AIBO experiences change of surface incline.

Size: px
Start display at page:

Download "AIBO experiences change of surface incline."

Transcription

1 NW Computational Intelligence Laboratory AIBO experiences change of surface incline. Decisions based only on kinesthetic experience vector ICNC 07, China 8/27/07 # 51

2 NW Computational Intelligence Laboratory AIBO experiences change of surface incline. Decisions based only on kinesthetic experience vector ICNC 07, China 8/27/07 # 52

3 CONCLUSION Conjecture that the proposed experience-based approach will usher in a whole new phase of development of the decision and controls fields making a significant stride toward the achievement of more human-like decision and control. Also conjecture that the context discernment concepts plus the manifolds representation will provide a basis for constructing learning agents capable of long term rapidly accessible memory. If so, this could pave the way for scaling neural systems to brain-like capabilities ICNC 07, China 8/27/07 # 53

4 Geometric Topology construct of manifolds provides a useful formalism: 1) a set of elements, S, and 2) a coordinate system (a one-to-one mapping from S to Rn that specifies each element in S via a vector of n real numbers, a.k.a. the coordinates of the element. We let the experience repository be the set portion of a manifold. The manifold s coordinate space serves as a searchable indexing vehicle for the repository. and since the coordinate space is R n, the Euclidean distance provides a natural metric for nearness.

5 Demonstration Example Let the manifold set be a collection of neural networks (NNs) generated via a NN whose structure is fixed, and its adjustable parameters (weights and biases) are made to take on all possible value combinations. Each such combination yields a distinct member of the set, and the parameter values may serve as the coordinates; a point in the coordinate space may be called the set element s address.

6 When the manifold s set are NNs, we use the label neural manifold Care is needed relative to two aspects: 1) while each coordinate point corresponds to a distinct NN instantiation, nevertheless, many such points may all perform the same mapping, and 2) the set of (distinct) mappings that can be performed by this set of NNs is typically just a subset of all possible mappings on the NN s input domain to its output range (called the NN s Performance Subset)

7 Mapping from Context Space to the policy manifold may in general be many-to-one (in the controls vocabulary, changes in the plant dynamics or in its environment do not necessarily imply a needed change in control policy).

8 The indexing schemas for both a plant and policy neural manifold may employ the weights of their respective set of NNs. So far so good. But, how does one go about crafting a mapping between, say, the plant manifold s coordinate space to that of the policy manifold? Clearly, such a mapping will be required for the Agent to select a policy based on information about the plant model. More generally, how does one craft an appropriate mapping from the full Context Space (whatever form of representation is employed) to the coordinate system of the policy manifold? The task of answering these questions is assigned to a Higher Level Learning Algorithm (HLLA) i.e., the answers are to be learned.

9 For another aspect of mappings, consider a linear plant example, and assume the plant transfer functions in the plant manifold are factored polynomials but the CF requirements are given in terms of an expanded polynomial representation (e.g., if requirements are given in terms of damping coefficient for a second order system). While the two representations are equivalent, the Agent would need a mapping between the two to accomplish the controller selection (e.g., via factoring the polynomial, or equivalently, multiplying out the factored polynomial). In the second order case, the notion of nearness in the CF sub-space would be in terms of the damping coefficient, whereas in the corresponding plant manifold coordinate space, nearness would be in terms of S-plane pole locations.

10 As an intuitive example of notions such as efficiency, nearness, and mappings, consider the example of a store that rents movie DVDs shelved alphabetically or by content type Which is more efficient for the customer depends on the customer s needs and knowledge.

11 Key exploration steps ahead: Refine and further develop ideas related to Context Discernment / System Identification thus far developed. Move into the Controller Selection aspect of the suggested EB Control method. Expand the exploration to multiple-level considerations.

12 Key exploration steps ahead (cont.): Provide one or more feasibility demonstrations in support of developing theory and techniques for populating the experience repositories progressing from the synthetic methods already demonstrated to more and more general ones.

13 Key exploration steps ahead (cont.): Formalize ideas about and develop demonstration experiments for incorporating application domain knowledge as repository constraints of a nature that facilitates the larger objectives of improved speed of access and good generalization.

14 Key exploration steps ahead (cont.): Formalize ideas about constructing and achieving needed mappings between components of Context and from Context to Repository, and develop demonstration examples useful for theory development. CONTEXT A. PLANT B. ENVIRONMENT C. CF CONTROL LAW REPOSITORY (EXPERIENCE)

15 Key exploration steps ahead (cont.): Further develop ideas related to multi-level aspects of EB Identification & Control, leading to a Context Space Hierarchy notion, and use the associated ideas as a guide in refining and further defining the HLLA concepts and training methods.

16 Key exploration steps ahead (cont.): Formalize and further develop the role of the human designer in providing higher level knowledge for crafting the RL process entailed in the HLLAs, particularly, designation of state variables and CF s specialized to the multi-level conceptualization. Develop demonstration examples for EB controls, similar to the successful demonstrations of the Context Discernment (systems identification) part of the EB process thus far accomplished.

17 QUESTIONS? OGI Talk 7/26/2006 # 67

18

19 Agent: computational intelligence device (that, in this paper, is to perform the acts of context discernment and selection, along with possible design refinement). Context Variables (Agent centric): those attributes of i) the environment and ii) the plant/process whose variations could engender changes to the decision rule / control policy employed by the Agent while accomplishing the Agent s current objective or goal; and in addition, iii) the criteria (representing the objective or goal) to be used for designing and subsequent selection of the decision rule or control law. [The term Criterion Function (CF) is used here to represent these criteria.] Context Space (Agent centric): a vector space in which each context variable is assigned to a dimension. The Context Space concept comprises three sub-spaces; one each associated with the i) Plant, ii) Environment, and iii) Criterion Function. Context (Agent centric): a point in Context Space; the set of values taken on by the context variables in a given situation. Context Awareness: the act of monitoring the application to take notice (become aware) that a change may be occurring in the Context. Context Discernment: the act or process of determining the current values of the context variables (current point in Context Space) appropriate to the task being performed. [Webster on-line for discern : to recognize or identify as separate and distinct.] Experience-Based approach: A two-component concept: Component A: Repository of previously developed context-specific models (controller or plant models), and Component B: Algorithms used by the Agent to effectively and efficiently select a model from the repository as changes in context occur. [Note: A key task of the Higher Level Learning Algorithm (defined below) is to train the Agent to learn Component B.]

20 Selection: the act of choosing/retrieving an appropriate element of the repository corresponding to the discerned context. Higher-Level Learning Algorithm (HLLA): The reference level for the term higher is the case where the learning algorithms are applied directly to the design of optimal controllers (as in Learning Control), ones that would be accumulated in the repository (c.f. Fig. 1). Higher-Level here means applying the learning method to create a strategy for selecting an appropriate controller from the repository, where the process of selection is optimized; thus, the focus of the learning process is at the next level up. Definition of the Utility function (a specific type of CF) is key for application of this process. Note: When the Contextual Hierarchy ideas mentioned in Section I are developed, more levels will be involved. World Space (Agent Centric): A vector space whose dimensions are associated to designated attributes of the Agent s relevant environment, its physical body, and the external CF. [Note: This definition is included for completeness. It is not explicitly used in this paper, but is used in related publications in terms of mappings from World Space to Context Space, e.g. [39].] Guidelines: Parametric models/equations are used to represent the Plant, Criterion Function (CF), and Environment (for the latter, measurements may serve as parameters w/o an explicit model). Construct (conceptually) a Parameter Space that comprises three sub-spaces: (Plant, Environment, CF). The associated parameters serve as Context variables for the discernment activity; Agent s Context Space may be a sub-space of Parameter Space. Controllers are also represented via parametric models.

21

22

23 To develop feel for the weight update rule in the Adaptive Critic, consider a partial block diagram and a little math (discrete time): R(t) Controller ( ) w ij u(t) R(t+1) J(t+1) PLANT Critic Desire a training Delta Rule for w ij to minimize cost-to-go J(t). Obtain this via J () t and w () t the chain rule of differentiation. ij ICNC 07, China 8/27/07 # 73

24 Family of Adaptive Critic Methods: The critic approximates either 1) J(t), Heuristic Dynamic Programming (HDP) (cf. Q Learning ) or 2) the gradient of J(t) wrt state vector R(t) [ J(R)], Dual Heuristic Programming (DHP) [ J(R(t)) λ(t)] [Today, focus on DHP] ICNC 07, China 8/27/07 # 74

25 Overview of Adaptive Critic method Control engineer provides the Design objectives / Criteria for success through a Utility Function, U(t) (local cost). Then, a new utility function is defined (Bellman Eqn.), J () t = γ U( t+ k) k = 0 k [ cost to go ] which is to be minimized [~ Dynamic Programming]. [We note: Jt () = Ut () + γ Jt ( + 1) Bellman Recursion] ICNC 07, China 8/27/07 # 75

26 The weights in controller NN are updated with objective of minimizing J(t): J () t Δ wij() t = lcoef w () t ij where and a J() t J() t uk () t = w () t u () t w ij k = 1 k ij J() t U() t J( t + 1) = + u () t u () t u () t k k k n J( t + 1) J( t + 1) Rs ( t + 1) and = uk() t s= 1 Rs( t + 1) uk() t Call this term λ ( 1) (to be output of critic) s t + ICNC 07, China 8/27/07 # 76

27 It follows that Controller training is based on: n Jt ( + 1) Ut ( ) Jt ( + 1) Rs ( t+ 1) = + u () t u () t R ( t+ 1) u () t k k s= 1 s k Via CRITIC Via Plant Model Similarly, Critic training is based on: n Jt () dut () Jt ( + 1) Rk( t+ 1) Rk( t+ 1) um( t) = + + Rs() t drs() t k= 1 Rk( t+ 1) Rs() t m um() t Rs() t Via Plant Model [Bellman Recursion & Chain Rule used in above.] Plant model is needed to calculate partial derivatives for DHP ICNC 07, China 8/27/07 # 77

28 Utility Functions for three Design Scenarios: [different combinations of above criteria] 1. U(1,2,3) 2. U(1,2,3,5) 3. U(1,2,3,4,5) All applied to task of designing controller for autonomous 2-axle terrestrial vehicle. ICNC 07, China 8/27/07 # 78

29 ICNC 07, China 8/27/07 # 79

30 ICNC 07, China 8/27/07 # 80

31 ICNC 07, China 8/27/07 # 81

32 Design Scenario 2. Add Criterion 5 ( friction sense ) in U2. This is intended to 1.) allow aggressive lane changes on dry pavement, and 2.) make lane changes on icy road conditions as aggressively as the icy road will allow. [This was our first foray into use of CONTEXT variable: this one via Utility function.] ICNC 07, China 8/27/07 # 82

33 ICNC 07, China 8/27/07 # 83

34 ICNC 07, China 8/27/07 # 84

35 Conclusions from Utility Function Expts. Controller Designs resulting via DHP satisfy intuitive sense of being good each looks and feels like one a human designer might have designed. Control Engineer knows that controller design requires careful specification of objective, and that as change design criteria, the controller changes. For DHP, control objectives are contained in the Utility Function. The DHP process embodied the different requirements for the three design scenarios in qualitatively distinct controllers -- all yielding intuitively good results, according to the design constraints. ICNC 07, China 8/27/07 # 85

Planning in Markov Decision Processes

Planning in Markov Decision Processes Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Planning in Markov Decision Processes Lecture 3, CMU 10703 Katerina Fragkiadaki Markov Decision Process (MDP) A Markov

More information

Classification Based on Logical Concept Analysis

Classification Based on Logical Concept Analysis Classification Based on Logical Concept Analysis Yan Zhao and Yiyu Yao Department of Computer Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 E-mail: {yanzhao, yyao}@cs.uregina.ca Abstract.

More information

8: Hidden Markov Models

8: Hidden Markov Models 8: Hidden Markov Models Machine Learning and Real-world Data Simone Teufel and Ann Copestake Computer Laboratory University of Cambridge Lent 2017 Last session: catchup 1 Research ideas from sentiment

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information

8: Hidden Markov Models

8: Hidden Markov Models 8: Hidden Markov Models Machine Learning and Real-world Data Helen Yannakoudakis 1 Computer Laboratory University of Cambridge Lent 2018 1 Based on slides created by Simone Teufel So far we ve looked at

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

(Deep) Reinforcement Learning

(Deep) Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 17 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Reinforcement Learning and Control

Reinforcement Learning and Control CS9 Lecture notes Andrew Ng Part XIII Reinforcement Learning and Control We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions?

Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions? Online Videos FERPA Sign waiver or sit on the sides or in the back Off camera question time before and after lecture Questions? Lecture 1, Slide 1 CS224d Deep NLP Lecture 4: Word Window Classification

More information

Lecture 4: Dynamic Programming

Lecture 4: Dynamic Programming Lecture 4: Dynamic Programming Fatih Guvenen January 10, 2016 Fatih Guvenen Lecture 4: Dynamic Programming January 10, 2016 1 / 30 Goal Solve V (k, z) =max c,k 0 u(c)+ E(V (k 0, z 0 ) z) c + k 0 =(1 +

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Linear Discriminant Functions

Linear Discriminant Functions Linear Discriminant Functions Linear discriminant functions and decision surfaces Definition It is a function that is a linear combination of the components of g() = t + 0 () here is the eight vector and

More information

Gary School Community Corporation Mathematics Department Unit Document. Unit Name: Polynomial Operations (Add & Sub)

Gary School Community Corporation Mathematics Department Unit Document. Unit Name: Polynomial Operations (Add & Sub) Gary School Community Corporation Mathematics Department Unit Document Unit Number: 1 Grade: Algebra 1 Unit Name: Polynomial Operations (Add & Sub) Duration of Unit: A1.RNE.7 Standards for Mathematical

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

Lecture 1: Dynamic Programming

Lecture 1: Dynamic Programming Lecture 1: Dynamic Programming Fatih Guvenen November 2, 2016 Fatih Guvenen Lecture 1: Dynamic Programming November 2, 2016 1 / 32 Goal Solve V (k, z) =max c,k 0 u(c)+ E(V (k 0, z 0 ) z) c + k 0 =(1 +

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Learning Control for Air Hockey Striking using Deep Reinforcement Learning

Learning Control for Air Hockey Striking using Deep Reinforcement Learning Learning Control for Air Hockey Striking using Deep Reinforcement Learning Ayal Taitler, Nahum Shimkin Faculty of Electrical Engineering Technion - Israel Institute of Technology May 8, 2017 A. Taitler,

More information

Chapter 6: Classification

Chapter 6: Classification Chapter 6: Classification 1) Introduction Classification problem, evaluation of classifiers, prediction 2) Bayesian Classifiers Bayes classifier, naive Bayes classifier, applications 3) Linear discriminant

More information

Experiments on the Consciousness Prior

Experiments on the Consciousness Prior Yoshua Bengio and William Fedus UNIVERSITÉ DE MONTRÉAL, MILA Abstract Experiments are proposed to explore a novel prior for representation learning, which can be combined with other priors in order to

More information

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4 Neural Networks Learning the network: Backprop 11-785, Fall 2018 Lecture 4 1 Recap: The MLP can represent any function The MLP can be constructed to represent anything But how do we construct it? 2 Recap:

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of

More information

Parking lot navigation. Experimental setup. Problem setup. Nice driving style. Page 1. CS 287: Advanced Robotics Fall 2009

Parking lot navigation. Experimental setup. Problem setup. Nice driving style. Page 1. CS 287: Advanced Robotics Fall 2009 Consider the following scenario: There are two envelopes, each of which has an unknown amount of money in it. You get to choose one of the envelopes. Given this is all you get to know, how should you choose?

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

Andrews Curtis Groups and the Andrews Curtis Conjecture

Andrews Curtis Groups and the Andrews Curtis Conjecture Andrews Curtis Groups and the Andrews Curtis Conjecture Adam Piggott adam.piggott@tufts.edu Tufts University p. 1/33 Credits and further info This work has appeared in the Journal of Group Theory 10 (2007)

More information

Algorithms for MDPs and Their Convergence

Algorithms for MDPs and Their Convergence MS&E338 Reinforcement Learning Lecture 2 - April 4 208 Algorithms for MDPs and Their Convergence Lecturer: Ben Van Roy Scribe: Matthew Creme and Kristen Kessel Bellman operators Recall from last lecture

More information

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009 AN INTRODUCTION TO NEURAL NETWORKS Scott Kuindersma November 12, 2009 SUPERVISED LEARNING We are given some training data: We must learn a function If y is discrete, we call it classification If it is

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller 2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks Todd W. Neller Machine Learning Learning is such an important part of what we consider "intelligence" that

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018

Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018 Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018 OpenAI OpenAI is a non-profit AI research company, discovering and enacting the path to safe artificial general intelligence. OpenAI OpenAI is a non-profit

More information

Prioritized Sweeping Converges to the Optimal Value Function

Prioritized Sweeping Converges to the Optimal Value Function Technical Report DCS-TR-631 Prioritized Sweeping Converges to the Optimal Value Function Lihong Li and Michael L. Littman {lihong,mlittman}@cs.rutgers.edu RL 3 Laboratory Department of Computer Science

More information

( t) Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks

( t) Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks Mehmet Önder Efe Electrical and Electronics Engineering Boðaziçi University, Bebek 80815, Istanbul,

More information

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))]

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))] Review: TD-Learning function TD-Learning(mdp) returns a policy Class #: Reinforcement Learning, II 8s S, U(s) =0 set start-state s s 0 choose action a, using -greedy policy based on U(s) U(s) U(s)+ [r

More information

Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil

Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil Charles W. Anderson 1, Douglas C. Hittle 2, Alon D. Katz 2, and R. Matt Kretchmar 1 1 Department of Computer Science Colorado

More information

MATH 320, WEEK 7: Matrices, Matrix Operations

MATH 320, WEEK 7: Matrices, Matrix Operations MATH 320, WEEK 7: Matrices, Matrix Operations 1 Matrices We have introduced ourselves to the notion of the grid-like coefficient matrix as a short-hand coefficient place-keeper for performing Gaussian

More information

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 25: Learning 4 Victor R. Lesser CMPSCI 683 Fall 2010 Final Exam Information Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res Ctr Rm A301 2 Hours but obviously you can leave early! Open Book

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

Approximate Q-Learning. Dan Weld / University of Washington

Approximate Q-Learning. Dan Weld / University of Washington Approximate Q-Learning Dan Weld / University of Washington [Many slides taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley materials available at http://ai.berkeley.edu.] Q Learning

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks Topics in Machine Learning-EE 5359 Neural Networks 1 The Perceptron Output: A perceptron is a function that maps D-dimensional vectors to real numbers. For notational convenience, we add a zero-th dimension

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module 2 Lecture 05 Linear Regression Good morning, welcome

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Information System Decomposition Quality

Information System Decomposition Quality Information System Decomposition Quality Dr. Nejmeddine Tagoug Computer Science Department Al Imam University, SA najmtagoug@yahoo.com ABSTRACT: Object-oriented design is becoming very popular in today

More information

transportation research in policy making for addressing mobility problems, infrastructure and functionality issues in urban areas. This study explored

transportation research in policy making for addressing mobility problems, infrastructure and functionality issues in urban areas. This study explored ABSTRACT: Demand supply system are the three core clusters of transportation research in policy making for addressing mobility problems, infrastructure and functionality issues in urban areas. This study

More information

A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems

A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems Daniel Meyer-Delius 1, Christian Plagemann 1, Georg von Wichert 2, Wendelin Feiten 2, Gisbert Lawitzky 2, and

More information

Affordances in Representing the Behaviour of Event-Based Systems

Affordances in Representing the Behaviour of Event-Based Systems Affordances in Representing the Behaviour of Event-Based Systems Fahim T. IMAM a,1, Thomas R. DEAN b a School of Computing, Queen s University, Canada b Department of Electrical and Computer Engineering,

More information

Machine Learning and Adaptive Systems. Lectures 3 & 4

Machine Learning and Adaptive Systems. Lectures 3 & 4 ECE656- Lectures 3 & 4, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2015 What is Learning? General Definition of Learning: Any change in the behavior or performance

More information

LRS Task Force June 13, REVISION HISTORY

LRS Task Force June 13, REVISION HISTORY North Carolina Department of Transportation Geographic Information Systems (GIS) Unit LINEAR REFERENCING SYSTEM (LRS) PROJECT DEFINITION Version 1.0 REVISION HISTORY Date Document Manager Revision Purpose

More information

NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach

NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach P.A. (Rama) Ramamoorthy Electrical & Computer Engineering and Comp. Science Dept., M.L. 30, University

More information

Dynamical Systems and Deep Learning: Overview. Abbas Edalat

Dynamical Systems and Deep Learning: Overview. Abbas Edalat Dynamical Systems and Deep Learning: Overview Abbas Edalat Dynamical Systems The notion of a dynamical system includes the following: A phase or state space, which may be continuous, e.g. the real line,

More information

Algorithms and Complexity theory

Algorithms and Complexity theory Algorithms and Complexity theory Thibaut Barthelemy Some slides kindly provided by Fabien Tricoire University of Vienna WS 2014 Outline 1 Algorithms Overview How to write an algorithm 2 Complexity theory

More information

Object Recognition Using a Neural Network and Invariant Zernike Features

Object Recognition Using a Neural Network and Invariant Zernike Features Object Recognition Using a Neural Network and Invariant Zernike Features Abstract : In this paper, a neural network (NN) based approach for translation, scale, and rotation invariant recognition of objects

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

Markov Chains. Chapter 16. Markov Chains - 1

Markov Chains. Chapter 16. Markov Chains - 1 Markov Chains Chapter 16 Markov Chains - 1 Why Study Markov Chains? Decision Analysis focuses on decision making in the face of uncertainty about one future event. However, many decisions need to consider

More information

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions BACK-PROPAGATION NETWORKS Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks Cannot approximate (learn) non-linear functions Difficult (if not impossible) to design

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 arzaneh Abdollahi

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Human-level control through deep reinforcement. Liia Butler

Human-level control through deep reinforcement. Liia Butler Humanlevel control through deep reinforcement Liia Butler But first... A quote "The question of whether machines can think... is about as relevant as the question of whether submarines can swim" Edsger

More information

Quadratics and Other Polynomials

Quadratics and Other Polynomials Algebra 2, Quarter 2, Unit 2.1 Quadratics and Other Polynomials Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Know and apply the Fundamental Theorem of Algebra

More information

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat Geometric View of Machine Learning Nearest Neighbor Classification Slides adapted from Prof. Carpuat What we know so far Decision Trees What is a decision tree, and how to induce it from data Fundamental

More information

Sparse Kernel Machines - SVM

Sparse Kernel Machines - SVM Sparse Kernel Machines - SVM Henrik I. Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I. Christensen (RIM@GT) Support

More information

Short Course: Multiagent Systems. Multiagent Systems. Lecture 1: Basics Agents Environments. Reinforcement Learning. This course is about:

Short Course: Multiagent Systems. Multiagent Systems. Lecture 1: Basics Agents Environments. Reinforcement Learning. This course is about: Short Course: Multiagent Systems Lecture 1: Basics Agents Environments Reinforcement Learning Multiagent Systems This course is about: Agents: Sensing, reasoning, acting Multiagent Systems: Distributed

More information

ECE521 Lecture 7/8. Logistic Regression

ECE521 Lecture 7/8. Logistic Regression ECE521 Lecture 7/8 Logistic Regression Outline Logistic regression (Continue) A single neuron Learning neural networks Multi-class classification 2 Logistic regression The output of a logistic regression

More information

Reinforcement Learning Active Learning

Reinforcement Learning Active Learning Reinforcement Learning Active Learning Alan Fern * Based in part on slides by Daniel Weld 1 Active Reinforcement Learning So far, we ve assumed agent has a policy We just learned how good it is Now, suppose

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Chapter 4: Dynamic Programming

Chapter 4: Dynamic Programming Chapter 4: Dynamic Programming Objectives of this chapter: Overview of a collection of classical solution methods for MDPs known as dynamic programming (DP) Show how DP can be used to compute value functions,

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Chapter 6: Conclusion

Chapter 6: Conclusion Chapter 6: Conclusion As stated in Chapter 1, the aim of this study is to determine to what extent GIS software can be implemented in order to manage, analyze and visually illustrate an IT-network between

More information

Lecture 2. 1 More N P-Compete Languages. Notes on Complexity Theory: Fall 2005 Last updated: September, Jonathan Katz

Lecture 2. 1 More N P-Compete Languages. Notes on Complexity Theory: Fall 2005 Last updated: September, Jonathan Katz Notes on Complexity Theory: Fall 2005 Last updated: September, 2005 Jonathan Katz Lecture 2 1 More N P-Compete Languages It will be nice to find more natural N P-complete languages. To that end, we ine

More information

1 Differentiable manifolds and smooth maps. (Solutions)

1 Differentiable manifolds and smooth maps. (Solutions) 1 Differentiable manifolds and smooth maps Solutions Last updated: March 17 2011 Problem 1 The state of the planar pendulum is entirely defined by the position of its moving end in the plane R 2 Since

More information

The Markov Decision Process Extraction Network

The Markov Decision Process Extraction Network The Markov Decision Process Extraction Network Siegmund Duell 1,2, Alexander Hans 1,3, and Steffen Udluft 1 1- Siemens AG, Corporate Research and Technologies, Learning Systems, Otto-Hahn-Ring 6, D-81739

More information

Recurrent Neural Networks 2. CS 287 (Based on Yoav Goldberg s notes)

Recurrent Neural Networks 2. CS 287 (Based on Yoav Goldberg s notes) Recurrent Neural Networks 2 CS 287 (Based on Yoav Goldberg s notes) Review: Representation of Sequence Many tasks in NLP involve sequences w 1,..., w n Representations as matrix dense vectors X (Following

More information

Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing

Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing ΗΥ418 Διδάσκων Δημήτριος Κατσαρός @ Τμ. ΗΜΜΥ Πανεπιστήμιο Θεσσαλίαρ Διάλεξη 21η BackProp for CNNs: Do I need to understand it? Why do we have to write the

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

APPLICATION OF A KERNEL METHOD IN MODELING FRICTION DYNAMICS

APPLICATION OF A KERNEL METHOD IN MODELING FRICTION DYNAMICS APPLICATION OF A KERNEL METHOD IN MODELING FRICTION DYNAMICS Yufeng Wan, Chian X. Wong, Tony J. Dodd, Robert F. Harrison Department of Automatic Control and Systems Engineering, The University of Sheffield,

More information

ML4NLP Multiclass Classification

ML4NLP Multiclass Classification ML4NLP Multiclass Classification CS 590NLP Dan Goldwasser Purdue University dgoldwas@purdue.edu Social NLP Last week we discussed the speed-dates paper. Interesting perspective on NLP problems- Can we

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

Lecture 3: The Reinforcement Learning Problem

Lecture 3: The Reinforcement Learning Problem Lecture 3: The Reinforcement Learning Problem Objectives of this lecture: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Policy Gradient Reinforcement Learning for Robotics

Policy Gradient Reinforcement Learning for Robotics Policy Gradient Reinforcement Learning for Robotics Michael C. Koval mkoval@cs.rutgers.edu Michael L. Littman mlittman@cs.rutgers.edu May 9, 211 1 Introduction Learning in an environment with a continuous

More information

Designing and Evaluating Generic Ontologies

Designing and Evaluating Generic Ontologies Designing and Evaluating Generic Ontologies Michael Grüninger Department of Industrial Engineering University of Toronto gruninger@ie.utoronto.ca August 28, 2007 1 Introduction One of the many uses of

More information

Integrated CME Project Mathematics I-III 2013

Integrated CME Project Mathematics I-III 2013 A Correlation of -III To the North Carolina High School Mathematics Math I A Correlation of, -III, Introduction This document demonstrates how, -III meets the standards of the Math I. Correlation references

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Model-Based Reinforcement Learning with Continuous States and Actions

Model-Based Reinforcement Learning with Continuous States and Actions Marc P. Deisenroth, Carl E. Rasmussen, and Jan Peters: Model-Based Reinforcement Learning with Continuous States and Actions in Proceedings of the 16th European Symposium on Artificial Neural Networks

More information

A Review of Kuiper s: Spatial Semantic Hierarchy

A Review of Kuiper s: Spatial Semantic Hierarchy A Review of Kuiper s: Spatial Semantic Hierarchy Okuary Osechas Comp-150: Behavior Based Robotics 4 November 2010 Outline Introduction 1 Introduction 2 Summary of ideas 3 Ontological Levels 4 Interfacing

More information

A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems

A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems Daniel Meyer-Delius 1, Christian Plagemann 1, Georg von Wichert 2, Wendelin Feiten 2, Gisbert Lawitzky 2, and

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

Computational Intelligence Lecture 6: Associative Memory

Computational Intelligence Lecture 6: Associative Memory Computational Intelligence Lecture 6: Associative Memory Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Computational Intelligence

More information