Causal Inference by Minimizing the Dual Norm of Bias. Nathan Kallus. Cornell University and Cornell Tech

Size: px
Start display at page:

Download "Causal Inference by Minimizing the Dual Norm of Bias. Nathan Kallus. Cornell University and Cornell Tech"

Transcription

1 Causal Inference by Minimizing the Dual Norm of Bias Nathan Kallus Cornell University and Cornell Tech

2 Matching Zoo It s a zoo of matching estimators for causal effects: PSM, NN, CM, CEM, GenMatch, Mean- Matching What are the inherent differences? What does it mean to match on covariates? This talk: New classification: worst- case bias minimizing (WCBM) Encompasses many existing methods Reveals motivation as optimality for particular structure Gives rise to new kernel matching estimators

3 Set- up tl;dr: measure SATT under unconfoundedness using a covariate- matched control sample Subjects i = 1,, n: Two treatments: treatment (T i =1) & control (T i =0) T 0 = {i : T i =0}, T 1 = {i : T i =1} Observe: covariates X i, treatment T i, and outcome Y i =Y i (T i ) Unseen counterfactual potential outcomes Y i (0), Y i (1) X=(X 1,, X n ), T=(T 1,, T n ) are the whole sample Assume unconfounded: E[Y i (t) T i,x i ]=E[Y i (t) X i ], P(T i = t X i ) > 0 Want to measure SATT: SATT = 1 n 1 Pi2T 1 (Y i (1) Y i (0))

4 Set- up Estimate by making a matched control sample ˆ W = 1 n 1 P i2t 1 Y i Pi2T 0 W i Y i W i 0 Honest weights W (T,X) No causal effect mining allowed! Weight types: P i2t 0 W i =1 that only depend on T, X General weights W general 0 = {W T0 2 R T 0 + : P i2t 0 Matched subset w/o rep: w/o rep. W0 = {W T0 2 {0, 1/n 0 0} T 0 : P i2t 0 Matched multi- subset w/ rep: w/ rep. W0 = {W T0 2 {0, 1/n 0 0,...} T 0 : P i2t 0

5 Decomposing Bias Define bias (misnomer more like error) bias = E [ˆ W SATT X, T] Let f 0 (x) =E[Y i (0) X i = x], i = Y i (0) f 0 (X i ) Theorem: ˆ W SATT = B(W ; f 0 )+E(W) B(W ; f) := 1 P n 1 Pi2T 1 f(x i ) i2t 0 W i f(x i ) E(W ):= 1 P n 1 i2t 1 i Pi2T 0 W i i And, under unconfoundedness, E[E(W ) X, T] =0 E[ˆ W SATT X, T] =B(W ; f 0 )

6 Worst- Case Bias Under unconfoundedness, our bias isb(w ; f 0 ) Involves an unknown function Consider guarding against any possible such function B(W ; f) scales linearly in f Consider worst- case relative to a magnitudekfk 2[0, 1] I.e., minimize f 0 max f B(W ;f) kfk

7 Worst- Case Bias For worst- case bias to be well- defined, assume: k k is a semi- norm on F = {f : kfk < 1} (implies F is a linear subspace) F/ {f : kfk =0} forms a Banach space (complete normed vector space) Contrasts f 7! B(W ; f) are continuous maps for any W (equivalently, 9M(W ):B(W; f) apple M(W ) kfk since continuous operators on B space = bounded operators) F The dual space = {continuous linear operators} Is a Banach space with norm kak =sup kfkapple1 A(f)

8 Dual Norm of Bias Dual norm of bias is the normalized worst- case bias: B(W ; F) = max f B(W ;f) kfk = max kfkapple1 B(W ; f) = kb(w ; )k Definition 1. A matching method W (T,X) is said to be worst-case bias minimizing (WCBM) if for some W and k k satisfying assumptions we have W (T,X) 2 arg min W 2W B(W ; F) 6= W.

9 Existing Methods as WCBM Surprising fact: most covariate- matching methods are WCBM! Reveals structural motivations of different matching methods Choose the method that matches your structural beliefs WCBM is the right framework

10 Nearest- Neighbor Matching NNM: Find a control match for each treated unit and minimize the sum of pairwise distances per (x, x 0 ) Can be with or without replacement Hansen, 2004 & 2006; Rubin, 1973; Cochran, 1953 Classically, not necessarily minimalsum of distances Usually, Mahalanobis (x, x 0 )= q (x x 0 )ˆ 1 (x x 0

11 Nearest- Neighbor Matching Theorem: Nearest neighbor matching wrt replacement is WCBM with kfk =sup x6=x 0 f(x) f(x 0 ) (x,x 0 ) (x, x 0 ) with and either or W 0 = {W T0 2 R T 0 + : P i2t 0 W 0 = {W T0 2 {0, 1/n 1,...} T 0 : P i2t 0

12 Nearest- Neighbor Matching Theorem: Nearest neighbor matching wrt without replacement is WCBM with (x, x 0 ) kfk =sup x6=x 0 f(x) f(x 0 ) (x,x 0 ) and either or W 0 = {W T0 2 [0, 1/n 1 ] T 0 : P i2t 0 W 0 = {W T0 2 {0, 1/n 1 } T 0 : P i2t 0

13 Caliper Matching CM: find smallest caliper size and pairs such that all pairwise distance can fit within the caliper Raynor, 1983; Cochran & Rubin, 1973 Classically, not necessarily optimal caliper When with replacement, (almost) same as NNM Theorem: Caliper matching wrt replacement is WCBM with ) = E µ µ h (f(x) f(x 0 )) (x,x 0 ) (x, x 0 ) without where kfk = ) i x 6= x 0 and ˆµ n is the EDF And either or W 0 = {W T0 2 [0, 1/n 1 ] T 0 : P i2t 0 W 0 = {W T0 2 {0, 1/n 1 } T 0 : P i2t 0

14 Coarsened Exact Matching CEM: match exactly within each stratum, as defined by a coarsening function E.g., if there are 5 treated subjects and 3 control subjects in a given stratum then each of the control subjects is given weight proportional to 5/3 (weights sum to one) Iacus et al., 2011 C : X! {1,...,M} Theorem: CEM with coarsening fn C is WCBM with kfk = supx2x f(x) f 1 (C 1 (j)) =18j, 1 otherwise, and W 0 = {W T0 2 R T 0 + : P i2t 0

15 Mean Matching MM: subsample the control population to have similar sample mean to treated population wrt Rubin, 2012; Rubin, 1973; Greenberg, 1953 Classically, not necessarily optimal Theorem: Mean matching is WCBM with and or M V (W )= V 1/2 kfk 2 = P 1 n 1 i2t 1 X i P i2t 0 W i X i T V f(x) = 0 + T x, 1 otherwise. W 0 = {W T0 2 {0, 1/n 1,...} T 0 : P i2t 0 W 0 = {W T0 2 {0, 1/n 1 } T 0 : P i2t 0 2 (w/ repl) (w/o repl)

16 Kernel Matching Most matching methods are WCBM Each corresponded to particular structure / functional space What about other spaces? In ML, reproducing kernel Hilbert spaces (RKHS) are very common for generalizing learned function E.g. kernelized SVM, kernel ridge regression, kernel PCA, Via WCBM, kernels can be used for matching too!

17 Reproducing Kernel Hilbert Space HS = inner product space that is a Banach space RKHS = HS with continuous evaluations By Riesz representation theorem, PSD kernel K(x, x 0 ) RKHS Polynomial kernel Spans polynomials deg s (finite- dim) Exponential kernel K(x, x 0 )=e xt x 0 Infinite dimensional C 0 - universal Gaussian kernel K s (x, x 0 )=e s2 x x 0 2 Infinite dimensional C 0 - universal K s (x, x 0 )=(1+x T x 0 /s) s

18 Kernel Matching Kernel Gram matrix K ij = K(X i,x j ) Theorem: B 2 (W ; F) = 1 n 2 1 e T n 1 K T1,T 1 e n1 + W T T 0 K T0 T 0 W T0 2 n 1 e T n 1 K T1,T 0 W T0 Minimize over different domains different matching methods

19 Kernel Matching General weight kernel matching W 0 = {W T0 2 R T 0 + : P i2t 0 Discrete kernel matching with replacement W 0 = {W T0 2 {0, 1/n 1,...} T 0 : P i2t 0 Discrete kernel matching without replacement W 0 = {W T0 2 {0, 1/n 1 } T 0 : P i2t 0

20 Numerics Hypothetical observational study distributed uniformly on [-1, 1] 2 Various forms for Measure RMSE X i 2 R 2 T i Bernoulli(0.8/(1 + p 2 kx i k 2 )) Y i (0) = f 0 (X i )+ i i N (0, 0.1) f 0

21 f 0 (x) = x 1 + x 2 Numerics: L1 norm RMSE n No matching CEM PSM Exp kernel weight Exp kernel match One-to-one Mahal. means Quad kernel weight Gauss kernel weight Gauss kernel match

22 Numerics: quadratic f 0 (x) =(x 1 + x 2 )+(x 1 + x 2 ) 2 RMSE n No matching CEM PSM Exp kernel weight Exp kernel match One-to-one Mahal. means Quad kernel weight Gauss kernel weight Gauss kernel match

23 Numerics: cubic f 0 (x) =(x 1 + x 2 ) 2 +(x 1 + x 2 ) 3 RMSE n No matching CEM PSM Exp kernel weight Exp kernel match One-to-one Mahal. means Quad kernel weight Gauss kernel weight Gauss kernel match

24 Numerics: sinusoidal f 0 (x) =sin( (x 1 + x 2 )) + cos( (x 1 x 2 )) RMSE n No matching CEM PSM Exp kernel weight Exp kernel match One-to-one Mahal. means Quad kernel weight Gauss kernel weight Gauss kernel match

25 huh? WCBM offers a general framework for matching estimators Structure imbalance metric and matching methods that minimize imbalance This recovers existing matching methods and uncovers structural underpinnings New methods: kernel matching

Causal Inference by Minimizing the Dual Norm of Bias: Kernel Matching & Weighting Estimators for Causal Effects

Causal Inference by Minimizing the Dual Norm of Bias: Kernel Matching & Weighting Estimators for Causal Effects Causal Inference by Minimizing the Dual Norm of Bias: Kernel Matching & Weighting Estimators for Causal Effects Nathan Kallus School of Operations Research and Information Engineering Cornell University

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Kernel Methods. Outline

Kernel Methods. Outline Kernel Methods Quang Nguyen University of Pittsburgh CS 3750, Fall 2011 Outline Motivation Examples Kernels Definitions Kernel trick Basic properties Mercer condition Constructing feature space Hilbert

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space to The The A s s in to Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 2, 2009 to The The A s s in 1 Motivation Outline 2 The Mapping the

More information

The Learning Problem and Regularization Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee

The Learning Problem and Regularization Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee The Learning Problem and Regularization 9.520 Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Bayesian Methods Machine Learning CSE546 Kevin Jamieson University of Washington November 1, 2018 2018 Kevin Jamieson 2 MLE Recap - coin flips Data:

More information

Kernel Methods. Barnabás Póczos

Kernel Methods. Barnabás Póczos Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

More information

Kernel Methods. Foundations of Data Analysis. Torsten Möller. Möller/Mori 1

Kernel Methods. Foundations of Data Analysis. Torsten Möller. Möller/Mori 1 Kernel Methods Foundations of Data Analysis Torsten Möller Möller/Mori 1 Reading Chapter 6 of Pattern Recognition and Machine Learning by Bishop Chapter 12 of The Elements of Statistical Learning by Hastie,

More information

Review: Support vector machines. Machine learning techniques and image analysis

Review: Support vector machines. Machine learning techniques and image analysis Review: Support vector machines Review: Support vector machines Margin optimization min (w,w 0 ) 1 2 w 2 subject to y i (w 0 + w T x i ) 1 0, i = 1,..., n. Review: Support vector machines Margin optimization

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

Lecture 7: Kernels for Classification and Regression

Lecture 7: Kernels for Classification and Regression Lecture 7: Kernels for Classification and Regression CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 15, 2011 Outline Outline A linear regression problem Linear auto-regressive

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 12, 2007 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

CS 7140: Advanced Machine Learning

CS 7140: Advanced Machine Learning Instructor CS 714: Advanced Machine Learning Lecture 3: Gaussian Processes (17 Jan, 218) Jan-Willem van de Meent (j.vandemeent@northeastern.edu) Scribes Mo Han (han.m@husky.neu.edu) Guillem Reus Muns (reusmuns.g@husky.neu.edu)

More information

Gov 2002: 5. Matching

Gov 2002: 5. Matching Gov 2002: 5. Matching Matthew Blackwell October 1, 2015 Where are we? Where are we going? Discussed randomized experiments, started talking about observational data. Last week: no unmeasured confounders

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable.

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable. Linear SVM (separable case) First consider the scenario where the two classes of points are separable. It s desirable to have the width (called margin) between the two dashed lines to be large, i.e., have

More information

Kernel Methods. Machine Learning A W VO

Kernel Methods. Machine Learning A W VO Kernel Methods Machine Learning A 708.063 07W VO Outline 1. Dual representation 2. The kernel concept 3. Properties of kernels 4. Examples of kernel machines Kernel PCA Support vector regression (Relevance

More information

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels Karl Stratos June 21, 2018 1 / 33 Tangent: Some Loose Ends in Logistic Regression Polynomial feature expansion in logistic

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Support Vector Machines

Support Vector Machines Wien, June, 2010 Paul Hofmarcher, Stefan Theussl, WU Wien Hofmarcher/Theussl SVM 1/21 Linear Separable Separating Hyperplanes Non-Linear Separable Soft-Margin Hyperplanes Hofmarcher/Theussl SVM 2/21 (SVM)

More information

Lecture 4 February 2

Lecture 4 February 2 4-1 EECS 281B / STAT 241B: Advanced Topics in Statistical Learning Spring 29 Lecture 4 February 2 Lecturer: Martin Wainwright Scribe: Luqman Hodgkinson Note: These lecture notes are still rough, and have

More information

Basis Expansion and Nonlinear SVM. Kai Yu

Basis Expansion and Nonlinear SVM. Kai Yu Basis Expansion and Nonlinear SVM Kai Yu Linear Classifiers f(x) =w > x + b z(x) = sign(f(x)) Help to learn more general cases, e.g., nonlinear models 8/7/12 2 Nonlinear Classifiers via Basis Expansion

More information

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto Reproducing Kernel Hilbert Spaces 9.520 Class 03, 15 February 2006 Andrea Caponnetto About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Regularization in Reproducing Kernel Banach Spaces

Regularization in Reproducing Kernel Banach Spaces .... Regularization in Reproducing Kernel Banach Spaces Guohui Song School of Mathematical and Statistical Sciences Arizona State University Comp Math Seminar, September 16, 2010 Joint work with Dr. Fred

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 11, 2009 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Kernel Methods. Jean-Philippe Vert Last update: Jan Jean-Philippe Vert (Mines ParisTech) 1 / 444

Kernel Methods. Jean-Philippe Vert Last update: Jan Jean-Philippe Vert (Mines ParisTech) 1 / 444 Kernel Methods Jean-Philippe Vert Jean-Philippe.Vert@mines.org Last update: Jan 2015 Jean-Philippe Vert (Mines ParisTech) 1 / 444 What we know how to solve Jean-Philippe Vert (Mines ParisTech) 2 / 444

More information

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of

More information

SVMs: nonlinearity through kernels

SVMs: nonlinearity through kernels Non-separable data e-8. Support Vector Machines 8.. The Optimal Hyperplane Consider the following two datasets: SVMs: nonlinearity through kernels ER Chapter 3.4, e-8 (a) Few noisy data. (b) Nonlinearly

More information

CS798: Selected topics in Machine Learning

CS798: Selected topics in Machine Learning CS798: Selected topics in Machine Learning Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS798: Selected topics in Machine Learning

More information

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets 9.520 Class 22, 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce an alternate perspective of RKHS via integral operators

More information

Each new feature uses a pair of the original features. Problem: Mapping usually leads to the number of features blow up!

Each new feature uses a pair of the original features. Problem: Mapping usually leads to the number of features blow up! Feature Mapping Consider the following mapping φ for an example x = {x 1,...,x D } φ : x {x1,x 2 2,...,x 2 D,,x 2 1 x 2,x 1 x 2,...,x 1 x D,...,x D 1 x D } It s an example of a quadratic mapping Each new

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

(Kernels +) Support Vector Machines

(Kernels +) Support Vector Machines (Kernels +) Support Vector Machines Machine Learning Torsten Möller Reading Chapter 5 of Machine Learning An Algorithmic Perspective by Marsland Chapter 6+7 of Pattern Recognition and Machine Learning

More information

Machine Learning Lecture Notes

Machine Learning Lecture Notes Machine Learning Lecture Notes Predrag Radivojac February 2, 205 Given a data set D = {(x i,y i )} n the objective is to learn the relationship between features and the target. We usually start by hypothesizing

More information

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Causal Inference Basics

Causal Inference Basics Causal Inference Basics Sam Lendle October 09, 2013 Observed data, question, counterfactuals Observed data: n i.i.d copies of baseline covariates W, treatment A {0, 1}, and outcome Y. O i = (W i, A i,

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 04: Features and Kernels. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 04: Features and Kernels. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 04: Features and Kernels Lorenzo Rosasco Linear functions Let H lin be the space of linear functions f(x) = w x. f w is one

More information

Statistical Methods for SVM

Statistical Methods for SVM Statistical Methods for SVM Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot,

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

The Representor Theorem, Kernels, and Hilbert Spaces

The Representor Theorem, Kernels, and Hilbert Spaces The Representor Theorem, Kernels, and Hilbert Spaces We will now work with infinite dimensional feature vectors and parameter vectors. The space l is defined to be the set of sequences f 1, f, f 3,...

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information

Support Vector Machine

Support Vector Machine Support Vector Machine Kernel: Kernel is defined as a function returning the inner product between the images of the two arguments k(x 1, x 2 ) = ϕ(x 1 ), ϕ(x 2 ) k(x 1, x 2 ) = k(x 2, x 1 ) modularity-

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels

MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels 1/12 MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels Dominique Guillot Departments of Mathematical Sciences University of Delaware March 14, 2016 Separating sets:

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning Kernel Machines Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 SVM linearly separable case n training points (x 1,, x n ) d features x j is a d-dimensional vector Primal problem:

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

Kaggle.

Kaggle. Administrivia Mini-project 2 due April 7, in class implement multi-class reductions, naive bayes, kernel perceptron, multi-class logistic regression and two layer neural networks training set: Project

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017 The Kernel Trick, Gram Matrices, and Feature Extraction CS6787 Lecture 4 Fall 2017 Momentum for Principle Component Analysis CS6787 Lecture 3.1 Fall 2017 Principle Component Analysis Setting: find the

More information

Kernels and the Kernel Trick. Machine Learning Fall 2017

Kernels and the Kernel Trick. Machine Learning Fall 2017 Kernels and the Kernel Trick Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem Support vectors, duals and kernels

More information

Kernel methods, kernel SVM and ridge regression

Kernel methods, kernel SVM and ridge regression Kernel methods, kernel SVM and ridge regression Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Collaborative Filtering 2 Collaborative Filtering R: rating matrix; U: user factor;

More information

CS8803: Statistical Techniques in Robotics Byron Boots. Hilbert Space Embeddings

CS8803: Statistical Techniques in Robotics Byron Boots. Hilbert Space Embeddings CS8803: Statistical Techniques in Robotics Byron Boots Hilbert Space Embeddings 1 Motivation CS8803: STR Hilbert Space Embeddings 2 Overview Multinomial Distributions Marginal, Joint, Conditional Sum,

More information

Perceptron Revisited: Linear Separators. Support Vector Machines

Perceptron Revisited: Linear Separators. Support Vector Machines Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning November 17, 2011 CharmGil Hong Agenda Motivation GP : How does it make sense? Prior : Defining a GP More about Mean and Covariance Functions Posterior : Conditioning

More information

Divide and Conquer Kernel Ridge Regression. A Distributed Algorithm with Minimax Optimal Rates

Divide and Conquer Kernel Ridge Regression. A Distributed Algorithm with Minimax Optimal Rates : A Distributed Algorithm with Minimax Optimal Rates Yuchen Zhang, John C. Duchi, Martin Wainwright (UC Berkeley;http://arxiv.org/pdf/1305.509; Apr 9, 014) Gatsby Unit, Tea Talk June 10, 014 Outline Motivation.

More information

Representer theorem and kernel examples

Representer theorem and kernel examples CS81B/Stat41B Spring 008) Statistical Learning Theory Lecture: 8 Representer theorem and kernel examples Lecturer: Peter Bartlett Scribe: Howard Lei 1 Representer Theorem Recall that the SVM optimization

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces 9.520: Statistical Learning Theory and Applications February 10th, 2010 Reproducing Kernel Hilbert Spaces Lecturer: Lorenzo Rosasco Scribe: Greg Durrett 1 Introduction In the previous two lectures, we

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

RegML 2018 Class 2 Tikhonov regularization and kernels

RegML 2018 Class 2 Tikhonov regularization and kernels RegML 2018 Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT June 17, 2018 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n = (x i,

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

Oslo Class 2 Tikhonov regularization and kernels

Oslo Class 2 Tikhonov regularization and kernels RegML2017@SIMULA Oslo Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT May 3, 2017 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Shivani Agarwal Support Vector Machines (SVMs) Algorithm for learning linear classifiers Motivated by idea of maximizing margin Efficient extension to non-linear

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Insights into the Geometry of the Gaussian Kernel and an Application in Geometric Modeling

Insights into the Geometry of the Gaussian Kernel and an Application in Geometric Modeling Insights into the Geometry of the Gaussian Kernel and an Application in Geometric Modeling Master Thesis Michael Eigensatz Advisor: Joachim Giesen Professor: Mark Pauly Swiss Federal Institute of Technology

More information

Kernels A Machine Learning Overview

Kernels A Machine Learning Overview Kernels A Machine Learning Overview S.V.N. Vishy Vishwanathan vishy@axiom.anu.edu.au National ICT of Australia and Australian National University Thanks to Alex Smola, Stéphane Canu, Mike Jordan and Peter

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

Kernel-Based Contrast Functions for Sufficient Dimension Reduction

Kernel-Based Contrast Functions for Sufficient Dimension Reduction Kernel-Based Contrast Functions for Sufficient Dimension Reduction Michael I. Jordan Departments of Statistics and EECS University of California, Berkeley Joint work with Kenji Fukumizu and Francis Bach

More information

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask Machine Learning and Data Mining Support Vector Machines Kalev Kask Linear classifiers Which decision boundary is better? Both have zero training error (perfect training accuracy) But, one of them seems

More information

4 Bias-Variance for Ridge Regression (24 points)

4 Bias-Variance for Ridge Regression (24 points) Implement Ridge Regression with λ = 0.00001. Plot the Squared Euclidean test error for the following values of k (the dimensions you reduce to): k = {0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 4 Jan-Willem van de Meent (credit: Yijun Zhao, Arthur Gretton Rasmussen & Williams, Percy Liang) Kernel Regression Basis function regression

More information

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML)

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML) Machine Learning Fall 2017 Kernels (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang (Chap. 12 of CIML) Nonlinear Features x4: -1 x1: +1 x3: +1 x2: -1 Concatenated (combined) features XOR:

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

LMS Algorithm Summary

LMS Algorithm Summary LMS Algorithm Summary Step size tradeoff Other Iterative Algorithms LMS algorithm with variable step size: w(k+1) = w(k) + µ(k)e(k)x(k) When step size µ(k) = µ/k algorithm converges almost surely to optimal

More information

Approximation Theoretical Questions for SVMs

Approximation Theoretical Questions for SVMs Ingo Steinwart LA-UR 07-7056 October 20, 2007 Statistical Learning Theory: an Overview Support Vector Machines Informal Description of the Learning Goal X space of input samples Y space of labels, usually

More information

Bayesian Linear Regression. Sargur Srihari

Bayesian Linear Regression. Sargur Srihari Bayesian Linear Regression Sargur srihari@cedar.buffalo.edu Topics in Bayesian Regression Recall Max Likelihood Linear Regression Parameter Distribution Predictive Distribution Equivalent Kernel 2 Linear

More information

Understanding Generalization Error: Bounds and Decompositions

Understanding Generalization Error: Bounds and Decompositions CIS 520: Machine Learning Spring 2018: Lecture 11 Understanding Generalization Error: Bounds and Decompositions Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the

More information

An Introduction to Kernel Methods 1

An Introduction to Kernel Methods 1 An Introduction to Kernel Methods 1 Yuri Kalnishkan Technical Report CLRC TR 09 01 May 2009 Department of Computer Science Egham, Surrey TW20 0EX, England 1 This paper has been written for wiki project

More information

Kernel Methods. Charles Elkan October 17, 2007

Kernel Methods. Charles Elkan October 17, 2007 Kernel Methods Charles Elkan elkan@cs.ucsd.edu October 17, 2007 Remember the xor example of a classification problem that is not linearly separable. If we map every example into a new representation, then

More information

LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition LINEAR CLASSIFIERS Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification, the input

More information

Support Vector Machines

Support Vector Machines EE 17/7AT: Optimization Models in Engineering Section 11/1 - April 014 Support Vector Machines Lecturer: Arturo Fernandez Scribe: Arturo Fernandez 1 Support Vector Machines Revisited 1.1 Strictly) Separable

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Advances in kernel exponential families

Advances in kernel exponential families Advances in kernel exponential families Arthur Gretton Gatsby Computational Neuroscience Unit, University College London NIPS, 2017 1/39 Outline Motivating application: Fast estimation of complex multivariate

More information

TDT4173 Machine Learning

TDT4173 Machine Learning TDT4173 Machine Learning Lecture 3 Bagging & Boosting + SVMs Norwegian University of Science and Technology Helge Langseth IT-VEST 310 helgel@idi.ntnu.no 1 TDT4173 Machine Learning Outline 1 Ensemble-methods

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen Kernel Methods Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Kernel Methods 1 / 37 Outline

More information

Bits of Machine Learning Part 1: Supervised Learning

Bits of Machine Learning Part 1: Supervised Learning Bits of Machine Learning Part 1: Supervised Learning Alexandre Proutiere and Vahan Petrosyan KTH (The Royal Institute of Technology) Outline of the Course 1. Supervised Learning Regression and Classification

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Overview Motivation

More information