Electron and Ion Optics

Size: px
Start display at page:

Download "Electron and Ion Optics"

Transcription

1 Electron and Ion Optics

2 MICRODEVICES Physics and Fabrication Technologies Series Editors: Ivor Brodie and Julius J. Muray SRI International Menlo Park, California ELECTRON AND ION OPTICS Miklos Szilagyi GaAs DEVICES AND CIRCUITS Michael Shur SEMICONDUCTOR LITHOGRAPHY Principles, Practices, and Materials Wayne M. Moreau A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.

3 Electron and Ion Optics Miklos Szilagyi University of Arizona Tucson, Arizona Plenum Press New York and London

4 Library of Congress Cataloging in Publication Data Szilagyi, Mikl6s. Electron and ion optics / Mikl6s Szilagyi. p. cm. - (Microdevices) Bibliography: p. Includes index. ISBN-13: e-isbn-13: : / Electron optics. 2. Electron beams. 3. Ion bombardment. 4. Electromagnetic lenses. I. Title. II. Series. QC793.5.E62S '6-dcl CIP 1988 Plenum Press, New York Softcover reprint of the hardcover 1st edition 1988 A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

5 To Jutka, Gabor, and Zoltan For the time that should have belonged to them

6 Preface The field of electron and ion optics is based on the analogy between geometrical light optics and the motion of charged particles in electromagnetic fields. The spectacular development of the electron microscope clearly shows the possibilities of image formation by charged particles of wavelength much shorter than that of visible light. As new applications such as particle accelerators, cathode ray tubes, mass and energy spectrometers, microwave tubes, scanning-type analytical instruments, heavy beam technologies, etc. emerged, the scope of particle beam optics has been extended to the formation of fine probes. The goal is to concentrate as many particles as possible in as small a volume as possible. Fabrication of microcircuits is a good example of the growing importance of this field. The current trend is towards increased circuit complexity and pattern density. Because of the diffraction limitation of processes using optical photons and the technological difficulties connected with x-ray processes, charged particle beams are becoming popular. With them it is possible to write directly on a wafer under computer control, without using a mask. Focused ion beams offer especially great possibilities in the submicron region. Therefore, electron and ion beam technologies will most probably playa very important role in the next twenty years or so. Many books have been published on different aspects of the theory and applications of electron and ion optics. This one is intended to be a self-contained, systematic and up-lo-date introduction to the field. The reader can find the derivation of the most essential relationships, the understanding of which is absolutely necessary to do any meaningful work with particle beams and optics, but which are usually presented without proof in most books. Modern computer methods are especially emphasized. The book can serve as a textbook for engineers, scientists, and graduate students who wish to understand the basic principles of electron and ion optics and apply them to the design and/or operation of beamtype devices and instruments. The author is well aware of the fact that it is not easy to reach these goals. One volume is hardly adequate even to cover the theoretical foundations and most important applications. Therefore, the treatment is restricted to the presentation of the basics and the most recent results of research, including the author's own. Throughout the book the relevance of the presented material to practical applications is emphasized, but no attempt has been made to review the applications themselves. We have given over 400 basic references, including vii

7 viii PREFACE publications that report on recent developments in the field. Owing to limitations of space, the list of references is very far from being complete. To study this book no previous acquaintance with physical electronics is required. The necessary introductory information is presented in Chapter 1. The theoretical material is derived from basic principles. Because of the mathematical nature of the subject, however, a thorough knowledge of calculus (including vector calculus) is presupposed. The author has been working in this field since It was a great joy for me to be able to sit down and summarize the basics of my knowledge in the present volume. This knowledge has been accumulated in the course of interaction with numerous people. I am especially greatful to Professors V. M. Kelman, S. Ya. Yavor, and A. D. Sushkov and to the memory of the unforgettable Dennis Gabor. My research work in the last three years has been supported by the National Science Foundation. I appreciate the continuous support of Dean T. Triffet of the University of Arizona, the inspiration of the editors of this series, and the highquality work of Plenum Press. The book would have never been completed without the encouragement, patience, and love of my family. Tucson, Arizona Miklos Szilagyi

8 Contents CHAPTER 1. Introductory Survey 1-1. Introduction Electromagnetic Fields Maxwell's Equations Static Fields Stokes's Theorem Some Basic Classical Mechanics Hamilton's Principle; The Lagrangian Equations of Motion The Maupertuis Principle A Little Reminder of Geometrical Optics Fermat's Principle; The Index of Refraction Axially Symmetric Lenses Summary CHAPTER 2. Motion of Charged Particles in Electric and Magnetic Fields 2-1. The Lagrangian Conservation of Energy Motion of Free Particles; Velocity versus Potential The Equations of Motion The Trajectory Equations The Relativistic Potential The Electron Optical Index of Refraction Particles in Homogeneous Fields The Parallel-Plate Capacitor Electrostatic Deflection A Simple Velocity Analyzer Homogeneous Magnetic Field Long Magnetic Lens Magnetic Deflection The Simultaneous Action of Homogeneous Electric and Magnetic Fields Mass Analysis and Other Applications ix

9 x CONTENTS 2-8. Scaling Laws Summary CHAPTER 3. Determination of Electric and Magnetic Fields 3-1. Analytical Methods Series Expansions of Potentials and Fields ~ Planar Fields Axially Symmetric Fields Multipole Fields Analytical Calculation of Axially Symmetric Potential Fields Separation of Variables Difficulties of Analytical Calculations (Electrostatic Field of Two Equidiameter Cylinders) Field of a Circular Aperture Rapid Evaluation of Fields Produced by Two or More Circular Apertures Analytical Calculation of M ultipole Fields Short Multipoles Long Multipoles Ideal Multipoles The Method of Conformal Transformation On the Role of Magnetic Materials Analytical Calculation of Magnetic Fields Produced by Currents The Biot-Savart Law Field of a Straight Wire Field of a Circular Loop Field of a Thin Solenoid Field of a Multilayer Coil Field of a Pancake Coil Measurement of Fields and Analog Methods Measurement of Magnetic Fields Electromagnetic Induction Hall Effect Permalloy and Bismuth Probes Magnetic Resonance Analog Methods The Electrolytic Tank The Resistor Network Other Analog Methods Numerical Methods Accuracy Errors Due to the Nature of the Problem Errors Due to the Number Representation in the Computer Errors Due to the Numerical Method The Finite-Difference Method Methods of Solution for Systems of Algebraic Equations. 128

10 CONTENTS xi The Finite-Element Method The Charge-Density (Integral) Method Numerical Differentiation and Interpolation Differentiation Lagrange Interpolation The Interpolating Pulse The Cubic Spline Summary CHAPTER 4. Focusing With Axially Symmetric Fields 4-1. Busch's Theorem The General Trajectory Equation The Paraxial Ray Equation Image Formation by Paraxial Rays The Helmholtz-Lagrange Formula Cardinal Elements Asymptotic Cardinal Elements Electron and Ion Lenses Systems of Lenses The Transfer Matrix Combination of Two Thick Lenses The Thin-Lens Approximation Combination of Thin Lenses Examples of Paraxial Focusing Paraxial Trajectories in Homogeneous Fields Homogeneous Electrostatic Field Skew Rays Homogeneous Magnetic Field The Single-Loop Magnetic Lens Lens Systems Telescopic System Magnification of Lens Systems Summary CHAPTER 5. The Theory of Aberrations 5-1. The Method of Characteristic Functions Geometrical Aberrations Spherical Aberration Zero and Infinite Magnifications Alternative Forms of the Spherical Aberration Coefficient Scherzer's Theorem The Disk of Minimum Confusion Astigmatism Curvature of Field Distortion

11 xii CONTENTS Coma Anisotropic Aberrations Anisotropic Astigmatism Anisotropic Distortion Anisotropic Coma On the Relative Importance of the Different Geometrical Aberrations Chromatic Aberration Axial Chromatic Aberration Zero and Infinite Magnifications The Upper Limit of the Axial Chromatic Aberration Chromatic Aberration of Magnification Anisotropic Chromatic Aberration Magnetic Chromatic Aberration Asymptotic Aberrations The Dependence of the Asymptotic Aberration Coefficients on the Magnification Polynomial Expression for the Asymptotic ~Spherical Aberration Coefficient Polynomial Expression for the Asymptotic Axial Chromatic Aberration Coefficient Aberrations of Thin Lenses Spherical Aberration Axial Chromatic Aberration Aberrations of Lens Combinations Addition of Spherical Aberrations Addition of Axial Chromatic Aberrations Other Sources of Aberrations and Aberration Correction Diffraction Space Charge and Surface Charges High-Frequency Fields Lack of Axial Symmetry Other Methods of Correction Coaxial Lenses Symmetric Trajectories Position of the Limiting Aperture Digital Image Processing Synthesis On the Measurement of Aberrations Brightness Simultaneous Action of Different Aberrations Negligibly Small Sources Finite Sources Negligible Chromatic Aberration Negligible Spherical Aberration Aberration Mixing for Lens Combinations Figures of Merit Summary

12 CONTENTS xiii CHAPTER 6. Numerical Techniques for Ray Tracing and Calculation of Aberrations 6-1. Analytical Models Numerical Ray Tracing The Runge-Kutta Method Multistep Methods Numerov's Method Additional Remarks on Accuracy Numerical Calculation of Aberration Integrals Trapezoidal Integration Simpson's Rule Romberg Integration and the Gaussian Quadrature Summary CHAPTER 7. Electrostatic Lenses 7-1. General Properties and Relationships Electrostatic Lens Models Analytical Models The Piecewise Linear Model The Piecewise Quadratic Model The Spline Model Two-Electrode Immersion Lenses Geometrically Symmetric Lenses A Linear Model An Analytical Model The Two-Cylinder Lens The Double-Aperture Lens Polynomial Lenses Asymmetric Lenses Analytical Models The Asymmetric Two-Cylinder Lens A Hybrid Lens Unipotential Lenses Symmetric Lenses A Piecewise Linear Model A Piecewise Quadratic Model An Analytical Model The Three-Cylinder Lens The Triple-Aperture Lens Other Types of Symmetric Lenses Asymmetric Lenses Three-Electrode Immersion Lenses Geometrically Symmetric Lenses The Three-Cylinder Lens Other Types of Geometrically Symmetric Lenses Asymmetric Lenses

13 xiv CONTENTS 7-6. Multielectrode Lenses Four-Electrode Lenses Lenses with Five or More Electrodes Spline Lenses Comparison of Different Electrostatic Lenses Lenses Immersed in Fields The Exponential Model The Single-Aperture Lens Cathode Lenses, Electron and Ion Sources Thermionic Guns Field-Emission Guns Ion Sources Summary CHAPTER 8. Magnetic Lenses 8-1. General Properties and Relationships Long Lenses Homogeneous Magnetic Fields Linear Magnetic Fields Long Lenses with Low Spherical Aberration Magnetic Lens Models The Rectangular Model The Step-Function Model The Piecewise Linear Model The Spline Model Glaser's Bell-Shaped Model l. Generalization of the Bell-Shaped Model The Grivet-Lenz Model Other Models Short Lenses l. Conventional Lenses Unconventional Lenses l. Superconducting Lenses Reduction of the Coil Size by Other Means Rotation-Free Miniature Lenses Iron-Free Magnetic Lenses Single Pole-Piece Lenses Summary CHAPTER 9. Computer-Aided Optimization and Synthesis of Electron and Ion Lenses 9-l. Is Aberrationless Electron/Ion Optics Possible? l. The Lower Limit of the Axial Chromatic Aberration of Magnetic Lenses Optimization: Synthesis versus Analysis

14 CONTENTS xv 9-3. Early Attempts of Synthesis Calculus of Variations The Lower Limits of the Spherical and Axial Chromatic Aberration Coefficients Dynamic Programming Optimal Control Procedure Analytical Functions Reconstruction of Electrodes and Pole Pieces from the Optimized Axial Field Distributions Polynomial and Spline Lenses Polynomial Lenses Spline Lenses Two-Interval Spline Lenses The Synthesis Procedure Application: Unconventional Electrostatic Lenses Artificial Intelligence Techniques Summary CHAPTER 10. Multipole Lenses The Fields of Multipole Lenses The Paraxial Ray Equations Image Formation by Paraxial Rays Systems of Quadrupoles Transfer Matrices Thin-Lens Representation Doublets Triplets Multiplets Beam Matching Aberrations of Multipole Lenses Geometrical Aberrations Correction of Aberrations by Means of Multipoles Chromatic Aberration O-5-3-l. The Achromatic Quadrupole Lens Summary CHAPTER 11. Beam Deflection Deflection for Scanning Electrostatic Deflection Fields Magnetic Deflection Fields Stigmatic Imaging with Small Deflection Deflection Aberrations Electrostatic and Magnetic Prisms l. Electrostatic Prisms Magnetic Prisms

15 xvi CONTENTS New Symmetries-New Possibilities Summary CHAPTER 12. High-Intensity Beams Space-Charge Optics Space-Charge Forces The Electrostatic Force The Magnetic Force Beam Spreading Production of High-Intensity Beams Space-Charge Flow The Pierce Gun Maintenance of High-Intensity Beams Focusing by Homogeneous Magnetic Fields Periodic Focusing The Boersch Effect Summary References Index

Principles of Electron Optics

Principles of Electron Optics Principles of Electron Optics Volume 2 Applied Geometrical Optics by P. W. HAWKES CNRS Laboratory of Electron Optics, Toulouse, France and E. KASPER Institut für Angewandte Physik Universität Tübingen,

More information

Principles of Electron Optics

Principles of Electron Optics Principles of Electron Optics Volume 1 Basic Geometrical Optics by P. W. HAWKES CNRS Laboratory of Electron Optics, Toulouse, France and E. KASPER Institut für Angewandte Physik Universität Tübingen, Federal

More information

Computations on Gabor lens having two different field distributions

Computations on Gabor lens having two different field distributions IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 6, Issue 6 Ver. II (Nov.-Dec. 2014), PP 06-11 Computations on Gabor lens having two different field distributions Saif KamilShnain Department

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Chemistry by Computer. An Overview of the Applications of Computers in Chemistry

Chemistry by Computer. An Overview of the Applications of Computers in Chemistry Chemistry by Computer An Overview of the Applications of Computers in Chemistry Chemistry by Computer An Overview of the Applications of Computers in Chemistry Stephen Wilson Theoretical Chemistry Department

More information

Physical Principles of Electron Microscopy. 2. Electron Optics

Physical Principles of Electron Microscopy. 2. Electron Optics Physical Principles of Electron Microscopy 2. Electron Optics Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca Properties

More information

Liquid Chromatography Mass Spectrometry. Techniques and Applications

Liquid Chromatography Mass Spectrometry. Techniques and Applications Liquid Chromatography Mass Spectrometry Techniques and Applications MODERN ANALYTICAL CHEMISTRY Series Editor: David Hercules University of Pittsburgh ANALYTICAL ATOMIC SPECTROSCOPY William G. Schrenk

More information

ELECTROMAGNETISM. Volume 2. Applications Magnetic Diffusion and Electromagnetic Waves ASHUTOSH PRAMANIK

ELECTROMAGNETISM. Volume 2. Applications Magnetic Diffusion and Electromagnetic Waves ASHUTOSH PRAMANIK ELECTROMAGNETISM Volume 2 Applications Magnetic Diffusion and Electromagnetic Waves ASHUTOSH PRAMANIK Professor Emeritus, College of Engineering, Pune Formerly of Corporate Research and Development Division,

More information

OAKTON COMMUNITY COLLEGE COURSE SYLLABUS. I. Course Course Course Prefix Number Name Credit: Lecture Lab. PHY 132 College Physics II 4 3 2

OAKTON COMMUNITY COLLEGE COURSE SYLLABUS. I. Course Course Course Prefix Number Name Credit: Lecture Lab. PHY 132 College Physics II 4 3 2 OAKTON COMMUNITY COLLEGE COURSE SYLLABUS I. Course Course Course Prefix Number Name Credit: Lecture Lab PHY 132 College Physics II 4 3 2 II. Prerequisites: PHY 131 III. Course (catalog) Description: Course

More information

Expert system of single magnetic lens using JESS in Focused Ion Beam

Expert system of single magnetic lens using JESS in Focused Ion Beam Expert system of single magnetic lens using JESS in Focused Ion Beam Fadhil A. Ali Oklahoma State University Electrical and Computer Engineering Department 39 S. University place Apt.11, Stillwater,OK

More information

Circuit Analysis for Power Engineering Handbook

Circuit Analysis for Power Engineering Handbook Circuit Analysis for Power Engineering Handbook Circuit Analysis for Power Engineering Handbook Arieh L. Shenkman SPRINGER SCIENCE+BUSINESS MEDIA, B.V A c.i.p. Catalogue record for this book is available

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR ENGINEERING PHYSICS II PHS4561 5 Credit Hours Student Level: This course is open to students on the college level in the freshman

More information

The Fractional Fourier Transform with Applications in Optics and Signal Processing

The Fractional Fourier Transform with Applications in Optics and Signal Processing * The Fractional Fourier Transform with Applications in Optics and Signal Processing Haldun M. Ozaktas Bilkent University, Ankara, Turkey Zeev Zalevsky Tel Aviv University, Tel Aviv, Israel M. Alper Kutay

More information

Physics For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight

Physics For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight To the Advanced Placement Topics for C *Advanced Placement, Advanced Placement Program, AP, and Pre-AP are registered

More information

BLUE-PRINT II XII Physics

BLUE-PRINT II XII Physics BLUE-PRINT II XII Physics S.No. UNIT VSA SA I SA II LA Total (1 Mark) (2 Marks) (3Marks) (5 Marks) 1. Electrostatics 1(1) 4(2) 3(1) - 8(4) 2. Current Electricity - 2(1) - 5(1) 7(2) 3. Magnetic Effect of

More information

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched Introduction p. xvii Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched String p. 16 Velocities of Mechanical

More information

Physics of Classical Electromagnetism

Physics of Classical Electromagnetism Physics of Classical Electromagnetism Minoru Fujimoto Physics of Classical Electromagnetism Minoru Fujimoto Department of Physics University of Guelph Guelph, Ontario Canada, N1G 2W1 Library of Congress

More information

Electromagnetism PATHS TO RESEARCH

Electromagnetism PATHS TO RESEARCH Electromagnetism PATHS TO RESEARCH Electromagnetism PATHS TO RESEARCH Edited by DORIS TEPLITZ SPRINGER SCIENCE+BUSINESS MEDIA, LLC Main entry under title: Library of Congress Cataloging in Publication

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Nonlinear Parabolic and Elliptic Equations

Nonlinear Parabolic and Elliptic Equations Nonlinear Parabolic and Elliptic Equations Nonlinear Parabolic and Elliptic Equations c. V. Pao North Carolina State University Raleigh, North Carolina Plenum Press New York and London Library of Congress

More information

PHYSICS Course Structure Units Topics Marks Electrostatics Current Electricity III Magnetic Effect of Current & Magnetism

PHYSICS Course Structure Units Topics Marks Electrostatics Current Electricity III Magnetic Effect of Current & Magnetism PHYSICS Course Structure Units Topics Marks I Chapter 1 Chapter 2 II Chapter 3 III Chapter 4 Chapter 5 IV Chapter 6 Chapter 7 V Chapter 8 VI Chapter 9 Electrostatics Electric Charges and Fields Electrostatic

More information

1000 Solved Problems in Classical Physics

1000 Solved Problems in Classical Physics 1000 Solved Problems in Classical Physics Ahmad A. Kamal 1000 Solved Problems in Classical Physics An Exercise Book 123 Dr. Ahmad A. Kamal Silversprings Lane 425 75094 Murphy Texas USA anwarakamal@yahoo.com

More information

Outline of College Physics OpenStax Book

Outline of College Physics OpenStax Book Outline of College Physics OpenStax Book Taken from the online version of the book Dec. 27, 2017 18. Electric Charge and Electric Field 18.1. Static Electricity and Charge: Conservation of Charge Define

More information

Optimal Estimation in Approximation Theory

Optimal Estimation in Approximation Theory Optimal Estimation in Approximation Theory THE IBM RESEARCH SYMPOSIA SERIES Computational Methods in Band Theory Editors: P.M. Marcus, J.F. Janak, and A.R. Williams Computational Solid State Physics Editors:

More information

Electrochemical Process Engineering. A Guide to the Design of Electrolytic Plant

Electrochemical Process Engineering. A Guide to the Design of Electrolytic Plant Electrochemical Process Engineering A Guide to the Design of Electrolytic Plant Electrochemical Process Engineering A Guide to the Design of Electrolytic Plant F. Goodridge and K. Scott University of Newcastle

More information

Mineral Area College FALL credit hours

Mineral Area College FALL credit hours GENERAL PHYSICS II PHS2240 AA01 Mineral Area College FALL 2014 4 credit hours Instructor: Dr. George Saum Office Hours: 11:00-12:00 M W F 10:00 11:00 T R Office: TC223A or Physics Lab TC223 Phone: 573-518-2174

More information

For more sample papers visit :

For more sample papers visit : PHYSICS (THEORY) (Three hours) For more sample papers visit : www.4ono.com Answer all questions in Part I and six questions from Part II, choosing two questions from each of the Sections A, B and C. All

More information

Miami Dade College. PHY Physics with Applications

Miami Dade College. PHY Physics with Applications Miami Dade College PHY 1005 - Physics with Applications PHY 1005 3 credits Course Description PHY 1005, Physics with Applications, is the second semester of a two semester physics without calculus sequence.

More information

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION SAMPLE PAPER 04 (2017-18) SUBJECT: PHYSICS (043) BLUE PRINT : CLASS XII UNIT VSA (1 mark) SA - I (2 marks) SA II (3 marks) VBQ (4 marks) LA (5 marks) Total

More information

COSSERAT THEORIES: SHELLS, RODS AND POINTS

COSSERAT THEORIES: SHELLS, RODS AND POINTS COSSERAT THEORIES: SHELLS, RODS AND POINTS SOLID MECHANICS AND ITS APPLICATIONS Volume 79 Series Editor: G.M.L. GLADWELL Department of Civil Engineering University of Waterloo Waterloo, Ontario, Canada

More information

Second Edition. Fundamentals of. Optics. Devraj Singh

Second Edition. Fundamentals of. Optics. Devraj Singh Second Edition Fundamentals of Optics Devraj Singh Fundamentals of Optics SECOND EDITION DEVRAJ SINGH Assistant Professor and Head Department of Applied Physics Amity School of Engineering and Technology

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1 David Buckley, SAAO 24 Feb 2012 NASSP OT1: Telescopes I-1 1 What Do Telescopes Do? They collect light They form images of distant objects The images are analyzed by instruments The human eye Photographic

More information

Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition

Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the

More information

Modeling and Analysis of Aberrations in Electron Beam Melting (EBM) Systems

Modeling and Analysis of Aberrations in Electron Beam Melting (EBM) Systems Modeling and Analysis of Aberrations in Electron Beam Melting (EBM) Systems Armin Azhirnian 1, David Svensson 2 1 Chalmers University of Technology, Gothenburg, Sweden 2 Arcam AB, Mölndal, Sweden Abstract

More information

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 CLASS: XII AISSCE 2016 Subject: Physics EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 Q3 Section A ( 1 Mark ) A force F is acting between two charges placed some distances apart in vacuum. If a brass

More information

For more sample papers visit :

For more sample papers visit : For more sample papers visit : www.4ono.com PHYSCS Paper 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time)

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

GOVIND VIDYALAYA TAMULIA XII PHYSICS

GOVIND VIDYALAYA TAMULIA XII PHYSICS GOVIND VIDYALAYA TAMULIA XII PHYSICS Time : 3 Hours Max. Marks : 70 General Instructions (a) All questions are compulsory. (b) There are 30 questions in total. Questions 1 to 8 carry one mark each, questions

More information

With Modern Physics For Scientists and Engineers

With Modern Physics For Scientists and Engineers With Modern Physics For Scientists and Engineers Third Edition Richard Wolfson Middlebury College Jay M. Pasachoff Williams College ^ADDISON-WESLEY An imprint of Addison Wesley Longman, Inc. Reading, Massachusetts

More information

Mathematics for Chemists

Mathematics for Chemists Mathematics for Chemists MATHEMATICS FOR CHEMISTS D. M. Hirst Department of Molecular Sciences, university of Warwick, Coventry M D. M. Hirst 1976 All rights reserved. No part of this publication may be

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM THIRD EDITION ELECTRICITY AND MAGNETISM EDWARD M. PURCELL DAVID J. MORIN Harvard University, Massachusetts Щ CAMBRIDGE Ell UNIVERSITY PRESS Preface to the third edition of Volume 2 XIII CONTENTS Preface

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Principles of Charged Particle Acceleration

Principles of Charged Particle Acceleration Principles of Charged Particle Acceleration Stanley Humphries, Jr. Department of Electrical and Computer Engineering University of New Mexico Albuquerque, New Mexico (Originally published by John Wiley

More information

Mathematics for Economics

Mathematics for Economics Mathematics for Economics third edition Michael Hoy John Livernois Chris McKenna Ray Rees Thanasis Stengos The MIT Press Cambridge, Massachusetts London, England c 2011 Massachusetts Institute of Technology

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr SET: 1 General Instructions:- DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry

More information

XXXXXXXXXXXXXXX. First Pre-Board Examination, Physics

XXXXXXXXXXXXXXX. First Pre-Board Examination, Physics Series SSO Code No. 55/1/B Roll No. Candidates must write the code on the title page of the answer book General Instructions: Please check that this question paper contains 6 printed pages. Code number

More information

Numerical Methods with MATLAB

Numerical Methods with MATLAB Numerical Methods with MATLAB A Resource for Scientists and Engineers G. J. BÖRSE Lehigh University PWS Publishing Company I(T)P AN!NTERNATIONAL THOMSON PUBLISHING COMPANY Boston Albany Bonn Cincinnati

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields and Forces Fundamentally they do not exist If we had special relativity we would find there is no such thing as a magnetic field. It is only a relativistic transformation

More information

SUBJECT & PEDAGOGICAL CONTENT STANDARDS FOR PHYSICS TEACHERS (GRADES 9-10)

SUBJECT & PEDAGOGICAL CONTENT STANDARDS FOR PHYSICS TEACHERS (GRADES 9-10) SUBJECT & PEDAGOGICAL CONTENT STANDARDS FOR PHYSICS TEACHERS (GRADES 9-10) JULY 2014 2 P a g e 1) Standard 1: Content Knowledge for Grade 9-10 Physics Teacher Understands Models and Scales G9-10PS1.E1.1)

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11 Preface Foreword Acknowledgment xvi xviii xix 1 Basic Equations 1 1.1 The Maxwell Equations 1 1.1.1 Boundary Conditions at Interfaces 4 1.1.2 Energy Conservation and Poynting s Theorem 9 1.2 Constitutive

More information

THEORY OF PLASMAS TEORIYA PLAZMY. TEOPMH lljla3mbi

THEORY OF PLASMAS TEORIYA PLAZMY. TEOPMH lljla3mbi THEORY OF PLASMAS TEORIYA PLAZMY TEOPMH lljla3mbi The Lebedev Physics Institute Series Editors: Academicians D. V. Skobel'tsyn and N. G. Basov P. N. Lebedev Physics Institute, Academy of Sciences of the

More information

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants. PHYSICS 253 SAMPLE FINAL EXAM Name Student Number CHECK ONE: Instructor 1 10:00 Instructor 2 1:00 Note that problems 1-19 are worth 2 points each, while problem 20 is worth 15 points and problems 21 and

More information

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co.

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co. Frank Y. Wang Physics with MAPLE The Computer Algebra Resource for Mathematical Methods in Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA k Preface Guide for Users Bibliography XI XVII XIX 1 Introduction

More information

CLASSICAL ELECTRICITY

CLASSICAL ELECTRICITY CLASSICAL ELECTRICITY AND MAGNETISM by WOLFGANG K. H. PANOFSKY Stanford University and MELBA PHILLIPS Washington University SECOND EDITION ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Physics 202 Final Exam Dec 20nd, 2011

Physics 202 Final Exam Dec 20nd, 2011 Physics 202 Final Exam Dec 20nd, 2011 Name: Student ID: Section: TA (please circle): Daniel Crow Scott Douglas Yutao Gong Taylor Klaus Aaron Levine Andrew Loveridge Jason Milhone Hojin Yoo Instructions:

More information

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140 Welcome to PHY2054C Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140 Book: Physics 8 ed. by Cutnell & Johnson, Volume 2 and PHY2054 Lab manual for your labs. One Midterm (July 14) and final

More information

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. 2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 21-1 What Is Physics? 21-2

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

PHY2054 Summer 2017 Final ExamVersion 2

PHY2054 Summer 2017 Final ExamVersion 2 PHY2054 Summer 2017 Final ExamVersion 2 MULTIPLE CHOICE. Please answer all questions by choosing the one alternative that best completes the statement or answers the question. 1) When two or more capacitors

More information

PHY2054 Summer 2017 Final ExamVersion 1

PHY2054 Summer 2017 Final ExamVersion 1 PHY2054 Summer 2017 Final ExamVersion 1 MULTIPLE CHOICE. Please answer all questions by choosing the one alternative that best completes the statement or answers the question. 1) In the figure below, a

More information

Volume 8 APPLIED PHYSICS AND ENGINEERING An International Series. Arc Physics

Volume 8 APPLIED PHYSICS AND ENGINEERING An International Series. Arc Physics Volume 8 APPLIED PHYSICS AND ENGINEERING An International Series Arc Physics Arc Physics Max F. Hoyaux Associate Professor, University of Pittsburgh Consultant, Westinghouse Electric Corporation Adjunct

More information

QUANTUM MECHANICS. For Electrical Engineers. Quantum Mechanics Downloaded from

QUANTUM MECHANICS. For Electrical Engineers. Quantum Mechanics Downloaded from Quantum Mechanics Downloaded from www.worldscientific.com QUANTUM MECHANICS For Electrical Engineers Quantum Mechanics Downloaded from www.worldscientific.com This page intentionally left blank Quantum

More information

Chapter 1: Electrostatics

Chapter 1: Electrostatics 1.1 Coulomb s law a) State Coulomb s law, Chapter 1: Electrostatics b) Sketch the electric force diagram and apply Coulomb s law for a system of point charges. 1.2 Electric field a) Define and use electric

More information

THE BOUNDARY ELEMENT METHOD

THE BOUNDARY ELEMENT METHOD THE BOUNDARY ELEMENT METHOD SOLID MECHANICS AND ITS APPLICATIONS Volume 27 Series Editor: G.M.L. GLADWELL Solid Mechanics Division, Faculty of Engineering University of Waterloo Waterloo, Ontario, Canada

More information

PHYSICS. Paper 1 (THEORY) Three hours and a quarter

PHYSICS. Paper 1 (THEORY) Three hours and a quarter PHYSICS Paper 1 (THEORY) Three hours and a quarter (The first 15 minutes of the examination are for reading the paper only. Candidates must NOT start writing during this time). -------------------------------------------------------------------

More information

ION-SELECTIVE ELECTRODES IN ANALYTICAL CHEMISTRY VOLUME 2

ION-SELECTIVE ELECTRODES IN ANALYTICAL CHEMISTRY VOLUME 2 ION-SELECTIVE ELECTRODES IN ANALYTICAL CHEMISTRY VOLUME 2 MODERN ANALYTICAL CHEMISTRY Series Editor: David Hercules University of Pittsburgh ANALYTICAL ATOMIC SPECTROSCOPY By William G. Schrenk PHOTOELECTRON

More information

SCIENCE DEPT CHAIR: Mr. Scheidt AS 212B

SCIENCE DEPT CHAIR: Mr. Scheidt AS 212B PHS224 GENERAL PHYSICS II 4 HOURS CREDIT SEMESTER: FALL 2009 INSTRUCTOR: Dr. George Saum Office: Room 16 A & S Bldg. Phone: 573-518-2174 Lab: A & S 112 Office Hours:: 12:00 MTWF 10:00 R SCIENCE DEPT CHAIR:

More information

Electron beam scanning

Electron beam scanning Electron beam scanning The Electron beam scanning operates through an electro-optical system which has the task of deflecting the beam Synchronously with cathode ray tube which create the image, beam moves

More information

Reconstructed Polepieces to the Objective Magnetic Lens Depending on Some Geometrical and Physical Parameters

Reconstructed Polepieces to the Objective Magnetic Lens Depending on Some Geometrical and Physical Parameters Reconstructed Polepieces to the Objective Magnetic Lens Depending on Some Geometrical and Physical Parameters Abstract Wasan J. Kadhem* Department of Applied Science, Faculty of Engineering Technology,

More information

OPTICS. Learning by Computing, with Examples Using Mathcad, Matlab, Mathematica, and Maple. K.D. Möller. Second Edition. With 308 Illustrations

OPTICS. Learning by Computing, with Examples Using Mathcad, Matlab, Mathematica, and Maple. K.D. Möller. Second Edition. With 308 Illustrations Optics OPTICS Learning by Computing, with Examples Using Mathcad, Matlab, Mathematica, and Maple Second Edition K.D. Möller With 308 Illustrations Includes CD-ROM With Mathcad Matlab Mathematica 123 K.D.

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

Topics in Number Theory

Topics in Number Theory Topics in Number Theory THE UNIVERSITY SERIES IN MATHEMATICS Series Editor: Joseph J. Kohn Princeton University THE CLASSIFICATION OF FINITE SIMPLE GROUPS Daniel Gorenstein VOLUME 1: GROUPS OF NONCHARACTERISTIC

More information

A FIRST COURSE IN INTEGRAL EQUATIONS

A FIRST COURSE IN INTEGRAL EQUATIONS A FIRST COURSE IN INTEGRAL EQUATIONS This page is intentionally left blank A FIRST COURSE IN INTEGRAL EQUATIONS Abdul-M ajid Wazwaz Saint Xavier University, USA lib World Scientific 1M^ Singapore New Jersey

More information

Physics of Light and Optics

Physics of Light and Optics Physics of Light and Optics Justin Peatross and Harold Stokes Brigham Young University Department of Physics and Astronomy All Publication Rights Reserved (2001) Revised April 2002 This project is supported

More information

PH2200 Practice Final Exam Summer 2003

PH2200 Practice Final Exam Summer 2003 INSTRUCTIONS 1. Write your name and student identification number on the answer sheet. 2. Please cover your answer sheet at all times. 3. This is a closed book exam. You may use the PH2200 formula sheet

More information

An Introduction to Surface-Micromachining

An Introduction to Surface-Micromachining An Introduction to Surface-Micromachining An Introduction to S urface-micromachining by Robert W. Johnstone M. Parameswaran Engineering Science Simon Fraser University Kluwer Academic Publishers Boston/DordrechtiLondon

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics MICRODEVICES Physics and Fabrication Technologies Series Editors: Ivor Brodie and Julius J. Murayt SRI International Menlo Park, California ELECTRON AND ION OPTICS Miklos

More information

MARKING SCHEME SET 55/1/MT Q. No. Expected Answer / Value Points Marks Total Marks. Section A

MARKING SCHEME SET 55/1/MT Q. No. Expected Answer / Value Points Marks Total Marks. Section A MARKING SCHEME SET 55//MT Q. No. Expected Answer / Value Points Marks Total Marks Set,Q Set2,Q5 Set,Q4 Section A Set,Q2 Set2,Q4 Set,Q5 Set,Q Set2,Q2 Set,Q Set,Q4 Set2,Q Set,Q2 Set,Q5 Set2,Q Set,Q Set,Q6

More information

PHYSICS ORDINARY LEVEL

PHYSICS ORDINARY LEVEL *B16* PRE-LEAVING CERTIFICATE EXAMINATION, 2011 PHYSICS ORDINARY LEVEL TIME: 3 HOURS Answer three questions from section A and five questions from section B. Page 1 of 10 SECTION A (120 marks) Answer three

More information

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS Astronomical Optics Second Edition DANIEL J. SCHROEDER Professor of Physics and Astronomy, Emeritus Department of Physics and Astronomy Beloit College, Beloit, Wisconsin ACADEMIC PRESS A Harcourt Science

More information

Physics for Scientists and Engineers 4th Edition 2017

Physics for Scientists and Engineers 4th Edition 2017 A Correlation and Narrative Summary of Physics for Scientists and Engineers 4th Edition 2017 To the AP Physics C: Electricity and Magnetism Course Description AP is a trademark registered and/or owned

More information

Shallow Refraction Seismics

Shallow Refraction Seismics Shallow Refraction Seismics Series Editor D. S. Parasnis Professor of Applied Geophysics, University of Lulea, Sweden Fellow of the Royal Swedish Academy of Engineering Sciences Shallow Refraction Seismics

More information

Waves. Decibels. Chapter 21: Dimension

Waves. Decibels. Chapter 21: Dimension Chapter 20: 20.1 The Wave Model 20.2 One Dimensional 20.3 Sinusoidal 20.4 Sound Light 20.5 Index of Refraction 20.6 Power, Intensity, Decibels 20.7 The Doppler Effect Chapter 21: 21.1 The Principle of

More information

AP Physics C Electricity and Magnetism

AP Physics C Electricity and Magnetism AP Physics C Electricity and Magnetism Course overview This is a calculus based course in physics. The course is the equivalent of an introductory engineering course in Physics. The main objective of the

More information

Numerical Methods for Engineers

Numerical Methods for Engineers Numerical Methods for Engineers SEVENTH EDITION Steven C Chopra Berger Chair in Computing and Engineering Tufts University Raymond P. Canal Professor Emeritus of Civil Engineering of Michiaan University

More information

Collection of problems in probability theory

Collection of problems in probability theory Collection of problems in probability theory L. D. MESHALKIN Moscow State University Collection of problems in probability theory Translated from the Russian and edited by LEO F. BORON University of Idaho

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

Sample Question Paper. Class XII -Physics. (Applicable for March 2016 Examination) Time Allowed: 3 Hours Maximum Marks: 70

Sample Question Paper. Class XII -Physics. (Applicable for March 2016 Examination) Time Allowed: 3 Hours Maximum Marks: 70 Sample Question Paper Class XII -Physics (Applicable for March 2016 Examination) Time Allowed: 3 Hours Maximum Marks: 70 General Instructions 1. All questions are compulsory. There are 26 questions in

More information

TEACHING & EXAMINATION SCHEME For the Examination 2015 PHYSICS B.Sc. Part - I

TEACHING & EXAMINATION SCHEME For the Examination 2015 PHYSICS B.Sc. Part - I THEORY TEACHING & EXAMINATION SCHEME For the Examination 2015 PHYSICS B.Sc. Part - I Pd/W Exam. Max. (45mts.) Hours Marks 150 Phy.101 Paper I Mechanics 2 3 50 Phy.102 Paper II Optics 2 3 50 Phy.103 Paper

More information

METHODS OF THEORETICAL PHYSICS

METHODS OF THEORETICAL PHYSICS METHODS OF THEORETICAL PHYSICS Philip M. Morse PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Herman Feshbach PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY PART II: CHAPTERS 9

More information

Supramolecular Structure and Function

Supramolecular Structure and Function Supramolecular Structure and Function Supramolecular Structure and Function Edited by Greta Pifat Rudjer BoJkovitlnstitute Zagreb, Yugoslavia and Janko N. Herak University of Zagreb Zagreb, Yugoslavia

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Physics Summer 1996

Physics Summer 1996 http://physics.syr.edu/courses/phy212.96summer/ Syracuse University - Department of Physics Physics 212 - Summer 1996 Textbook: Halliday/Resnick/Walker. Fundamentals of Physics. Chapters 23-42. Scheduling

More information

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks Note: the 1st homework is simply signing the honor pledge (but still it is compulsory); the actual homework starts with #2. And, please sign

More information