains define coacervate hydrogels This journal is The Royal Society of Chemistry 013 Supplemental Material Fluidity and water in nanoscale domains define coacervate hydrogels Julia H. Ortony a,b,f, Soo-Hyung Choi b,g, Jason M. Spruell

More information

Supporting Information. for

Supporting Information. for Supporting Information for Enhanced Performance of Blended Polymer Excipients in Delivering a Hydrophobic Drug through the Synergistic Action of Micelles and HPMCAS Ziang Li, Lindsay M. Johnson, Ralm G.

More information

Interaction of Gold Nanoparticle with Proteins

Interaction of Gold Nanoparticle with Proteins Chapter 7 Interaction of Gold Nanoparticle with Proteins 7.1. Introduction The interfacing of nanoparticle with biomolecules such as protein is useful for applications ranging from nano-biotechnology (molecular

More information

Page 1 of 5. Is it alright to estimate dñ/dc in SLS measurements?

Page 1 of 5. Is it alright to estimate dñ/dc in SLS measurements? Page 1 of 5 Is it alright to estimate dñ/dc in SLS measurements? Due to the complexity of measuring the specific refractive index increment (dñ/dc), static light scattering molecular weight measurements

More information

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Introduction to Dynamic Light Scattering with Applications Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Outline Introduction to dynamic light scattering Particle

More information

Supporting Information

Supporting Information Supporting Information Dynamic Nuclear Polarization of Spherical Nanoparticles Ümit Akbey 1 *, Burcu Altin 2, Arne Linden 1, Serdar Özcelik 3, Michael Gradzielski 2, Hartmut Oschkinat 1 1 Leibniz-Institut

More information

Supplementary Material for. Concentration Dependent Effects of Urea. Binding to Poly-N-isopropylacrylamide Brushes:

Supplementary Material for. Concentration Dependent Effects of Urea. Binding to Poly-N-isopropylacrylamide Brushes: Electronic Supplementary Material (ESI for Physical Chemistry Chemical Physics. his journal is the Owner Societies 2016 Supplementary Material for Concentration Dependent Effects of Urea Binding to Poly-N-isopropylacrylamide

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Supplementary Information: Phase Behavior and Molecular Thermodynamics of Coacervation

Supplementary Information: Phase Behavior and Molecular Thermodynamics of Coacervation 1 Supplementary Information: Phase Behavior and Molecular Thermodynamics of Coacervation in Oppositely Charged Polyelectrolyte/Surfactant System: Cationic Polymer JR 400 and Anionic Surfactant SDS Mixture

More information

Water and solutions. Prof. Ramune Morkuniene, Biochemistry Dept., LUHS

Water and solutions. Prof. Ramune Morkuniene, Biochemistry Dept., LUHS Water and solutions Prof. Ramune Morkuniene, Biochemistry Dept., LUHS Characteristics of water molecule Hydrophylic, hydrophobic and amphipatic compounds Types of real solutions Electrolytes and non- electrolytes

More information

Interactional Behavior of Polyelectrolyte Poly Sodium 4-Styrene Sulphonate (NaPSS) with

Interactional Behavior of Polyelectrolyte Poly Sodium 4-Styrene Sulphonate (NaPSS) with Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Interactional Behavior of Polyelectrolyte Poly Sodium 4-Styrene Sulphonate (NaPSS)

More information

Part 8. Special Topic: Light Scattering

Part 8. Special Topic: Light Scattering Part 8. Special Topic: Light Scattering Light scattering occurs when polarizable particles in a sample are placed in the oscillating electric field of a beam of light. The varying field induces oscillating

More information

Protein Synthetic Lipid Interactions

Protein Synthetic Lipid Interactions Acta Biophysica Romana 2006 22-24 Febbraio Università di Roma - Tor Vergata Protein Synthetic Lipid Interactions Silvia Tardioli and Adalberto Bonincontro CNISM-Dipartimento di Fisica Camillo La Mesa Dipartimento

More information

Chapter 7. Pickering Stabilisation ABSTRACT

Chapter 7. Pickering Stabilisation ABSTRACT Chapter 7 Pickering Stabilisation ABSTRACT In this chapter we investigate the interfacial properties of Pickering emulsions. Based upon findings that indicate these emulsions to be thermodynamically stable,

More information

Light scattering Small and large particles

Light scattering Small and large particles Scattering by macromolecules E B Incident light Scattered Light particle Oscillating E field from light makes electronic cloud oscillate surrounding the particle Intensity: I E Accelerating charges means

More information

Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides

Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides Owen G Jones 1, Stephaandschin 1, Jozef Adamcik 1, Ludger Harnau 2, Sreenath Bolisetty 1, and Raffaele Mezzenga

More information

Supporting Information. Complex Formation Between Lysozyme and Stabilized Micelles with a Mixed Poly(ethylene oxide)/poly(acrylic acid) Shell

Supporting Information. Complex Formation Between Lysozyme and Stabilized Micelles with a Mixed Poly(ethylene oxide)/poly(acrylic acid) Shell Supporting Information Complex Formation Between Lysozyme and Stabilized Micelles with a Mixed Poly(ethylene oxide)/poly(acrylic acid) Shell Maria Karayianni 1,2, Valeria Gancheva 2, Stergios Pispas 1

More information

Micelle formation and CMC of gemini surfactants: a thermodynamic model

Micelle formation and CMC of gemini surfactants: a thermodynamic model Colloids and Surfaces A: Physicochemical and Engineering Aspects 167 (2000) 165 177 www.elsevier.nl/locate/colsurfa Micelle formation and CMC of gemini surfactants: a thermodynamic model Terri A. Camesano

More information

Photosensitive gelatin

Photosensitive gelatin Photosensitive gelatin Ana Vesperinas, a Julian Eastoe,* a Paul Wyatt, a Isabelle Grillo b and Richard K. Heenan c a School of Chemistry, University of Bristol, Bristol, BS8 TS, UK.Fax:+44 7 9506;Tel:+44

More information

SAS Data Analysis Colloids. Dr Karen Edler

SAS Data Analysis Colloids. Dr Karen Edler SAS Data Analysis Colloids Dr Karen Edler Size Range Comparisons 10 1 0.1 0.01 0.001 proteins viruses nanoparticles micelles polymers Q = 2π/d (Å -1 ) bacteria molecules nanotubes precipitates grain boundaries

More information

Chapter 2. Dielectric Theories

Chapter 2. Dielectric Theories Chapter Dielectric Theories . Dielectric Theories 1.1. Introduction Measurements of dielectric properties of materials is very important because it provide vital information regarding the material characteristics,

More information

Anirban Som

Anirban Som Anirban Som 01-11-14 Introduction Supramolecular chemistry generates complex structures over a range of length scales. Structures such as DNA origami, supramolecular polymers etc. are formed via multiple

More information

Water, water everywhere,; not a drop to drink. Consumption resulting from how environment inhabited Deforestation disrupts water cycle

Water, water everywhere,; not a drop to drink. Consumption resulting from how environment inhabited Deforestation disrupts water cycle Chapter 3 Water: The Matrix of Life Overview n n n Water, water everywhere,; not a drop to drink Only 3% of world s water is fresh How has this happened Consumption resulting from how environment inhabited

More information

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation,

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

Thermodynamics of cationic and anionic surfactant interaction

Thermodynamics of cationic and anionic surfactant interaction Thermodynamics of cationic and anionic surfactant interaction Vytautas Petrauskas Department of Biothermodynamics and Drug Design Institute of Biotechnology, Vilnius University October 16, 2014 Vytautas

More information

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A supramolecular approach for fabrication of photo- responsive

More information

R =! Aco! What is formulation?

R =! Aco! What is formulation? 1 / 36! AIChE 1rst International Conference on Upstream Engineering and Flow Assurance Houston April 1-4, 2012 2 / 36! Physico-chemical Formulation! Emulsion Properties vs Formulation! Applications! Jean-Louis

More information

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Introduction. The electromagnetic spectrum. visible 10-16 10-10 10-8 10-4 10-2 10 4 (l m) g-rays X-rays UV IR micro wave Long radio waves 400

More information

Contents. Preface XIII

Contents. Preface XIII V Contents Preface XIII 1 General Introduction 1 1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids 1 1.1.1 Wetting of Powder into Liquid 1 1.1.2 Breaking of Aggregates

More information

Electronic Supplementary Information. Solution Properties of Imidazolium-Based Amphiphilic Polyelectrolyte. in Pure- and Mixed-Solvent Media

Electronic Supplementary Information. Solution Properties of Imidazolium-Based Amphiphilic Polyelectrolyte. in Pure- and Mixed-Solvent Media Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2019 Electronic Supplementary Information Solution Properties of Imidazolium-Based Amphiphilic

More information

Chapter 4. Small Angle X-Ray and Neutron Scattering - Its Application to Supramolecular Solutions

Chapter 4. Small Angle X-Ray and Neutron Scattering - Its Application to Supramolecular Solutions Chapter 4. Small Angle X-Ray and Neutron Scattering - Its Application to Supramolecular Solutions Academic and Research Staff Professor Sow-Hsin Chen Visiting Scientists Dr. Giuseppe Briganti, 1 Professor

More information

Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction...

Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction... Transport phenomena 1/16 Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction... Flux of mass, charge, momentum, heat,...... J = amount (of quantity) transported

More information

Thermodynamics of Micellization of Nonionic Surfactant Tween-40 in Presence of Additive Chloramine-T Using Clouding Phenomenon

Thermodynamics of Micellization of Nonionic Surfactant Tween-40 in Presence of Additive Chloramine-T Using Clouding Phenomenon http://www.e-journals.net ISSN: 973-4945; CDEN ECJHA E- Chemistry 21, 7(S1), S33-S334 Thermodynamics of Micellization of Nonionic Surfactant Tween-4 in Presence of Additive Chloramine-T Using Clouding

More information

Strikingly different miscibility of n-octanol in highly-confined and quasi-confined water

Strikingly different miscibility of n-octanol in highly-confined and quasi-confined water Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Strikingly different miscibility of n-octanol in highly-confined and quasi-confined water Aparajita

More information

Dynamic electrophoretic mobility of concentrated suspensions Comparison between experimental data and theoretical predictions

Dynamic electrophoretic mobility of concentrated suspensions Comparison between experimental data and theoretical predictions Colloids and Surfaces A: Physicochem. Eng. Aspects 267 (2005) 95 102 Dynamic electrophoretic mobility of concentrated suspensions Comparison between experimental data and theoretical predictions A.V. Delgado

More information

Emulsions Part 3. microemulsions miniemulsions. remarks to: Klaus Tauer MPI Colloids and Interfaces Am Mühlenberg, D Golm, Germany

Emulsions Part 3. microemulsions miniemulsions. remarks to: Klaus Tauer MPI Colloids and Interfaces Am Mühlenberg, D Golm, Germany Emulsions Part 3 remarks to: microemulsions miniemulsions Klaus Tauer MPI Colloids and Interfaces Am Mühlenberg, D-14476 Golm, Germany Micro and Miniemulsion Why Special Emphasis? questionable graph!!!

More information

Chapter 5: Micellar behaviour of PPO-PEO- PPO block copolymers and mixtures with PEO- PPO-PEO copolymers

Chapter 5: Micellar behaviour of PPO-PEO- PPO block copolymers and mixtures with PEO- PPO-PEO copolymers Chapter 5: Micellar behaviour of PPO-PEO- PPO block copolymers and mixtures with PEO- PPO-PEO copolymers Introduction Poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) (PEO PPO PEO), triblock

More information

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound a b c Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound 11. 1 a b c Supplementary Figure S2 a, wireframe

More information

SUPPORTING INFORMATION. for. Length. E. Dormidontova b and Olga E. Philippova*,a

SUPPORTING INFORMATION. for. Length. E. Dormidontova b and Olga E. Philippova*,a Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2018 SUPPORTIN INFORMATION for rowth of Wormlike Surfactant Micelles Induced by Embedded Polymer:

More information

Combined SANS and SAXS in studies of nanoparticles with core-shell structure

Combined SANS and SAXS in studies of nanoparticles with core-shell structure Indian Journal of Pure & Applied Physics Vol. 44, October 006, pp. 74-78 Combined SANS and SAXS in studies of nanoparticles with core-shell structure P S Goyal & V K Aswal* UGC-DAE CSR, Mumbai Centre (*Solid

More information

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled Supporting Information Specific ion effects on the interaction of hydrophobic and hydrophilic self assembled monolayers T. Rios-Carvajal*, N. R. Pedersen, N. Bovet, S.L.S. Stipp, T. Hassenkam. Nano-Science

More information

Critical Micellization Concentration Determination using Surface Tension Phenomenon

Critical Micellization Concentration Determination using Surface Tension Phenomenon Critical Micellization Concentration Determination using Phenomenon 1. Introduction Surface-active agents (surfactants) were already known in ancient times, when their properties were used in everyday

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

ENV/JM/MONO(2015)17/PART1/ANN2

ENV/JM/MONO(2015)17/PART1/ANN2 Unclassified ENV/JM/MONO(2015)17/PART1/ANN2 ENV/JM/MONO(2015)17/PART1/ANN2 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development

More information

6. Lichtstreuung (2) Statische Lichtstreuung

6. Lichtstreuung (2) Statische Lichtstreuung 6. Lichtstreuung (2) Statische Lichtstreuung What is Light Scattering? Blue sky, red sunset Automobile headlights in fog Laser beam in a smoky room Reading from an illuminated page Dust particles in beamer

More information

C deposits (63.5/2) g of copper; the quantity passed is therefore

C deposits (63.5/2) g of copper; the quantity passed is therefore 7. SOLUTIONS OF ELECTROLYTES n Faraday s Laws, Molar Conductivity, and Weak Electrolytes 7.1. 96 500 C deposits (63.5/2) g of copper; the quantity passed is therefore 96 500 0.04 2 63.5 C The current was

More information

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I)

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) Overview: General Properties of Macromolecules in Solution Molar Mass Dependencies Molar Mass Distributions Generalized Ratios Albena Lederer Leibniz-Institute

More information

IB Chemistry Solutions Gasses and Energy

IB Chemistry Solutions Gasses and Energy Solutions A solution is a homogeneous mixture it looks like one substance. An aqueous solution will be a clear mixture with only one visible phase. Be careful with the definitions of clear and colourless.

More information

Introduction to X-ray and neutron scattering

Introduction to X-ray and neutron scattering UNESCO/IUPAC Postgraduate Course in Polymer Science Lecture: Introduction to X-ray and neutron scattering Zhigunov Alexander Institute of Macromolecular Chemistry ASCR, Heyrovsky sq., Prague -16 06 http://www.imc.cas.cz/unesco/index.html

More information

Supplementary Information. ph-responsive core-shell supramolecular polymer brushes from cyclic peptide - polymer conjugates

Supplementary Information. ph-responsive core-shell supramolecular polymer brushes from cyclic peptide - polymer conjugates Supplementary Information ph-responsive core-shell supramolecular polymer brushes from cyclic peptide - polymer conjugates Sophie C. Larnaudie, a Johannes C. Brendel,ǂ a,b Katrina A. Jolliffe, c * and

More information

Supporting Information for manuscript: Synthesis and ph-responsive Dissociation of Framboidal ABC Triblock Copolymer Vesicles in Aqueous Solution

Supporting Information for manuscript: Synthesis and ph-responsive Dissociation of Framboidal ABC Triblock Copolymer Vesicles in Aqueous Solution Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information for manuscript: Synthesis and ph-responsive Dissociation of Framboidal

More information

Chem728 Spr. 12 page 1 2/29/12. Assignment 2 Estimates of Hydrodynamic Radii from Dynamic Light Scattering Data. ANSWERS

Chem728 Spr. 12 page 1 2/29/12. Assignment 2 Estimates of Hydrodynamic Radii from Dynamic Light Scattering Data. ANSWERS Chem728 Spr. 12 page 1 2/29/12 Assignment 2 Estimates of Hydrodynamic Radii from Dynamic Light Scattering Data. ANSWERS Objective: Analyze experimental correlation functions of scattered light to determine

More information

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support Monolayers Adsorption as process Adsorption of gases on solids Adsorption of solutions on solids Factors affecting the adsorption from solution Adsorption of amphiphilic molecules on solid support Adsorption

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

Katarzyna Lewandowska

Katarzyna Lewandowska RHEOLOGICAL PROPERTIES OF CHITOSAN BLENDS WITH PARTIALLY HYDROLYZED POLYACRYLAMIDE IN DIFFERENT SOLVENTS Katarzyna Lewandowska Faculty of Chemistry, Chair of Chemistry and Photochemistry of Polymers, Nicolaus

More information

Thermodynamics of cationic and anionic surfactant interaction

Thermodynamics of cationic and anionic surfactant interaction Thermodynamics of cationic and anionic surfactant interaction Vytautas Petrauskas Department of Biothermodynamics and Drug Design (PI D. Matulis) Institute of Biotechnology, Vilnius University October

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Initial position, x p (0)/L

Initial position, x p (0)/L .4 ) xp().2 ) ( 2L 2 xp Dc ( Displacement, /L.2.4.5.5 Initial position, x p ()/L Supplementary Figure Computed displacements of (red) positively- and (blue) negatively-charged particles at several CO 2

More information

Scattering experiments

Scattering experiments Scattering experiments Menu 1. Basics: basics, contrast, q and q-range. Static scattering: Light, x-rays and neutrons 3. Dynamics: DLS 4. Key examples Polymers The Colloidal Domain The Magic Triangle Length-

More information

Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications

Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications Dr Mike Kaszuba Technical Support Manager E-mail: michael.kaszuba@malvern.com Contents Zetasizer Nano ZSP Software Enhancements Protein

More information

Module 4: "Surface Thermodynamics" Lecture 21: "" The Lecture Contains: Effect of surfactant on interfacial tension. Objectives_template

Module 4: Surface Thermodynamics Lecture 21:  The Lecture Contains: Effect of surfactant on interfacial tension. Objectives_template The Lecture Contains: Effect of surfactant on interfacial tension file:///e /courses/colloid_interface_science/lecture21/21_1.htm[6/16/2012 1:10:36 PM] Surface Thermodynamics: Roles of Surfactants and

More information

Supplementary Information

Supplementary Information Supplementary Information Surfactant-Free RAFT Emulsion Polymerization of Styrene Using Thermoresponsive macroraft Agents: Towards Smart Well-Defined Block Copolymers with High Molecular Weights Steffen

More information

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Dr. Christoph Johann Wyatt Technology Europe GmbH 2010 Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Introduction Overview The Nature of Scattered Light: Intensity of scattered light Angular

More information

Kolligative Eigenschaften der Makromolekülen

Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften (colligere = sammeln) Gefrierpunkterniedrigung, Siedepunkterhöhung, Dampfdruckerniedrigung, Osmotischer Druck Kolligative Eigenschaften

More information

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download)

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) Dr. Debasis Samanta Senior Scientist & AcSIR Assistant Professor Polymer Science & Technology Department., CSIR-CLRI,

More information

Supplementary Information for A Magnetic Wormhole

Supplementary Information for A Magnetic Wormhole Supplementary Information for A Magnetic Wormhole Jordi Prat-Camps, Carles Navau, and Alvaro Sanchez Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

More information

POLYMER MATERIALS WITH SMART PROPERTIES

POLYMER MATERIALS WITH SMART PROPERTIES Host Institution: PETRU PONI Institute of Macromolecular Chemistry of Romanian Academy 4-A, Grigore Ghica Voda Alley, 700487 Iaşi, Romania Contracting Authority: Executive Unit for Financing Higher Education

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

Polymer fullerene solution phase behaviour and film formation pathways

Polymer fullerene solution phase behaviour and film formation pathways Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2015 Polymer fullerene solution phase behaviour and film formation pathways Rajeev Dattani 1 and

More information

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS 2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS 2.1 Water and Polarity Both geometry and properties of molecule determine polarity Electronegativity - The tendency of an atom to attract electrons to itself

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Experimental Soft Matter (M. Durand, G. Foffi)

Experimental Soft Matter (M. Durand, G. Foffi) Master 2 PCS/PTSC 2016-2017 10/01/2017 Experimental Soft Matter (M. Durand, G. Foffi) Nota Bene Exam duration : 3H ecture notes are not allowed. Electronic devices (including cell phones) are prohibited,

More information

Solutions and Non-Covalent Binding Forces

Solutions and Non-Covalent Binding Forces Chapter 3 Solutions and Non-Covalent Binding Forces 3.1 Solvent and solution properties Molecules stick together using the following forces: dipole-dipole, dipole-induced dipole, hydrogen bond, van der

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

Critical Phenomena under Shear Flow

Critical Phenomena under Shear Flow Critical Phenomena under Shear Flow Pavlik Lettinga, Hao Wang, Jan K.G. Dhont Close to a gas-liquid critical point, effective interactions between particles become very long ranged, and the dynamics of

More information

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Hong-ming Ding 1 & Yu-qiang Ma 1,2, 1 National Laboratory of Solid State Microstructures and Department

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2012, 4(3):1619-1624 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Studies on ion association and solvation of multi-charged

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial Role of Acid-Base Equilibrium

Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial Role of Acid-Base Equilibrium Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 215 Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial

More information

Supporting Information

Supporting Information Supporting Information Thiocyanate Anchors for Salt-like Iron(II) Complexes on Au(111): Promises and Caveats Philipp Stock, a,b Andreas Erbe, b Gerald Hörner, a Manfred Buck, c Hervé Ménard, d and Andreas

More information

1. Schematic Representation of the PMA Repeat Unit and of Various PMA Triads. (a) (b) (c) (d)

1. Schematic Representation of the PMA Repeat Unit and of Various PMA Triads. (a) (b) (c) (d) S1 of S5 Supplementary Materials: Thermodynamic Analysis of the Conformational Transition in Aqueous Solutions of Isotactic and Atactic Poly (methacrylic acid) and the Hydrophobic Effect Ksenija Kogej

More information

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Lecture 3 Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Adsorption at Gas-Liquid interface Measurements of equilibrium adsorption surface tension measurements (Wilhelmy plate) surface analysis

More information

Electrolyte Solutions

Electrolyte Solutions Chapter 8 Electrolyte Solutions In the last few chapters of this book, we will deal with several specific types of chemical systems. The first one is solutions and equilibria involving electrolytes, which

More information

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

Nanoparticle Analyzer

Nanoparticle Analyzer Nanoparticle Analyzer Industry's Widest Range and Highest Precision Measurement Instrument for Nano-particle Characterization nano partica SZ-100 A highly advanced analyzer solves the mysteries of the

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17) 16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit By Anthony Quintano - https://www.flickr.com/photos/quintanomedia/15071865580, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=38538291

More information